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Figure 1. We learn open-vocabulary panoptic segmentation with the internal representation of text-to-image diffusion models. K-Means
clustering of the diffusion model’s internal representation shows semantically differentiated and localized information wherein objects
are well grouped together (middle figure). We leverage these dense and rich diffusion features to perform open-vocabulary panoptic
segmentation (right figure).

Abstract

We present ODISE: Open-vocabulary DIffusion-based
panoptic SEgmentation, which unifies pre-trained text-
image diffusion and discriminative models to perform open-
vocabulary panoptic segmentation. Text-to-image diffu-
sion models have the remarkable ability to generate high-
quality images with diverse open-vocabulary language de-
scriptions. This demonstrates that their internal represen-
tation space is highly correlated with open concepts in the
real world. Text-image discriminative models like CLIP, on
the other hand, are good at classifying images into open-
vocabulary labels. We leverage the frozen internal repre-
sentations of both these models to perform panoptic seg-
mentation of any category in the wild. Our approach out-
performs the previous state of the art by significant margins
on both open-vocabulary panoptic and semantic segmen-
tation tasks. In particular, with COCO training only, our
method achieves 23.4 PQ and 30.0 mIoU on the ADE20K
dataset, with 8.3 PQ and 7.9 mIoU absolute improvement
over the previous state of the art. We open-source our
code and models at https://github.com/NVlabs/
ODISE.

*Jiarui Xu was an intern at NVIDIA during the project. † equal contri-
bution.

1. Introduction

Humans look at the world and can recognize limitless
categories. Given the scene presented in Fig. 1, besides
identifying every vehicle as a “truck”, we immediately un-
derstand that one of them is a pickup truck requiring a trailer
to move another truck. To reproduce an intelligence with
such a fine-grained and unbounded understanding, the prob-
lem of open-vocabulary recognition [36, 57, 76, 89] has re-
cently attracted a lot of attention in computer vision. How-
ever, very few works are able to provide a unified frame-
work that parses all object instances and scene semantics at
the same time, i.e., panoptic segmentation.

Most current approaches for open-vocabulary recogni-
tion rely on the excellent generalization ability of text-
image discriminative models [30, 57] trained with Internet-
scale data. While such pre-trained models are good at clas-
sifying individual object proposals or pixels, they are not
necessarily optimal for performing scene-level structural
understanding. Indeed, it has been shown that CLIP [57]
often confuses the spatial relations between objects [69].
We hypothesize that the lack of spatial and relational under-
standing in text-image discriminative models is a bottleneck
for open-vocabulary panoptic segmentation.

On the other hand, text-to-image generation using dif-
fusion models trained on Internet-scale data [1, 59, 61, 62,
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90] has recently revolutionized the field of image synthe-
sis. It offers unprecedented image quality, generalizabil-
ity, composition-ability and, semantic control via the input
text. An interesting observation is that to condition the im-
age generation process on the provided text, diffusion mod-
els compute cross-attention between the text’s embedding
and their internal visual representation. This design im-
plies the plausibility of the internal representation of dif-
fusion models being well-differentiated and correlated to
high/mid-level semantic concepts that can be described by
language. As a proof-of-concept, in Fig.1 (center), we vi-
sualize the results of clustering a diffusion model’s internal
features for the image on the left. While not perfect, the
discovered groups are indeed semantically distinct and lo-
calized. Motivated by this finding, we ask the question of
whether Internet-scale text-to-image diffusion models can
be exploited to create universal open-vocabulary panoptic
segmentation learner for any concept in the wild?

To this end, we propose ODISE: Open-vocabulary
DIffusion-based panoptic SEgmentation (pronounced o-di-
see), a model that leverages both large-scale text-image dif-
fusion and discriminative models to perform state-of-the-
art panoptic segmentation of any category in the wild. An
overview of our approach is illustrated in Fig. 2. At a
high-level it contains a pre-trained frozen text-to-image dif-
fusion model into which we input an image and its cap-
tion and extract the diffusion model’s internal features for
them. With these features as input, our mask generator pro-
duces panoptic masks of all possible concepts in the image.
We train the mask generator with annotated masks avail-
able from a training set. A mask classification module then
categorizes each mask into one of many open-vocabulary
categories by associating each predicted mask’s diffusion
features with text embeddings of several object category
names. We train this classification module with either mask
category labels or image-level captions from the training
dataset. Once trained, we perform open-vocabulary panop-
tic inference with both the text-image diffusion and discrim-
inative models to classify a predicted mask. On many differ-
ent benchmark datasets and across several open-vocabulary
recognition tasks, ODISE achieves state-of-the-art accuracy
outperforming the existing baselines by large margins.

