MEDIC: Remove Model Backdoors via Importance Driven Cloning

Qiuling Xu, Guanhong Tao, Jean Honorio, Yingqi Liu, Shengwei An, Guangyu Shen, Siyuan Cheng, Xiangyu Zhang
Purdue University
{xu1230, taog, jhonorio, liu1751, an93, shen447, cheng535, xyzhang}@purdue.edu

Abstract

We develop a novel method to remove injected backdoors in deep learning models. It works by cloning the benign behaviors of a trojaned model to a new model of the same structure. It trains the clone model from scratch on a very small subset of samples and aims to minimize a cloning loss that denotes the differences between the activations of important neurons across the two models. The set of important neurons varies for each input, depending on their magnitude of activations and their impact on the classification result. We theoretically show our method can better recover benign functions of the backdoor model. Meanwhile, we prove our method can be more effective in removing backdoors compared with fine-tuning. Our experiments show that our technique can effectively remove nine different types of backdoors with minor benign accuracy degradation, outperforming the state-of-the-art backdoor removal techniques that are based on fine-tuning, knowledge distillation, and neuron pruning.\(^1\)

1. Introduction

Backdoor attack is a prominent threat to applications of Deep Learning models. Misbehaviors, e.g., model misclassification, can be induced by an input stamped with a backdoor trigger, such as a patch with a solid color or a pattern \([14,29]\). A large number of various backdoor attacks have been proposed, targeting different modalities and featuring different attack methods \([2,22,37,44,49,55]\). An important defense method is hence to remove backdoors from pre-trained models. For instance, Fine-prune proposed to remove backdoor by fine-tuning a pre-trained model on clean inputs \([27]\). Distillation \([23]\) removes neurons that are not critical for benign functionalities. Model connectivity repair (MCR) \([56]\) interpolates weight parameters of a poisoned model and its finetuned version. ANP \([50]\) adversarially perturbs neuron weights of a poisoned model and prunes those neurons that are sensitive to perturbations (and hence considered compromised). While these techniques are very effective in their targeted scenarios, they may fall short in some other attacks. For example, if a trojaned model is substantially robust, fine-tuning may not be able to remove the backdoor without lengthy retraining. Distillation may become less effective if a neuron is important for both normal functionalities and backdoor behaviors. And pruning neurons may degrade model benign accuracy. More discussions of related work can be found in Section 2.

In this paper, we propose a novel backdoor removal technique MEDIC\(^2\) as illustrated in Figure 1 (A). It works by cloning the benign functionalities of a pre-trained model to a new sanitized model of the same structure. Given a trojaned model and a small set of clean samples, MEDIC trains the clone model from scratch. The training is not only driven by the cross-entropy loss as in normal model training, but also by forcing the clone model to generate the same internal activation values as the original model at the corresponding internal neurons, i.e., steps 1, 2, and 3 in Figure 1 (A). Intuitively, one can consider it essentially derives the weight parameters in the clone model by resolving the activation equivalence constraints. There are a large number of such constraints even with just a small set of clean samples. However, such faithful cloning likely copies the backdoor behaviors as well as it tends to generate the same set of weight values. Therefore, our cloning is further guided by importance (step 3). Specifically, for each sample \(x\), we only force the important neurons to have the same activation values. A neuron is considered important if (1) it tends to be substantially activated by the sample, when compared to its activation statistics over the entire population (the activation criterion in red in Figure 1 (A)), and (2) the large activation value has substantial impact on the classification result (the impact criterion). The latter can be determined by analyzing the output gradient regarding the neuron activation. By constraining only the important neurons and relaxing the

\(^1\)Code is available at https://github.com/qiulingxu/MEDIC

\(^2\)MEDIC stands for “Remove Model Backdoors via Importance Driven Cloning.”
others, the model focuses on cloning the behaviors related to the clean inputs and precludes the backdoor. The set of weight values derived by such cloning are largely different from those in the original model. Intuitively, it is like solving the same set of variables with only a subset of equivalence constraints. The solution tends to differ substantially from that by solving the full set of constraints.

