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Abstract

Domain shift degrades the performance of object de-
tection models in practical applications. To alleviate the
influence of domain shift, plenty of previous work try to
decouple and learn the domain-invariant (common) fea-
tures from source domains via domain adversarial learn-
ing (DAL). However, inspired by causal mechanisms, we
find that previous methods ignore the implicit insignificant
non-causal factors hidden in the common features. This is
mainly due to the single-view nature of DAL. In this work,
we present an idea to remove non-causal factors from com-
mon features by multi-view adversarial training on source
domains, because we observe that such insignificant non-
causal factors may still be significant in other latent spaces
(views) due to the multi-mode structure of data. To sum-
marize, we propose a Multi-view Adversarial Discriminator
(MAD) based domain generalization model, consisting of a
Spurious Correlations Generator (SCG) that increases the
diversity of source domain by random augmentation and a
Multi-View Domain Classifier (MVDC) that maps features
to multiple latent spaces, such that the non-causal factors
are removed and the domain-invariant features are purified.
Extensive experiments on six benchmarks show our MAD
obtains state-of-the-art performance.

1. Introduction
The problem of how to adapt object detectors to un-

known target domains in real world has drawn increasing
attention. Traditional object detection methods [11, 12, 25,
29,30] are based on independent and identically distributed
(i.i.d.) hypothesis, which assume that the training and test-
ing datasets have the same distribution. However, the target
distribution can hardly be estimated in real world and dif-
fers from the source domains, which is coined as domain
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Figure 1. Illustration of the biased learning of conventional DAL.
The domain classifier easily encounters early stop and fails.

shift [38]. And the performance of object detection models
will sharply drop when facing the domain shift problem.

Domain adaptation (DA) [3, 6, 17, 34, 40, 44, 52] is pro-
posed to deal with the domain shift problem, which enables
the model to be adapted to the target distribution by aligning
features extracted from the source and unlabeled target do-
mains. However, the requirement of target domain datasets
still limits the applicability of DA methods in reality. Do-
main generalization (DG) [49] goes one step further, aiming
to train a model from single or multiple source domains that
can generalize to unknown target domains.

Although lots of DG methods have been proposed in the
image classification field, there are still some unresolved
problems. In our opinion, the common features extracted by
previous DG methods are still not pure enough. The main
reason is that through a single-view domain discriminator in
DAL, only the significant domain style information can be
removed, while some implicit and insignificant non-causal
factors in source domains may be absorbed by the feature
extractor as a part of common features. This has never been
noticed. This implies the multi-mode structure of data and
single-view domain discriminator cannot fully interpret the
data. There is a piece of evidence to support our claim.

To confirm our suspicions on the domain discriminator,
we designed a validation experiment. As is shown in Fig. 1,
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Figure 2. Relationships among causal factors, noncausal factors,
domain specific feature and domain common feature.

we use DANN model [9] with DAL strategy to train a com-
mon feature extractor. When domain classifier converges,
we freeze feature extractor and re-train domain classifier
with a newly added residual block [14]. We observe an
interesting phenomenon: when re-trained with the newly
added residual block, the domain classifier loss continues
to decline. That is, some domain-specific information still
exists. This phenomenon confirms our claim that in existing
DG, DAL cannot explore and remove all domain specific
features. This is because domain classifier only observes
significant domain-specific feature in a single-view, while
insignificant domain specific features in one view (space)
can be significant in other views (latent spaces).

Based on the former experiment, we propose that min-
ing common features through DAL in single-view on a lim-
ited number of domains is insufficient. By using traditional
DAL, only the primary style information w.r.t. domain la-
bels can be removed. Here we analyse this problem from
the perspective of causality. As shown in Fig. 2, in a lim-
ited number of domains, the common features still contain
non-causal factors such as light color, illumination, back-
ground, etc., which is expressed as the orange arrows in the
figure. And such insignificant non-causal factors observed
from one view may still be significant uninformative fea-
tures in other latent spaces (views). So a natural idea is
to explore and remove the implicit non-causal information
from multiple views and purify the common features for
generalizing to unseen domains.