Our contributions are the following:
• To the best of our knowledge, ODISE is the first work

to explore large-scale text-to-image diffusion models
for open-vocabulary segmentation tasks.

• We propose a novel pipeline to effectively leverage
both text-image diffusion and discriminative models to
perform open-vocabulary panoptic segmentation.

• We significantly advance the field forward by out-
performing all existing baselines on many open-
vocabulary recognition tasks, and thus establish a new
state of the art in this space.

2. Related Work

Panoptic Segmentation. Panoptic segmentation [35]
is a fundamental vision task that encompasses both in-
stance and semantic segmentation. However, previous
works [5, 9–11, 35, 38, 43, 44, 60, 74, 79, 84] follow a closed
closed-vocabulary assumption and only recognize cate-
gories present in the training set. They are hence limited
in segmenting things/stuff present in finite-sized vocabular-
ies, which are much smaller than the typical vocabularies
that we use to describe the real world.

Open-Vocabulary Segmentation. Most prior works on
open-vocabulary segmentation either perform object detec-
tion with instance segmentation alone [17, 22, 23, 40, 51,
80, 81, 86, 89] or open-vocabulary semantic segmentation
alone [22, 36, 76, 88]. In contrast, we propose a novel
unified framework for both open-vocabulary instance and
semantic segmentation. Another distinction is that prior
works only use large-scale models pre-trained for image
discriminative tasks, e.g., image classification [27, 47] or
image-text contrastive learning [30, 41, 53, 57]. The con-
current work MaskCLIP [15] also uses CLIP [57]. How-
ever, such discriminative models’ internal representations
are sub-optimal for performing segmentation tasks versus
those derived from image-to-text diffusion models as shown
in our experiments.

Generative Models for Segmentation. There exist
prior works, which are similar in spirit to ours in their use of
image generative models, including GANs [3,18,32,33,91]
or diffusion models [13, 16, 28, 31, 55, 64–68, 72] to per-
form semantic segmentation [2,20,37,50,71,85]. They first
train generative models on small-vocabulary datasets, e.g.,
cats [78], human faces [32] or ImageNet [12] and then with
the help of few-shot hand-annotated examples per category,
learn to classify the internal representations of the genera-
tive models into semantic regions. They either synthesize
many images and their mask labels to train a separate seg-
mentation network [37, 85]; or directly use the generative
model to perform segmentation [2]. Among them, DDPM-
Seg [2] shows the state-of-the-art accuracy. These prior
works introduce the key idea that the internal representa-
tions of generative models may be sufficiently differentiated
and correlated to mid/high-level visual semantic concepts
and could be used for semantic segmentation. Our work is
inspired by them, but it is also different in many respects.
While previous works primarily focus on label-efficient se-
mantic segmentation of small closed vocabularies, we, on
the other hand, tackle open-vocabulary panoptic segmenta-
tion of many more and unseen categories in the wild.
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Figure 2. ODISE Overview and Training Pipeline. We first encode the input image into an implicit text embedding with an implicit
captioner (image encoder V and MLP). With the image and its implicit text embedding as input, we extract their diffusion features from a
frozen text-to-image diffusion UNet (Sec 3.3). With the UNet’s features, a mask generator predicts class-agnostic binary masks and their
associated mask embedding features (Sec 3.4). We perform a dot product between the mask embedding features and the text embeddings
of training category names (red box) or the nouns of the image’s caption (green box) to categorize them. The similarity matrix for mask
classification is supervised by either a cross entropy loss with ground truth category labels (red solid path), or via a grounding loss with the
paired image captions (green dash path) (Sec 3.5).

3. Method
3.1. Problem Definition

Following [15, 35], we train a model with a set of base
training categories Ctrain, which may be different from the
test categories, Ctest, i.e., Ctrain ̸= Ctest. Ctest may con-
tain novel categories not seen during training. We assume
that during training, the binary panoptic mask annotation
for each category in an image is provided. Additionally, we
also assume that either the category label of each mask or a
text caption for the image is available. During testing, nei-
ther the category label nor the caption is available for any
image, and only the names of the test categories Ctest are
provided.