Example. Figure 2 shows an example by visualizing the internal activations and importance values for a trojaned model on a public benchmark [35]. Image (a) shows a right-turn traffic sign stamped with a polygon trigger in yellow, which induces the classification result of stop sign. Image (c) visualizes the activation values for the trojaned image whereas (d) shows those for its clean version. The differences between the two, visualized in (e), show that the neurons fall into the red box are critical to the backdoor behaviors. A faithful cloning method would copy the behaviors for these neurons (and hence the backdoor). In contrast, our method modulates the cloning process using importance values and hence precludes the backdoor. The last image shows the importance values with the bright points denoting important neurons and the dark ones unimportant. Observe that it prevents copying the behaviors of the compromised neurons for this example as they are unimportant. One may notice that the unimportant compromised neurons for this example may become important for another example. Our method naturally handles this using per-sample importance values.

Our technique is different from fine-tuning as it trains from scratch. It is also different from knowledge distillation [25] shown in Figure 1 (B), which aims to copy behaviors across different model structures and constrains logits equivalence (and sometimes internal activation equivalence [53] as well). In contrast, by using the same model structure, we have a one-to-one mapping for individual neurons in the two models such that we can enforce strong constraints on internal equivalence. This allows us to copy behaviors with only a small set of clean samples.

We evaluate our technique on nine different kinds of backdoor attacks. We compare with five latest backdoor removal methods (details in related work). The results show our method can reduce the attack success rate to 8.5% on average with only 2% benign accuracy degradation. It consistently outperforms the other baselines by 25%. It usually takes 15 mins to sanitize a model. We have also conducted an adaptive attack in which the trigger is composed of existing benign features in clean samples. It denotes the most adversary context for MEDIC. Our ablation study shows all the design choices are critical. For example, without using importance values, it can only reduce ASR to 36% on average.

In summary, our main contributions include the following.

- We propose a novel importance driven cloning method to remove backdoors. It only requires a small set of clean samples.
- We theoretically analyze the advantages of the cloning method.
- We empirically show that MEDIC outperforms the state-of-the-art methods.

2. Related Work

There are a large body backdoor attacks [1, 7, 8, 15, 33, 34, 38–40, 57, 58]. We focus on a number of representative ones with different natures and used in our experiments. Readers interested in other attacks are referred to a survey [12, 24]. Badnet [14] proposes to inject backdoors with a fixed polygon. Clean Label attack [46] first adds adversarial perturbations to target-class samples and makes them misclassified. It then adds a square patch on those inputs without changing their ground-truth label. During inference, the square patch can induce misclassification on non-target class samples. SIG [3] uses a wave-like pattern as trigger. Reflection attack [30] adds the reflection of some external image on the input. Polygon attack [35] injects a polygon-like trigger on the input at specific locations. Filter attack [28] utilizes Instagram filters to transform inputs and labels the transformed inputs to the target class. Warp [32] uses image warping as a trigger pattern. The trigger perturbations hence vary for different inputs. We also consider an adaptive attack which uses benign features from two existing classes as the trigger [26].

Researchers have proposed various defense techniques, including backdoor inputs detection that aims to detect and reject input samples with triggers [9, 13, 45, 47]; backdoor scanning that determines whether a given model has backdoor using a small set of clean inputs [20, 28, 42, 48]; backdoor certification that certifies the predictions of individual samples with trigger [19, 31, 51, 52]; model hardening that adversarially trains models using triggers inverted from the subject (clean) model [43]; backdoor removal that erases injected backdoors using a small set of clean samples [23, 27, 50]. Our work falls in the last category. Fineprune [27] iteratively prunes neurons with small activation values on clean samples and then finetunes the pruned model. Note that the pruned model has different structure from the original one. In our experience, having the same structure is critical as it provides the optimal neuron alignment. Model connectivity repair (MCR) [56] interpolates parameters of a poisoned model and its finetuned version. NAD [23] first finetunes a poisoned model and then performs transfer learning, treating the finetuned model as the teacher and the poisoned model as the student. Its effectiveness hinges on the quality of the first finetuning step. ANP [50] adversarially perturbs neuron weights of the poisoned model and prunes neurons sensitive
to perturbations. We compare MEDIC with the aforementioned approaches in Section 5 and demonstrate that ours outperforms.