In order to remove the potential non-causal information,
we rethink the domain discriminator in DAL and propose
a multi-view adversarial domain discriminator (MAD) that
can observe the implicit insignificant non-causal factors. In
our life, in order to get the whole architecture of an object,
we often need to observe it from multiple views/profiles. A
toy example is shown in Fig. 3 (left part). When we observe
the Penrose triangle from one specific view, we might mis-
classify it as a triangle, ignoring that it might also appear
to be L from another perspective. Following this intuition,
we construct a Multi-View Domain Classifier (MVDC) that
can discriminate features in multiple views. Specifically,

photo art cartoon sketch

view 1

view 2

view 3

Figure 3. An illustration of the multi-view idea and effect of MAD.
Left: a toy example. Right: attention heatmaps of different views.

we simulate multi-view observations by mapping the fea-
tures to different latent spaces with auto-encoders [16], and
discriminate these transformed features via multi-view do-
main classifiers. By mining and removing as many non-
causal factors as possible, MVDC encourages the feature
extractor to learn more domain-invariant but causal factors.
We conduct an experiment based on MVDC and show the
heatmaps from different views in Fig. 3 (right part), which
verifies our idea that different noncausal factors can be un-
veiled in different views.

Although the Multi-View Domain Classifier can remove
the implicit non-causal features in principle, it still implies
a sufficient diversity of source domains during training. So
we further design a Spurious Correlation Generator (SCG)
to increase the diversity of source domains. Our SCG gen-
erates non-causal spurious connections by randomly trans-
forming the low-frequency and extremely high-frequency
components, as [19] points out that in the spectrum of im-
ages, the extremely high and low frequency parts contain
the majority of domain-specific components.

Combining MVDC and SCG, the Multi-view Adversar-
ial Discriminator (MAD) is formalized. Cross-domain ex-
periments on six standard datasets show our MAD achieves
the SOTA performance compared to other mainstream
DGOD methods. The contributions are three-fold:

1. We point out that existing DGOD work focuses on ex-
tracting common features but fails to mine and remove the
potential spurious correlations from a causal perspective.

2. We propose a Multi-view Adversarial Discriminator
(MAD) to eliminate implicit non-causal factors by discrim-
inating non-causal factors from multiple views and extract-
ing domain-invariant but causal features.

3. We test and analyze our method on standard datasets,
verifying the effectiveness and superiority of our method.

2. Related Work

2.1. Domain Adaptive Object Detection

Object detection is a critical problem in computer vision,
aiming to locate and classify the specified instances in spe-
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cific images. Modern object detection methods can be di-
vided into two categories: one-stage methods [25, 29] and
two-stage methods [11, 12, 30]. However, traditional ob-
ject detection methods suffer from domain shifts in prac-
tical applications. In order to alleviate the performance
degradation caused by domain shift, lots of domain adap-
tive object detection (DAOD) methods are presented [3, 6,
17, 34, 40, 44, 52]. DAOD methods are trained with labeled
source domains and unlabeled target domains, and alleviate
the domain shift problem by DAL. The DAOD methods can
be divided into two parts: adversarial-based methods and
reconstruction-based methods. For the former, the domain
adversarial learning structure is introduced to align feature
maps by [6]. For the latter, [2] firstly uses CycleGAN [51]
to generate pseudo samples that are similar to the target do-
main from the source domain samples. DAOD methods still
have problems in real-world applications. On the one hand,
they still require additional effort to collect unlabeled target
domain datasets, which is expensive and even impossible.
On the other hand, they cannot guarantee the causality of
features. We hope to find domain-invariant but causal fea-
tures that are more robust for unseen target domains.