3.2. Method Overview
An overview of our method ODISE, for open-vocabulary

panoptic segmentation of any category in the wild is shown
in Fig. 2. At a high-level, it contains a text-to-image dif-
fusion model into which we input an image and its caption
and extract the diffusion model’s internal features for them
(Sec 3.3). With these extracted features as input, and the
provided training mask annotations, we train a mask gener-
ator to generate panoptic masks of all possible categories
in the image (Sec 3.4). Using the provided training im-
ages’ category labels or text captions, we also train an open-
vocabulary mask classification module. It uses each pre-
dicted mask’s diffusion features along with a text encoder’s
embeddings of the training category names to classify a

mask (Sec 3.5). Once trained, we perform open-vocabulary
panoptic inference with both the text-image diffusion and
discriminative models (Sec 3.6 and Fig. 3). In the following
sections, we describe each of these components.

3.3. Text-to-Image Diffusion Model
We first provide a brief overview of text-to-image diffu-

sion models and then describe how we extract features from
them for panoptic segmentation.

Background A text-to-image diffusion model can gener-
ate high-quality images from provided input text prompts.
It is trained with millions of image-text pairs crawled from
the Internet [54, 59, 62]. The text is encoded into a text
embedding with a pre-trained text encoder, e.g., T5 [58]
or CLIP [57]. Before being input into the diffusion net-
work, an image is distorted by adding some level of Gaus-
sian noise to it. The diffusion network is trained to undo
the distortion given the noisy input and its paired text em-
bedding. During inference, the model takes image-shaped
pure Gaussian noise and the text embedding of a user pro-
vided description as input, and progressively de-noises it to
a realistic image via several iterations of inference.

Visual Representation Extraction The preva-
lent diffusion-based text-to-image generative mod-
els [54, 59, 61, 62] typically use a UNet architecture to
learn the denoising process. As shown in the blue block in
Fig. 2, the UNet consists of convolution blocks, upsampling
and downsampling blocks, skip connections and attention
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blocks, which perform cross-attention [73] between a
text embedding and UNet features. At every step of the
de-noising process, diffusion models use the text input to
infer the de-noising direction of the noisy input image.
Since the text is injected into the model via cross attention
layers, it encourages visual features to be correlated to rich
semantically meaningful text descriptions. Thus the feature
maps output by the UNet blocks can be regarded as rich
and dense features for panoptic segmentation.

Our method only requires a single forward pass of an
input image through the diffusion model to extract its vi-
sual representation, as opposed to going through the entire
multi-step generative diffusion process. Formally, given an
input image-text pair (x, s), we first sample a noisy image
xt at time step t as:

xt ≜
√
ᾱtx+

√
1− ᾱtϵ, ϵ ∼ N (0, I), (1)

where t is the diffusion step we use, α1, . . . , αT represent a
pre-defined noise schedule where ᾱt=

∏t
k=1 αk, as defined

in [28]. We encode the caption s with a pre-trained text
encoder T and extract the text-to-image diffusion UNet’s
internal features f for the pair by feeding it into the UNet

f = UNet(xt, T (s)). (2)

It is worth noting that the diffusion model’s visual rep-
resentation f for x is dependent on its paired caption s. It
can be extracted correctly when paired image-text data is
available, e.g., during pre-training of the text-to-image dif-
fusion model. However, it becomes problematic when we
want to extract the visual representation of images without
paired captions available, which is the common use case for
our application. For an image without a caption, we could
use an empty text as its caption input, but that is clearly sub-
optimal, which we also show in our experiments. In what
follows, we introduce a novel Implicit Captioner that we
design to overcome the need for explicitly captioned image
data. It also yields optimal downstream task performance.

Implicit Captioner Instead of using an off-the-shelf cap-
tioning network to generate captions, we train a network
to generate an implicit text embedding from the input im-
age itself. We then input this text embedding into the diffu-
sion model directly. We name this module an implicit cap-
tioner. The red block in Fig. 2 shows the architecture of the
implicit captioner. Specifically, to derive the implicit text
embedding for an image, we leverage a pre-trained frozen
image encoder V , e.g., from CLIP [57] to encode the in-
put image x into its embedding space. We further use a
learned MLP to project the image embedding into an im-
plicit text embedding, which we input into text-to-image
diffusion UNet. During open-vocabulary panoptic segmen-
tation training, the parameters of the image encoder and of
the UNet are unchanged and we only fine-tune the parame-
ters of the MLP.