3. Method

Problem Statement. Given a multi-class backdoor classifier \(f^* : X \rightarrow Y \), where \(X \subset \mathbb{R}^d \) and \(Y \subset \mathbb{C} \), \(d \) the input dimension and \(C \) the number of classes. Samples \((X, Y) \) are drawn from the joint distribution \(S = (X, Y) \). The classifier \(f^* \) is originally trained on a large dataset \(D \sim (X, Y)^n \) and additional backdoor samples \(D_a \sim (X_a, Y_a) \). We aim to remove the backdoor behaviors in \(f^* \) and retain the benign behaviors. To do so, we leverage a small additional dataset \(D_s \sim (X, Y)^d \) where \(|D_s| \ll |D| \). It is used to facilitate the cloning process. Function \(f^c \) denotes the cloned and sanitized model using our method.

Our first goal is to clone the (benign) functionalities of the model instead of its parameters. Specifically, \(f^c \) is supposed to produce similar outputs as the original model (with backdoor) on clean inputs. This is stated as the functionality goal as follows.

\[
E_{x \sim X} (\|f^c(x) - f^*(x)\|_2) \approx 0 \quad \text{(Functionality)}
\]

In addition, \(f^c \) shall not have the backdoor behavior on samples from the backdoor distribution \((X_a, Y_a) \), with a high probability \(1 - \delta \). It is stated as the sanity goal.

\[
E_{(x, y) \sim (X_a, Y_a)} [I[f^c(x) \neq y] \geq 1 - \delta \quad \text{(Sanity)}
\]

It is worth noting that similar functionalities do not imply a similar set of parameters. In fact, our importance driven cloning derives a set of parameters different from those in the original model to meet the two stated goals.

Cloning. To achieve the first goal of copying normal functionalities using only a small set of benign samples, we propose to train a clone model from scratch that has the same structure, by forcing the clone model to have the same activation values for all the corresponding neurons and also the output logits as the original model. Such cloning is different from transfer learning, in which teacher and student models may be of different structures as it is not that meaningful to copy functionalities to a model with the same structure in transfer learning’s application scenarios.

While inputs often have a fixed bound, internal activation values have dynamic ranges. If we directly use activation value differences in the clone training loss, such range variations cause difficulties in convergence. Therefore, we normalize activation values before using them in the loss function. Formally speaking, given \(m \) internal neurons of a backdoored model, denoted by functions \(f_i^* : \mathbb{R}^d \rightarrow \mathbb{R} \) with \(i \in [1, m] \) and the corresponding ones in the clone model \(f_i^c \), we aim to enforce the corresponding neuron functions to produce the same values. Let \(\mu_i \) and \(\sigma_i \) be the mean and standard deviation of the random variable \(f_i^*(x) \) and \(w_i(x) \) an importance weight. We use \(\bar{f}(x), \bar{w}(x) \), \(\bar{\sigma} \) and \(\bar{\mu} \) to represent their concatenated vectors over the \(m \) neurons.

\[\text{We consider each element in a CNN feature map a separate neuron.}\]
resulted gradients are hence comparable. Consider a proxy
variables to denote normalized activations at all layers, called
innaccurate. To tackle the problem, we introduce variables to
layers affects the gradients and makes direct comparison
layers, especially those that do not have normalization, be-
results, we use the magnitude of gradients as an indicator.
Our results in Figure 3 show that we can faithfully clone
normal functionalities with only 2% samples. We also
study on through an additional parameter \(\lambda \)
can be found in Appendix D.1. A step-by-step
algorithm can be found in Appendix E.3. A step-by-step
interpretation loss and train the model. The two losses are balanced
through an additional parameter \(\lambda \). Details and an ablation
study on \(\lambda \) can be found in Appendix E.3. A step-by-step
algorithm can be found in Appendix D.1.

\[L_{\text{clone}} = E_{x \sim \mathcal{X}} \left[\sum_i w_i(x) \left(\frac{f_i^*(x) - f_i^*(x)}{\sigma_i} \right)^2 \right] \]

where \(w_i(x) \geq 0 \)

Intuitively, we minimize the differences between the out-
puts of the corresponding neurons. For the moment, one
can assume \(w_i(x) = 1/m \), meaning that we enforce such
constraints equally on all neurons. We will explain how we
change \(w_i(x) \) to preclude backdoor behaviors later in the
section.

The next step is to identify the neurons satisfying both
Eq.(2) and (3). In a discrete world, we could perform a set inter-
section. However, our softmax operations do not select the
largest weight values. Instead, they produce vectors denoting
the importance of all neurons. Hence, we perform a soft ver-
tion of “boolean conjunction”. For example, when
\(a = 1 \) and \(b = 1 \), \(a \wedge b = 1 \). The square root ensures the output is in the same magnitude
as the inputs.