2.2. Domain Generalization

Domain generalization has been studied for a long time
in the image classification field. Existing domain gener-
alization methods can be divided into the following three
categories. First, domain augmentation methods aim to in-
crease the diversity of source domains by transferring im-
ages to new domains. [35, 39, 50] augment source domains
in image-space. [45] and [19] perform augmentation on the
frequency spectrum. Second, representation learning meth-
ods aim to extract domain-invariant representation from
source domains. [22] firstly adopts the idea of DAL in do-
main adaptation for domain generalization. Third, there are
also learning strategies like [21] which firstly adopts meta-
learning for domain generalization, following the idea of
enabling the network learn how to learn domain-invariant
components from different domains.

2.3. Causal Mechanism

Methods based on causal mechanisms [26, 36] consider
that the prediction based on statistical dependence is unre-
liable, because the statistical correlations contain both spu-
rious non-causal correlations and causal correlations. For
example, smoking, yellow teeth and lung cancer are closely
related. Nevertheless, only smoking is the causal factor of
lung cancer. To improve the generalization of methods,
they try to mine these invariant causal correlations. In re-
cent years, solving DG problems by finding causal factors
is gaining more and more attention [27,28]. Some methods
attempt to obtain invariant causal mechanisms [15, 37, 42].
Meanwhile, other methods try to recover causality charac-
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Figure 4. The overall structure of MAD can be divided into three
parts. (1) Yellow part: FasterRCNN backbone network. (2) Blue
part: SCG generates potential spurious correlations in the fre-
quency domain. (3) Green part: MVDC maps features to differ-
ent spaces for multi-view DAL and removes implicit non-causal
features, such that the domain-invariant but causal features are ob-
tained. Notably, the red part shows the conventional DAL.

teristics [4, 13, 24, 32]. Existing methods focus on looking
for invariant causal factors. However, we argue that one
should pay more attention to exploring the potential non-
causal spurious correlations, because the domain-invariant
representations learned by traditional DAL are often biased
towards one view, as Fig. 3 shows. We propose to purify the
domain-invariant features by removing implicit non-causal
factors from multiple views in DAL.

3. Proposed MAD Approach

3.1. Overview

Existing DG methods learn common features with con-
ventional DAL among finite domains [21, 22]. However,
such common features extracted are often not pure due to
the implicit non-causal factors. As discussed before, we
propose a Multi-view Adversarial Discriminator (MAD) to
explore and remove potential spurious correlations and en-
courage the model to extract purer domain-invariant but
causal features. As is shown in Fig. 4, our MAD con-
tains two new parts. First, a Spurious Correlation Gener-
ator (SCG) module is designed to increase the diversity of
source domains and make the potential non-causal factors
more significant. Second, a Multi-View Domain Classifiers
(MVDC) module is designed to identify the non-causal fac-
tors for both image and instance levels, such that the domain
adversarial learning is more sufficient and the non-causal
factors are richer in different views, which instructs the fea-
ture extractor to ignore them. To summarize, SCG explores
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Figure 5. Structure of the Spurious Correlation Generator (SCG). The DCT spectrum of the original image is divided into causal and non-
causal parts by the band-pass filter. The extremely high and low frequency components contain more non-causal factors and the remaining
components is considered to contain more causal factors. The diversity of source domains is increased by randomising the non-causal part
according to a Gaussian distribution. After IDCT, an image with potential non-causal factors is generated.

and exposes the potential non-causal factors, while MVDC
discriminates and removes them.

We make the following definitions to formalize the do-
main generalization problem. The source domain is denoted
as Ds = {Xs, Ys}. The feature extractor f(·) can extract
the features S = f(Xs) from input images Xs. Feature S
contains causal and non-causal factors {scau, snon} in the
finite source domains. Intuitively, not all common compo-
nents scom are causal factors, but domain private compo-
nents spri are non-causal factors, and there is,{

scau ⊂ scom

snon ⊃ spri
(1)

The non-causal factors snon are supposed to obey Gaussian
distribution, i.e., snon ∼ N (µ, σ2) [41].