Finally, the text-to-image diffusion model’s UNet along
with the implicit captioner, together form ODISE’s feature
extractor that computes the visual representation f for an
input image x. Formally, we compute the visual represen-
tation f as:

f = UNet(xt, ImplicitCaptioner(x))
= UNet(xt,MLP ◦ V(x)).

(3)

3.4. Mask Generator

The mask generator takes the visual representation
f as input and outputs N class-agnostic binary masks
{mi}Ni=1 and their corresponding N mask embedding fea-
tures {zi}Ni=1. The architecture of the mask generator is not
restricted to a specific one. It can be any panoptic segmen-
tation network capable of generating mask predictions of
the whole image. We can instantiate our method with both
bounding box-based [5, 34] and direct segmentation mask-
based [9–11,74] methods. While using bounding box-based
methods like [5,34], we can pool the ROI-Aligned [26] fea-
tures of each predicted mask’s region to compute its mask
embedding features. For segmentation mask-based meth-
ods like [9–11, 74], we can directly perform masked pool-
ing on the final feature maps to compute the mask embed-
ding features. Since our representation focuses on dense
pixel-wise predictions, we use a direct segmentation-based
architecture. Following [26], we supervise the predicted
class-agnostic binary masks via a pixel-wise binary cross
entropy loss along with their corresponding ground truth
masks (treated as class-agnostic ones as well). Next, we de-
scribe how we classify each mask, represented by its mask
embedding feature, into an open vocabulary.

3.5. Mask Classification

To assign each predicted binary mask a category la-
bel from an open vocabulary, we employ text-image dis-
criminative models. These models [30, 53, 57], trained on
Internet-scale image-text pairs, have shown strong open-
vocabulary classification capabilities. They consist of an
image encoder V and a text encoder T . Following prior
work [22, 36], while training, we employ two commonly
used supervision signals to learn to predict the category la-
bel of each predicted mask. Next, we describe how we unify
these two training approaches in ODISE.

Category Label Supervision Here, we assume that dur-
ing training we have access to each mask’s ground truth
category label. Thus, the training procedure is similar to
that of traditional closed-vocabulary training. Suppose that
there are Ktrain = |Ctrain| categories in the training set. For
each mask embedding feature zi, we dub its corresponding
known ground truth category as yi ∈ Ctrain. We encode the
names of all the categories in Ctrain with the frozen text en-
coder T , and define the set of embeddings of all the training
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categories’ names as

T (Ctrain) ≜ [T (c1), T (c2), . . . , T (cKtrain)], (4)

where the category name ck ∈ Ctrain. Then we compute the
probability of the mask embedding feature zi belonging to
one of the Ktrain classes via a classification loss as:

LC =
1

N

N∑
i

CrossEntropy(p(zi,Ctrain), yi), (5)

p(zi,Ctrain) = Softmax(zi · T (Ctrain)/τ), (6)

where τ is a learnable temperature parameter.

Image Caption Supervision Here, we assume that we do
not have any category labels associated with each anno-
tated mask during training. Instead, we have access to a
natural language caption for each image, and the model
learns to classify the predicted mask embedding features
using the image caption alone. To do so, we extract the
nouns from each caption and treat them as the grounding
category labels for their corresponding paired image. Fol-
lowing [22, 24, 82], we employ a grounding loss to super-
vise the prediction of the masks’ category labels. Specif-
ically, given the image-caption pair (x(m), s(m)), suppose
that there are Kword nouns extracted from s(m), denoted
as Cword = {wk}Kword

k=1 . Suppose further that we sample B
image-caption pairs {(x(m), s(m)}Bm=1 to form a batch. To
compute the grounding loss, we compute the similarity be-
tween each image-caption pair as

g(x(m), s(m)) =
1

K

K∑
k=1

N∑
i=1

p(zi,Cword)k·⟨zi, T (wk)⟩,

(7)
where zi and T (wk) are vectors of the same dimension and
p(zi,Cword)k is the k-th element of the vector defined in
Eq. 6 after Softmax. This similarity function encourages
each noun to be grounded by one or a few masked regions
of the image and avoids penalizing the regions that are not
grounded by any word at all. Similar to the image-text con-
trastive loss in [30, 57], the grounding loss is defined by