Given the cloning loss, we combine it with the classifica-
tion loss and train the model. The two losses are balanced
through an additional parameter \(\lambda \). Details and an ablation
study on \(\lambda \) can be found in Appendix E.3. A step-by-step
algorithm can be found in Appendix D.1.

\[L(x) = L_{\text{classification}}(x) \wedge L_{\text{cloning}}(x) = \sqrt{w_{i}^{\text{activate}}(x) \cdot w_{i}^{\text{impact}}(x)} \]

Initially, we minimize the differences between the output-
puts of the corresponding neurons. For the moment, one
can assume \(w_i(x) = 1/m \), meaning that we enforce such
constraints equally on all neurons. We will explain how we
change \(w_i(x) \) to preclude backdoor behaviors later in the
section.

The effectiveness of MEDIC hinges on cloning. In this
section, we study a critical property of cloning, which states
that cloning can copy the functionalities of original model
using only a small set of clean samples. We also formally
show that cloning is superior to training from scratch using
the small set, and to knowledge distillation. That is, cloning tends to have a smaller loss value. Backdoor removal using importance values is merely an application of the property as we essentially leverage importance analysis to select a subset of functionalities only relevant to clean sample classifications for cloning. Figure 3 shows empirical evidence using an example. Observe that knowledge distillation has a larger improvement over training from scratch given more samples. Also observe that training from scratch and knowledge distillation cause non-trivial benign accuracy degradation. In contrast, cloning causes negligible degradation of original backdoor model using even just 2% of data.

We mainly utilize the decomposition, Rademacher complexity [5] and Covering number to derive an upper bound for the testing loss of a classifier with a high probability. We hence show that cloning has a smaller upper bound (of loss) compared to distillation and training from scratch using a small set of samples.

Based on the aforementioned analysis, we additionally prove the computation complexity of cloning in Appendix B. We show cloning can be orders of magnitude faster in recovering benign accuracy. Furthermore, in Appendix C, we theoretically show cloning can be more effective than fine-tuning in removing backdoors. This is done by analyzing a general backdoor scenario. We hence prove that cloning can guarantee the backdoor removal for this type of backdoor while fine-tuning can not. And we show the importance weight correctly identify the compromised neurons.

In the following, we first introduce the notations, terms, and a set of lemmas. We then formally show that cloning is better than training from scratch on a small set and distillation.

Figure 3. Benign accuracy of models after backdoor removal versus the data used (for a CIFAR-10 model poisoned with CleanLabel backdoor).

4.1. Notations and Backgrounds

We consider the original model \(f^* \), model \(f^\gamma \) trained from scratch using \(D_s \) (i.e., the small dataset), clone model \(f^c \) by our method and model \(f^K \) by knowledge distillation [17]. They belong to the function families \(\mathcal{F}^* \), \(\mathcal{F}^\gamma \), \(\mathcal{F}^c \), and \(\mathcal{F}^k \), respectively. These families are determined by the specific optimization and learning algorithms. Since each algorithm has its learning bias and will likely generate a different set of parameters.

Neural Net. To facilitate the formal analysis, we leverage a simple network. Let \(\psi \) be the ReLU activation function, \(l_\gamma \) the loss function with the Lipschitz constant \(2\gamma \). Without loss of generality, we assume a two-layer network, where the two layers are abstracted to two respective matrices, \(G \in \mathbb{R}^{d \times p} \) and \(H \in \mathbb{R}^{p \times C} \), with \(p \) the number of hidden units. Let \(s \) be the softmax function. The network is represented as \(f(x) = s \circ o(x) \), \(o(x) = Hg(x) \) and \(g(x) = \psi(Gx) \). Putting them together, \(f(x) = s(H\psi(Gx)) \). Intuitively, \(f(x) \) outputs the probability, \(o(x) \) is the logits value and \(g(x) \) is the hidden layer. It is worth noting that our analysis can naturally extend to complex network since the proof structure stays the same.

Loss. As a common practice in multi-class analysis, we use the margin loss [4] as \(l_\gamma(f(x), y) \). Its definition can be found in Appendix eq.(9). A smaller loss value indicates better performance.