3.2. Spurious Correlations Generator

As [19] pointed out, the extremely high and low fre-
quency parts of images contain more domain-private fea-
tures. Our SCG aims to increase the diversity of source
domains by keeping the causal features invariant and ran-
domizing the non-causal frequency components according
to a Gaussian distribution. Specifically, our SCG is imple-
mented by the following steps as shown in Fig. 5. Firstly,
by adopting Discrete Cosine Transform (F (·)) [1], we get
the frequency spectrum of the input image x ∈ RH×W

as F (x), of which the extremely high and low frequency
parts contain more non-causal factors. Then, we separate
the non-causal factors and causal factors in frequency do-
main by a band-pass filter:

M(r) = e
−u2+v2

2RH
2 − e

−u2+v2

2RL
2 (2)

where u, v denotes the position of the spectrum and
r(RL, RH) denote the cut-off frequency of low and high
frequency. We then randomize this non-causal factor S ac-
cording to a Gaussian distribution as RG(S) = S · (1 +

N (0, 1)). Finally, we get the augmented image x̂ with po-
tential non-causal factors by adopting the Inverse Discrete
Cosine Transform F

′
(·) to the augmented spectrum. Our

spurious correlations generator can be expressed as:

x̂ = F
′
(RG(M(r) · F (x)) + (1−M(r)) · F (x)) (3)

3.3. Multi-View Domain Classifier

3.3.1 Domain Adversarial Learning (DAL)

DAL [9] is a standard method to extract the common feature
of different domains, which minimizes the A − Distance
of the extracted features between different domains. DAL is
a minimax optimization problem between feature extractor
F and the ideal domain classifier:

min
F

dA(Ds1, Ds2) =max
F

min
h∈H

err(h(s))︸ ︷︷ ︸
Standard DAL

⇒max
F

M∑
i=1

min
hi∈H,ei

err(hi(ei(s)))︸ ︷︷ ︸
Ours

(4)

where H denotes a hypothesis set of all possible domain
classifiers, h(·) is one of the domain classifiers in H, and
e(·) denotes encoders which map feature to divers latent
spaces. A single h depends on the most discriminative do-
main private features, so it ignores the insignificant domain
specific components of the features and incorrectly takes
such non-causal components as common features.

We, therefore, propose to improve the sensitivity of the
domain classifier to potential non-causal factors by extend-
ing DAL to more views. Specifically, our MVDC can map
features into multiple latent spaces with encoders ei and
then discriminate features in each space with an indepen-
dent domain classifier hi. These domain classifiers encour-
age the feature extractor F to ignore the implicit non-causal
factors and learn domain-invariant but causal features.
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Figure 6. Structure of one branch of MVDC. It contains three
constraints: LRC ensures the mapped features contain complete
semantic information. LDC makes the domain discriminator of
each view have domain classification ability. LMV ensures that
each auto-encoder maps features to different latent spaces.

3.3.2 Classifier Structure

Fig. 6 shows the structure of one branch of the MVDC,
which represents one of the multiple views to observe
the features. The complete structure of MVDC contains
M branches for image-level features and M branches for
instance-level features respectively. Each branch of MVDC
contains an auto-encoder and a classifier in structure.

The encoder and decoder are the basic network struc-
ture of each branch, which map features into different latent
spaces to show different profiles of the feature. The encoder
part aims to compress the features and map them into dif-
ferent latent spaces. Then the latent features are fed into an
independent domain classifier. Meanwhile, in order to en-
sure the semantic content invariance of features, the latent
features are mapped back into the original space through a
subsequent decoder.

To explore the non-causal factors hidden in the whole
image and each instance, we make different designs on
multi-view domain classifiers for image-level and instance-
level respectively. For the image-level, we focus on the
global non-causal factors of an image, such as the illumi-
nation, color and background texture. These global non-
causal factors are similar across the image, so we use the
convolutional layers to construct the encoder and decoder.
In each branch, we use dilated convolution [47] with dif-
ferent dilation rates to extract different non-causal factors
of domains. For the instance-level, we use fully connected
layers to mind more semantic non-causal factors like the
camera angle of each instance.