LG =− 1

B

B∑
m=1

log
exp(g(x(m), s(m))/τ)∑B
n=1 exp(g(x

(m), s(n))/τ)

− 1

B

B∑
m=1

log
exp(g(x(m), s(m))/τ)∑B
n=1 exp(g(x

(n), s(m))/τ)
,

(8)

where τ is a learnable temperature parameter. Finally, note
that we train the entire ODISE model with either LC or LG,
together with the class-agnostic binary mask loss. In our
experiments, we explicitly state which of these two super-
vision signals (label or caption) we use for training ODISE
when comparing to the relevant prior works.
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Figure 3. Open-Vocabulary Inference Pipeline. To classify each
mask embedding into the testing categories Ctest, we compute its
similarity to the text encoder T ’s embeddings of category names.
Besides the mask embeddings from the text-to-image diffusion
model {zi}Ni=1, we also perform masked pooling of the features
of an image encoder V from a text-image discriminative model to
get {z′i}Ni=1. We fuse the predictions of the diffusion model (blue
solid path) and the discriminative model (grey dash path) with a
geometric mean.

3.6. Open-Vocabulary Inference

During inference (Fig. 3), the set of names of the test cat-
egories Ctest is available, The test categories may be differ-
ent from the training ones. Additionally, no caption/labels
are available for a test image. Hence we pass it through the
implicit captioner to obtain its implicit caption; input the
two into the diffusion model to obtain the UNet’s features;
and use the mask generator to predict all possible binary
masks of semantic categories in the image. To classify each
predicted mask mi into one of the test categories, we com-
pute p(zi,Ctest) defined in Eq. 6 using ODISE and finally
predict the category with the maximum probability.

In our experiments, we found that the internal represen-
tation of the diffusion model is spatially well-differentiated
to produce many plausible masks for objects instances.
However, its object classification ability can be further en-
hanced by combining it once again with a text-image dis-
criminative model, e.g., CLIP [57], especially for open-
vocabularies. To this end, here we leverage a text-image
discriminative model’s image encoder V to further classify
each predicted masked region of the original input image
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into one of the test categories. Specifically, as Fig. 3 illus-
trates, given an input image x, we first encode it into a fea-
ture map with the image encoder V of a text-image discrim-
inative model. Then for a mask mi, predicted by ODISE
for image x, we pool all the features at the output of the im-
age encoder V(x) that fall inside the predicted mask mi to
compute a mask pooled image feature for it

z′i = MaskPooling(V(x),mi). (9)

We use p(z′Mi ,Ctest) from Eq.6 to compute the final clas-
sification probabilities from the text-image discriminative
model. Finally, we take the geometric mean of the category
predictions from the diffusion and discriminative models as
the final classification prediction,

pfinal(zi,Ctest) ∝ p(zi,Ctest)
λ
p(z′i,Ctest)

(1−λ)
, (10)

where λ ∈ [0, 1] is a fixed balancing factor. We find that
pooling the masked features is more efficient and yet as
effective as the alternative approach proposed in [14, 23],
which crops each of the N predicted masked region’s
bounding box from the original image and encodes it sepa-
rately with the image encoder V (see details in the supple-
ment).

4. Experiments
We first introduce our implementation details. Then we

compare our results against the state of the art on open-
vocabulary panoptic and semantic segmentation. Lastly, we
present ablation studies to demonstrate the effectiveness of
the components of our method.

4.1. Implementation Details

Architecture We use the stable diffusion [61] model pre-
trained on a subset of the LAION [63] dataset as our text-to-
image diffusion model. We extract feature maps from every
three of its UNet blocks and, like FPN [45], resize them to
create a feature pyramid. We set the time step used for the
diffusion process to t = 0, by default. We use CLIP [57]
as our text-image discriminative model and its correspond-
ing image V and text T encoders everywhere. We choose
Mask2Former [10] as the architecture of our mask genera-
tor, and generate N = 100 binary mask predictions.