Rademacher Complexity. Let \(\mathcal{F} \) be a family of functions , \(D \) a set of samples, and \(\sigma \) uniformly sampled from \(\{-1, +1\}^{|D|} \). The empirical Rademacher complexity is defined as follows. \(\hat{R}(\mathcal{F}|D) = \mathbb{E}_\sigma[\sup_{f \in \mathcal{F}} \frac{1}{|D|} \sum_{x \in D} \sigma_i f(x_i)] \). Observe that if \(\mathcal{F} \) contains only a fixed function, the value is 0 suggesting no complexity (and hence trivial to learn).

Covering Number Bound. It is difficult to directly compute Rademacher complexity in our context. We hence derive its upper-bound using covering number. Let \(\| \cdot \|_{p,D} \) be a pseudo-norm on function family \(\mathcal{F} \) with respect to a vector norm \(\| \cdot \|_p \) and data \(D \) (definition in Appendix eq. (20)), we define the covering number \(N(\mathcal{F}, \| \cdot \|_{p,D}, \epsilon) \) as the size of minimal-\(\epsilon \) cover of \(\mathcal{F} \) under this pseudo-norm. Intuitively, this number means how many functions are representative such that they can cover all the learning outcomes with the \(\epsilon \) bound. The covering number of a function family is dependent on the learning method. For example, when we include the loss to minimize the difference between \(f^c \in \mathcal{F}^c \) and \(f^* \in \mathcal{F}^* \) (during cloning), we essentially reduce the covering number of the function difference family \(N(\{f^* - f^\gamma\}, \| \cdot \|_{p,D}, \epsilon) \).

Lemmas. In the following, we introduce three lemmas that are needed in later analysis. Their proofs can be found in the Appendix. In Lemma 1, we derive the Lipschitz constant of the loss function. In Lemma 2, we bound the Lipschitz of softmax function. In Lemma 3, we bound the Rademacher complexity by a function over the covering number.

Lemma 1. For any logits \(o_1, o_2 \in \mathbb{R}^c \) and \(y \in Y \), we have \(|l_\gamma(o_1, y) - l_\gamma(o_2, y)| \leq 2\gamma||o_1 - o_2||_\infty \).
Lemma 2. For any logits \(o_1, o_2 \in \mathbb{R}^c \), we have \(\| s(o_1) - s(o_2) \|_\infty \leq \frac{1}{2} \| o_1 - o_2 \|_\infty \).

Lemma 3 ([36]). Given function family \(\mathcal{F} \), data \(D \) and number of samples \(n = | D | \), we define the function:

\[
B(\mathcal{F}|D) = \inf_{\epsilon \in [0,\epsilon_c/2]} \left\{ \epsilon + \frac{2\epsilon_c}{\sqrt{n}} \sqrt{\log \mathcal{N}(\mathcal{F},\| \cdot \|_1,D,\epsilon)} \right\},
\]

where \(\epsilon_c = \sup_{f \in \mathcal{F}} \| f \|_2,D \). We then have \(\hat{R}(\mathcal{F}|D) \leq B(\mathcal{F}|D) \)

4.2. Analysis

To formally compare cloning, distillation, and training from scratch on a small set, we first study the advantage of cloning and distillation compared with training from scratch. The advantage comprises two parts, i.e., a gap and a regret. The gap is the training loss difference between training on the current model and the optimal model (\(f^* \)). Since the gap is not specific to our algorithm, we hence study the upper bound of the regret. A smaller regret indicates better classification performance. We finally show the upper bound of our regret is smaller than baselines.

Here we use distillation as an example. The analysis applies similarly to cloning as well. The advantage of distillation (\(f^k \)) over training from scratch on a small set (\(f^s \)) is denoted by their respective loss difference as follows.

\[
\mathbb{E}_{(x,y) \sim \mathcal{S}}[l_i(f^s(x),y) - l_i(f^k(x),y)] = \Delta - \frac{\mathbb{E}_{\mathcal{S}}[(l_i(f^k(x),y) - l_i(f^s(x),y))]}{\text{Loss Gap}}
\]

(5)

where \(\Delta = \mathbb{E}_{(x,y) \sim \mathcal{S}}[l_i(f^s(x),y) - l_i(f^s(x),y)] \). Note that as \(|D_s| \ll |D| \), the loss gap \(\Delta \) between \(f^s \) (training on a large dataset \(D \)) and \(f^k \) (training on the small dataset \(D_s \)) tends to be large. A large gap will make distillation and cloning favorable.