3.3.3 Loss Function

For training the object detector with MAD approach, sev-
eral loss functions are introduced in the following text.

First, a reconstruction loss is used to ensure that the se-
mantics of features are not changed by the encoder. The

mapped feature e(s) should contain the semantic informa-
tion required to reconstruct the original feature s. Only if
the semantic information is guaranteed to be complete, the
subsequent domain classifier is meaningful. So we use MSE
loss to constrain the distance between the original feature s
and the reconstructed feature g(e(s)). The reconstruction
loss can be described as:

LRC =
1

M

M∑
m=1

MSE(s, gm(em(s))) (5)

Second, the adversarial domain classifier loss is used
to ensure the mapped features are domain distinguishable
(inner optimization) and domain confused (outer optimiza-
tion). We use Cross-Entropy loss to adversarially train the
K-domain classifiers in total M branches. And the domain
label in kth domain is denoted as yk.

LDC = − 1

M

M∑
m=1

K∑
k=1

yk · log(p(Dm(em(sk)))) (6)

The third constraint is the most critical view-different
loss, which ensures the auto-encoders to map features into
diverse latent spaces. Therefore, we propose to enlarge the
feature difference between latent spaces (views), such that
the insignificant non-causal factors become significant. So
we construct the following MSE loss of each feature pair
from M different latent spaces.

LMV = −
∑M

i

∑M
j,i ̸=j ||ei(s)− ej(s)||2

M2 −M
(7)

The fourth constraint is used to ensure the consistency of
the results in these 2M branches of two levels. For each pair
of image-level and instance-level branches, we adopt l2 dis-
tance between the average value of image-level predictions
p
(u,v)
i and each instance-level prediction pj,n as the consis-

tency constraint. We suppose the feature map of each image
contains |I| pixels and N instances in total. Then, the con-
sistency loss of the whole model can be described as:

Lcst =

M∑
i,j

N∑
n

∥ 1

|I|
∑
u,v

p
(u,v)
i − pj,n∥2 (8)

The MVDC loss in both image level and instance level
can be presented as:

L(img,ins)
MVDC = LRC + LDC + LMV (9)

Then, we obtain the overall loss of MAD by trade-off the
object detector loss and MVDC loss with λ as:

LMAD = Ldet + λ(Limg
MVDC + Lins

MVDC + Lcst) (10)
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Source
Target

Method Cityscapes Foggy Cityscapes Rain Cityscapes BDD100k

Cityscapes

Source-only — 27.2 36.3 24.0
MLDG — 29.2 42.1 21.0
FACT — 25.3 39.9 26.0
FSDR — 31.0 42.8 26.2

DANN+SCG — 37.5 39.1 26.1
MAD(Ours) — 38.6 42.3 28.0

Foggy Cityscapes

Source-only 29.9 — 38.4 17.5
MLDG 30.4 — 38.6 18.0
FACT 30.0 — 38.7 20.2
FSDR 31.3 — 40.8 20.4

DANN+SCG 38.4 — 40.4 22.4
MAD(Ours) 41.3 — 43.3 24.4

BDD100k

Source-only 33.6 27.2 34.3 —
MLDG 24.7 17.1 20.0 —
FACT 32.4 24.3 33.9 —
FSDR 32.4 27.8 34.7 —

DANN+SCG 35.8 29.3 33.9 —
MAD(Ours) 36.4 30.3 36.1 —

Table 1. Results on four domains (C, F, R, B) trained on single source domain. Note that during training, the target domain is unseen
according to DG setting. The best mAP are highlighted in bold.

4. Experiments

4.1. Datasets

We adopt six cross-domain object detection benchmark
datasets, which will be introduced below. Cityscapes
[7] dataset mainly contains daytime scenery in the streets
and Foggy Cityscapes [7] and Rain Cityscapes [18] are
datasets of synthesized images with different weather con-
ditions based on the depth information from the Cityscapes.
SIM10k [20] dataset contains rendered images of ren-
dered 3D models.KITTI [10] is an autonomous driving
dataset.PASCAL VOC [8] dataset is collected from the real
world.The BDD100k [46] dataset is a large-scale dataset for
autonomous driving. We abbreviate {SIM 10k, Cityscapes,
Foggy Cityscapes, Rain Cityscapes, BDD100k, KITTI,
PASCAL VOC} as {S, C, F, R, B, K, V} respectively in
the following text.

4.2. Experimental Setup

Implementation Details. First, to verify the effective-
ness of our MAD method, we conduct cross-test experi-
ments on {C, F, R, B}, which means we train a model on
one of these datasets and test it on the rest datasets. For
each source and target pair, we only calculate the result on
the intersection of their label space. To uniform the annota-
tion styles of these datasets, we regard labels {motor, mo-
torcycle and motorbike} as {motor} and labels {bike and
bicycle} as {bike}.

Second, to verify the superiority of our MAD method,
we compare with the existing DGOD methods like MLDG
[21], DIDN [23], FACT [45] and FSDR [19]. Several
DAOD methods such as DAF [6], SW-DA [34], SC-DA
[52], MTOR [3], GPA [44] are also compared under the
task from cityscapes to foggy cityscapes. We train a total
of 10 epochs. In training process, we set the initial learn-
ing rate to 0.002, and start to attenuate the learning rate to
0.0002 at the 7th epoch to make the model converge bet-
ter. In our experiments, we train the models with Mind-
Spore [5] and PyTorch frameworks. Our code is avail-
able at github.com/K2OKOH/MAD. Mean average preci-
sions (mAP) with a IoU threshold of 0.5 is reported.

Baseline. We build our method on the basis of Faster-
RCNN [30] framework with vgg16 pre-trained on Ima-
geNet [33] as the backbone and adopt the Stochastic Gra-
dient Descent (SGD) [31] as the optimization method.

4.3. Results and Discussion

The results in Tab. 1 show that our method can achieve
better results in most cross-domain scenarios. Trained with
limited number of source domains, our SCG method can
add non-causal factors in more directions to the existing im-
ages, which better simulate the potential target domain dis-
tribution. This makes our method superior to MLDG, FACT
and FSDR that extract features over finite known source do-
mains or fixed augmented domains. Comparing the single-
view DANN with our MAD, we can also find that our MAD
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Methods Dataset used person rider car truck bus train motor bike mAP
Source-only Single Source 27.1 39.3 36.0 14.2 31.4 9.4 26.9 33.4 27.2

DA

DAF [6] 31.6 43.6 42.8 23.6 41.3 21.2 28.9 32.6 33.2
SW-DA [34] 31.8 44.3 48.9 21.0 43.8 28.0 28.9 35.8 35.3
SC-DA [52] Single Source 33.8 42.1 52.1 26.8 42.5 26.5 29.2 34.5 35.9
MTOR [3] & 30.6 41.4 44.0 21.9 38.6 40.6 28.3 35.6 35.1
ICR-CCR [43] Target images 32.9 43.8 49.2 27.2 45.1 36.4 30.3 34.6 37.4
Coarse-to-Fine [48] (without labels) 34.0 46.9 52.1 30.8 43.2 29.9 34.7 37.4 38.6
GPA [44] 32.9 46.7 54.1 24.7 45.7 41.1 32.4 38.7 39.5
Center-Aware [17] 41.5 43.6 57.1 29.4 44.9 39.7 29.0 36.1 40.2

DG
DIDN [23] Multiple Source 31.8 38.4 49.3 27.7 35.7 26.5 24.8 33.1 33.4
LMDG [21]

Single Source

32.2 41.7 38.9 19.2 33.0 9.1 23.5 36.3 29.2
FACT [45] 26.2 41.2 35.9 13.6 27.7 3.0 23.3 31.3 25.3
FSDR [19] 31.2 44.4 43.3 19.3 36.6 11.9 27.1 34.1 31.0
MAD 34.2 47.4 45.0 25.6 44.0 42.4 30.28 40.12 38.6

Oracle - Train on target Target 37.8 47.4 53.0 31.6 52.9 34.3 37.0 40.6 41.8

Table 2. Results of DG and DA experiments tested on Foggy Cityscapes (F). We compare our MAD method with typical DAOD methods
and DGOD methods. DAOD methods are trained on C and unlabeled F, multi-domain DGOD methods are trained on C and B, and single-
domain DGOD methods are trained on C. The best AP in each class and mAP are highlighted in bold.