Next we analyze the upper-bound of the regret, since the loss gap is only dependent on the sample size difference. According to Equation 5 and the standard Rademacher complexity bound argument [3], we have the following regret upper bound between the distilled model and the original model with a high probability \(1 - \delta \).

\[
\frac{1}{|D_s|} \sum_{(x,y) \in D_s} \left[l_i(f^k(x),y) - l_i(f^s(x),y) \right] + \frac{2 \hat{R}(\mathcal{L}^k|D_s)}{\text{Function Complexity}} + 3 \sqrt{\frac{\log(2/\delta)}{2|D_s|}} \frac{\text{Uncertainty}}{\text{Training Error}}
\]

(6)

Here, \(\mathcal{L}^k \) is the function family of the regret between the distilled model and the original model, with \(\mathcal{L}^k = \{ h : X \times Y \rightarrow \mathbb{R} \mid h(x,y) = l_i(f^k(x),y) - l_i(f^*(x),y) \} \). The regret upper bound between the clone model and the original model can be similarly derived. Observe that the bound consists of three terms: training error, function complexity and uncertainty. The first and the third terms have a similar effect for both the distilled model \(f^k \) and the clone model \(f^c \). Specifically, the training error is computed on training data. Since we only have limited samples and the model is prone to overfit on the training data. This term is close to zero empirically for both models. The uncertainty only depends on the data size \(|D_s| \) and the probability \(\delta \). Therefore, the difference between the two models mainly lies in their function family complexities. In the following, we will analyze the upper-bounds of the two function families. We use \(\mathcal{O}^k_i = \{ h : \mathbb{R}^d \rightarrow \mathbb{R} \mid h(x) = o^c(x_i) - o^*(x_i) \} \) to denote the family of differences regarding the \(i \)-th logits. The proof can be found in Appendix A.

Theorem 1. For distilled model \(f^k \) and class number \(C \), we have

\[
\hat{R}(\mathcal{L}^k|D_s) \leq \hat{O}(\gamma \sqrt{C}) \max_i B(\mathcal{O}^k_i|D_s)
\]

(7)

Let \(\| H \|_{1,\infty} = \max_i \sum_j |H_{i,j}| \) be the entry-wise matrix norm, \(T^*_{i} = \{ h : \mathbb{R}^d \rightarrow \mathbb{R} \mid h(x) = g^*(x_i) - g^*(x_i) \} \) the family of differences on an intermediate neuron \(i \) (between the clone and original models), and \(J^*_{i} = \{ h : \mathbb{R}^d \rightarrow \mathbb{R} \mid h(x) = g^*(x_i) \} \) the function family of intermediate neuron \(i \) of the original model. We have the following theorem.

Theorem 2. For cloned model \(f^c \), let \(\omega_c = \sup_{H \in \mathcal{H}} \| H \|_{1,\infty}, \beta_c = \sup_{H \in \mathcal{H}, C} \| H^c - H^* \|_{1,\infty} \) and class number \(C \). We have

\[
\hat{R}(\mathcal{L}^c|D_s) \leq \hat{O}(\sqrt{C}) \min \left\{ \max_i B(\mathcal{O}^c_i|D_s) \right\} \text{Constrained on Logits}
\]

(8)

\[
\max_i \omega_c B(T^*_{i}|D_s) + \beta_c B(J^*_{i}|D_s) \text{Constrained on Intermediate Layers}
\]

From the theorem 1, decreasing covering numbers on logits difference family \(\mathcal{O}^k_i \) can reduce the regret and improve the performance. Since knowledge distillation directly controls the covering number by applying \(L_2 \) constraints on logits, these constraints improve the performance according to the theorem. From the theorem 2, we can further understand the benefits of Cloning. By comparing two theorems, we find that the upper-bound for cloned model is always smaller than that of the distilled model given \(\mathcal{O}^k_i = \mathcal{O}^c_i \) (i.e., both models have their logits similar to the original model’s). Intuitively, the advantage of cloning originates from the additional intermediate constraints, which reduce the covering.
number of I^*_c, i.e. $N(I^*_c; \parallel \cdot \parallel_{1,D}, \epsilon)$ in $B(I^*_c|D_s)$ and the upper-bound on the regret. Also note that the other family J^*_i is unrelated to cloning.