Method F R B V S K
SourceOnly 36.0 39.0 41.3 62.0 39.2 73.4
DAF 42.8 52.9 41.4 59.2 39.0 72.1
MLDG 38.9 52.7 39.4 61.4 37.2 63.9
FACT 35.9 48.8 42.0 65.3 41.2 73.2
FSDR 43.3 52.7 45.4 63.4 42.2 73.8
MAD 45.0 54.0 42.4 67.6 43.2 74.1

Table 3. Results of SourceOnly, DAF, MLDG, FACT, FSDR and
our MAD from C to F, B, V, S and K on shared category {car}.
We train DGOD methods with single source domain C, while us-
ing both C and unlabeled F in the training process of DAF. The
best mAP is highlighted in bold.

performs better, which shows that our Multi-View domain
classifier can further help mine and remove non-causal fac-
tors from the simulated target distribution.

In Tab. 2, we compare our MAD with mainstream DG
and DA methods. Under both single-source and multi-
source DG settings, our method has the best generaliza-
tion ability among DG methods and exceeds Multi-Source
methods in most categories. Furthermore, our target-free
MAD can even surpass some of the domain adaptive meth-
ods, which are trained with unlabeled target images.

We further conduct experiments on the common cate-
gories car in six datasets (C, F, R, S, K, V and B) to verify
the domain generalization ability of our MAD. As shown in
Tab. 3, our method also performs the best in most unseen
target domains.

As is shown in Fig. 7, we also perform visualization of
feature distribution via t-SNE under the task from C to F.

(a) (b)

(c) (d)Foggy Cityscape

view 1

view 1
view 2

view 2

view 3
view 3

Figure 7. Visualization of the feature distribution via t-SNE. (a)
Result of Faster RCNN. (b) Result of DANN under single-view.
(c) Result of DANN under multi-view. (d) Result of MAD.

(a) shows the feature distribution of cars in datasets C and
F extracted with the original Faster RCNN model, in which
the difference of distribution between domains is clear. (b)
shows the feature distribution of the same datasets and cat-
egory extracted by DANN, from which we can see that
DANN can align the distribution of different domains in a
single view. However, as shown in (c), the aligned feature
distributions by DANN are still separated with multi-view
discriminators by our MVDC, which means that DANN can
only remove the significant non-causal factors and the re-
mained insignificant non-causal factors are still domain dis-
criminative. Compared to (c), (d) shows the feature distri-
bution in multi-view extracted by our MAD, and we can see
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Source Target
ERM ERM+SCG DANN+SCG MVDC+SCG (MAD)

PACS P A C S P A C S P A C S P A C S
P - 61.9 26.2 31.9 - 62.8 29.3 40.1 - 63.1 35.3 43.1 - 66.6 40.9 44.2
A 90.6 - 67.3 57.2 90.8 - 68.7 61.7 91.4 - 70.7 64.3 92.6 - 71.2 68.9
C 79.5 64.1 - 65.6 78.6 64.3 - 69.0 79.2 63.6 - 69.3 79.9 64.6 - 70.9
S 48.0 42.8 60.5 - 49.4 51.5 62.2 - 48.7 53.8 63.4 - 53.2 57.4 63.8 -

VLCS V L C S V L C S V L C S V L C S
V - 39.6 96.1 68.9 - 40.1 97.6 69.2 - 43.4 98.3 69.5 - 47.2 98.5 71.4
L 61.3 - 82.6 43.8 61.7 - 83.7 46.9 61.7 - 83.7 46.9 62.2 - 86.7 51.8
C 50.6 20.7 - 42.7 51.2 21.9 - 43.5 51.7 27.2 - 44.9 51.8 29.6 - 46.0
S 60.2 45.5 72.7 - 60.9 47.4 72.9 - 62.4 50.0 74.9 - 64.0 51.3 75.4 -

Table 4. Classification results on PACS and VLCS datasets.

Methods mAP
SCG INS IMG CST C to F C to R C to B

27.2 36.3 24.0
✓ 34.1 37.9 25.4
✓ ✓ 38.2 40.7 26.7
✓ ✓ ✓ 38.3 41.0 26.2
✓ ✓ ✓ ✓ 38.6 42.3 28.0

Table 5. Ablation results of each component in MAD trained on
C and tested on F, R, B. SCG: Spurious Correlations Generator.
IMG: Image-level Multi-View Discriminator. INS: Instance-level
Multi-View Discriminator. CST: Consistent loss of img and ins.

that our MAD can indeed map features into different spaces
and well-align different domains under each view.

The multi-view adversarial discriminator is substantially
orthogonal to the computer vision tasks and thus can also be
applicable to DG-based image classification tasks. There-
fore, we conduct single-source DG experiments on the
widely used PACS and VLCS datasets, and compared with
ERM and DANN frameworks, as shown in Tab. 4. The re-
sults show the effectiveness of our MAD.

4.4. Ablation Study

We conducted an ablation study on our MAD methods to
verify the validity of each part. Our method can be divided
into four parts in total, namely spurious correlations gener-
ator (SCG), image-level and instance-level multi-view do-
main classifier (IMG, INS) and the consistency constraints
(CST). We study the contribution of each part by adding
them sequentially and observing the change in mAP perfor-
mance. We train MAD on domain C and test it on other
domains F, R, B to conduct ablation experiments.

Tab. 5 reflects the effectiveness of each part of our MAD.
By introducing SCG, potential spurious correlations are in-
jected into the network. The MVDC consisting of three
submodules (IMG, INS, CST) further mines and removes
insignificant spurious correlations in the domains. Specifi-
cally, the image-level adversarial submodule (IMG) elimi-
nates overall non-causal factors, and the instance-level sub-
module (INS) eliminates the semantic non-causal factors in
each instance. The consistency loss (CST) ensures the con-
sistency of the domain discriminators in two stages.
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Figure 8. Ablation results of hyperparameters. (a) reflects the
performance w.r.t. the number of views (branches). (b) reflects the
performance w.r.t. the trade-off coefficient λ.

4.5. Hyper-parameters Analysis

We tested two hyper-parameters of our MAD method.
First, the number M of views is the key hyper-parameter

in MAD. More views lead to better performance, but too
many auto-encoders increase model complexity with dimin-
ishing marginal effect. As we can see in Fig. 8 (a), we found
that performance improved until M = 5 and then converged
with further views until M = 8. Thus, we set M = 3 as a
balance between performance and cost.

Second, the trade-off coefficient λ of the domain adver-
sarial loss in Eq. (10) is used to balance the main task of
object detection and the MVDC part. We take several val-
ues from 0.05 to 0.2 for testing. As can be seen from Fig. 8
(b), we set λ = 0.1 in MAD for all the experiments.

5. Conclusion
This paper analyzes the problem of domain adversarial

learning (DAL) from the perspective of causal mechanisms.
We point out that existing DG methods fail to remove poten-
tial non-causal factors implied in common features, because
DAL is biased by the single-view nature of the domain dis-
criminator. To overcome this problem, we propose a Multi-
view Adversarial Discriminator (MAD) to learn domain-
invariant but causal features. Our MAD includes an SCG
that generates potential spurious correlations to diversify
the source domains and an MVDC that constructs multi-
view domain classifiers to remove implicit non-causal fac-
tors in latent spaces. Finally, MAD purifies the domain-
invariant features and the causality is augmented. Extensive
experiments on benchmarks for cross-domain object detec-
tion verify the generalization ability to unseen domains.
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