5. Experiment

Setting. We conduct experiments on nine representative backdoor attacks. Specifically, we use Wide ResNet [54] and CIFAR-10 [21] for the common benchmark attacks and the adaptive attacks including Badnet [14], Clean Label [46], SIG [3], Reflection [30], Warp [32] and two Adaptive Attacks [26]. 5% data is used for removing backdoor behaviors on CIFAR-10. We further experiment on large-scale datasets Kitti-City [11] and Kitti-Road [11], and public backdoor benchmarks Polygon and Filter, based on ResNet [54]. We compare with five latest backdoor removal methods including Finetune, Fineprune [27], NAD [23], MCR [56], and ANP [50]. More details of these attacks and removal methods can be found in Section 2 and Appendix D.

Comparison with Baselines. In Table 1, we show the results in comparison with other backdoor removal methods. The fourth column shows the accuracy and attack success rate (ASR) of the original (trojaned) model. The following columns show the results after applying various backdoor removal methods. All the methods use the same set of data augmentations. We also adjust the temperature of MEDIC so that the test accuracies of our repaired models are comparable to others. From the results, we find the advantage of our algorithm outperforming other baselines lies in the cases of hard-to-remove backdoors. We retrain the model whereas others do not. This different design ensures some deep-rooted backdoors can be removed. Observe that other baselines are less effective in removing Clean Label, SIG, Polygon, and Filter backdoors as the ASRs are still high after the removal. In contrast, MEDIC can substantially reduce the ASRs of these attacks. On the other hand, when the backdoor attack is not robust (e.g. simpler attacks like Badnet and Reflection where Finetune can already remove them), the optimal results will favor methods which cause fewer changes to the model, since few changes suffice to remove the backdoor. From the security perspective, a resilient backdoor will be used by attackers more often, which suggests those hard-case backdoor attacks are more important. Note that even in those easier cases, MEDIC is still competitive. In the last row of Table 1, we show the average ASR reduction and accuracy degradation. Observe that MEDIC achieves 25% more ASR reduction compared to others with minor accuracy degradation.

Adaptive Attacks. We evaluate two adaptive attacks. In adaptive attack 1, the trigger pattern can exist on benign samples [26]. It utilizes multiple natural objects from different classes as the backdoor. In adaptive attack 2, we adversarially optimize the trigger to maximize the clone loss. The trigger will have a high activation value on the important neurons and may survive after cloning. Note that these represent the most adversarial contexts against MEDIC as the backdoor is essentially benign features or benign neurons that cloning would likely copy. Observe that MEDIC is still quite effective against Adaptive1 and Adaptive2 attacks as shown in Table 1. For the variant 1, while benign features are used to compose the backdoor, these features are not important for the target class. As such, their behaviors are hence not copied for the target class. For the variant 2, despite the substantial backdoor activations on important neurons, the cloning will only connect the benign functions to the output due to the absence of the trigger pattern in the clean data.

Effectiveness of Using Importance Values. In Figure 4, we show the effects of cloning using different temperatures. A temperature $\tau = 0$ means we do not use the importance and treat all neurons as equal. Observe that a larger temperature prunes more backdoor-related behaviors. The ASR is reduced by at most 70% with at most 4% accuracy drop (with a temperature of 5). This shows our importance values capture the characteristics of benign functionalities.

Stronger Backdoor Baselines. Different from the results reported in recent works [23,50,56], our results are evaluated on stronger backdoor baselines. We found training backdoor
Table 1. Comparing with other methods. ± represents the standard deviation over 5 repeated runs.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Attack</th>
<th>Metric</th>
<th>Original (%)</th>
<th>Method (in percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Finetune</td>
</tr>
<tr>
<td>Clean Label</td>
<td>ASR</td>
<td>100.0</td>
<td>89.2 ± 20.2</td>
<td>99.6 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>Acc.</td>
<td>88.5</td>
<td>85.2 ± 0.5</td>
<td>85.5 ± 0.3</td>
</tr>
<tr>
<td>Common Benchmark</td>
<td>ASR</td>
<td>94.5</td>
<td>68.3 ± 8.3</td>
<td>41.9 ± 23.9</td>
</tr>
<tr>
<td>Attacks</td>
<td>Acc.</td>
<td>86.9</td>
<td>85.0 ± 0.2</td>
<td>85.0 ± 0.5</td>
</tr>
<tr>
<td>Badnet</td>
<td>ASR</td>
<td>100.0</td>
<td>3.2 ± 0.4</td>
<td>5.1 ± 1.6</td>
</tr>
<tr>
<td></td>
<td>Acc.</td>
<td>88.9</td>
<td>83.1 ± 0.3</td>
<td>84.3 ± 1.2</td>
</tr>
<tr>
<td>Reflection</td>
<td>ASR</td>
<td>34.2</td>
<td>7.6 ± 1.9</td>
<td>5.7 ± 0.9</td>
</tr>
<tr>
<td></td>
<td>Acc.</td>
<td>84.3</td>
<td>84.5 ± 0.3</td>
<td>84.4 ± 0.2</td>
</tr>
<tr>
<td>Warp</td>
<td>ASR</td>
<td>96.5</td>
<td>13.2 ± 4.4</td>
<td>4.7 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>Acc.</td>
<td>86.2</td>
<td>84.5 ± 0.2</td>
<td>84.6 ± 0.2</td>
</tr>
<tr>
<td>Public Benchmarks</td>
<td>Polygon</td>
<td>ASR</td>
<td>99.9</td>
<td>60.4 ± 14.6</td>
</tr>
<tr>
<td>on Large Datasets</td>
<td>Acc.</td>
<td>99.7</td>
<td>99.0 ± 0.2</td>
<td>98.7 ± 0.6</td>
</tr>
<tr>
<td>Adapative Attacks</td>
<td>ASR</td>
<td>100.0</td>
<td>62.0 ± 14.9</td>
<td>56.6 ± 9.8</td>
</tr>
<tr>
<td></td>
<td>Acc.</td>
<td>99.7</td>
<td>99.3 ± 0.3</td>
<td>99.1 ± 0.2</td>
</tr>
<tr>
<td>Variant 1</td>
<td>ASR</td>
<td>79.3</td>
<td>37.1 ± 2.6</td>
<td>36.4 ± 0.8</td>
</tr>
<tr>
<td></td>
<td>Acc.</td>
<td>83.0</td>
<td>80.2 ± 0.2</td>
<td>79.5 ± 0.5</td>
</tr>
<tr>
<td>Variant 2</td>
<td>ASR</td>
<td>98.5</td>
<td>94.9 ± 2.7</td>
<td>77.7 ± 5.2</td>
</tr>
<tr>
<td></td>
<td>Acc.</td>
<td>85.9</td>
<td>82.9 ± 0.7</td>
<td>83.2 ± 0.3</td>
</tr>
<tr>
<td>Avg. Drop</td>
<td>ASR</td>
<td>-</td>
<td>35.5 ± 1.9</td>
<td>41.9 ± 2.1</td>
</tr>
<tr>
<td></td>
<td>Acc.</td>
<td>-</td>
<td>2.2 ± 0.1</td>
<td>2.1 ± 0.1</td>
</tr>
</tbody>
</table>

Figure 5. Removal methods on backdoor models trained with and without data augmentation during attack. The black lines denote the standard deviations. The results are from Clean Label attack.

Other Experiments. In Appendix E.1, we include another adaptive attack. In Appendix E.2, we conduct the ablation study given the distribution shift of training data. The results show our method can perform well under the distribution shift. In Appendix E.4, we conduct an ablation study on the amount of available data. We show that the trigger removal performance is positively correlated with the data amount. In Appendix E.6, we conduct the ablation study on the necessity of importance criterions and show that our design is crucial. In Appendix E.7, we conduct the ablation study on the backdoor model architectures and show that our method can generalize to different types of models.

6. Conclusion

We propose a novel backdoor removal method by importance driven cloning. We empirically and theoretically show that our method is superior to state-of-the-art baselines on a large set of evaluated attacks.

7. Acknowledgement

We thank the anonymous reviewers for their constructive comments. This research was supported, in part by IARPA TrojanAI W911NF-19-S-0012, NSF 1901242 and 1910300, ONR N000141712045, N0001414010468 and N000141712947. Any opinions, findings, and conclusions in this paper are those of the authors only and do not necessarily reflect the views of our sponsors.
References

[58] Chen Zhu, W Ronny Huang, Hengduo Li, Gavin Taylor, Christoph Studer, and Tom Goldstein. Transferable clean-label poisoning attacks on deep neural nets. In ICML, pages 7614–7623, 2019. 2

20494