Training Details We train ODISE for 90k iterations with
images of size 10242 and use large scale jittering [21]. Our
batch size is 64. For caption-supervised training, we set
Kword = 8. We use the AdamW [49] optimizer with a learn-
ing rate 0.0001 and a weight decay of 0.05. We use the
COCO dataset [46] as our training set. We utilize its pro-
vided panoptic mask annotations as the supervision signal
for the binary mask loss. For training with image captions,
for each image we randomly select one caption from the
COCO dataset’s caption [7] annotations.

Inference and Evaluation We evaluate ODISE on
ADE20K [87] for open-vocabulary panoptic, instance and
semantic segmentation; and the Pascal datasets [19, 52] for
semantic segmentation. We also provide the results ODISE
for open-vocabulary object detection and open-world in-
stance segmentation in the supplement. We use only a
single checkpoint of ODISE for mask prediction on all
tasks on all datasets. For panoptic segmentation, we re-
port the panoptic quality (PQ) [35], mean average preci-
sion (mAP) on the “thing” categories, and the mean inter-
section over union (mIoU) metrics (additional SQ and RQ
metrics are in the supplement). In panoptic segmentation
annotations [35], the “thing” classes are countable objects
like people, animals, etc. and the “stuff” classes are amor-
phous regions like sky, grass, etc. Since we train ODISE
with panoptic mask annotations, we can directly infer both
instance and semantic segmentation labels with it. When
evaluating for panoptic segmentation, we use the panoptic
test categories as Ctest, and directly classify each predicted
mask into the test category with the highest probability. For
semantic segmentation, we merge all masks assigned to the
same “thing” category into a single one and output it as the
predicted mask.

Speed and Model Size ODISE has 28.1M trainable param-
eters (only 1.8% of the full model) and 1,493.8M frozen pa-
rameters. It performs inference for an image (10242) at 1.26
FPS on an NVIDIA V100 GPU and uses 11.9 GB memory.

4.2. Comparison with State of the Art

Open-Vocabulary Panoptic Segmentation For open-
vocabulary panoptic segmentation, we train ODISE on
COCO [46] and test on ADE20K [87]. We report re-
sults in Table 1 (and more in the supplement). ODISE
outperforms the concurrent work MaskCLIP [15] by 8.3
PQ on ADE20K. Besides the PQ metric, our approach
also surpasses MaskCLIP [15] at open-vocabulary instance
segmentation on ADE20K, with 8.4 points gain in mAP.
ODISE’s qualitative results can be found in Fig. 4 and more
in the supplement.
Open-Vocabulary Semantic Segmentation We show a
comparison of ODISE to previous work on open-vocabulary
semantic segmentation in Table 2. Following the experi-
ment in [22], we evaluate mIoU on 5 semantic segmenta-
tion datasets: (a) A-150 with 150 common classes and (b)
A-847 with all the 847 classes of ADE20K [87], (c) PC-
59 with 59 common classes and (d) PC-459 with full 459
classes of Pascal Context [52] and (e) the classic Pascal
VOC dataset [19] with 20 foreground classes and 1 back-
ground class (PAS-21). For a fair comparison to prior work,
we train ODISE with either category or image caption la-
bels. ODISE outperforms the existing state-of-the-art meth-
ods on open-vocabulary semantic segmentation [15, 22] by
a large margin: 7.6 mIoU on A-150, 4.7 mIoU on A-847,
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Supervision ADE20K COCO
Method label mask caption PQ mAP mIoU PQ mAP mIoU
MaskCLIP [15] ✓ ✓ 15.1 6.0 23.7 - - -
ODISE (Ours) ✓ ✓ 22.6 14.4 29.9 55.4 46.0 65.2
ODISE (Ours) ✓ ✓ 23.4 13.9 28.7 45.6 38.4 52.4

Table 1. Open-vocabulary panoptic segmentation performance.
Training Supervision mIoU

Method Dataset label mask caption A-847 PC-459 A-150 PC-59 PAS-21 COCO
SPNet [75] Pascal VOC ✓ ✓ - - - 24.3 18.3 -
ZS3Net [4] Pascal VOC ✓ ✓ - - - 19.4 38.3 -
LSeg [36] Pascal VOC ✓ ✓ - - - - 47.4 -
SimBaseline [77] COCO ✓ ✓ - - 15.3 - 74.5 -
ZegFormer [14] COCO ✓ ✓ - - 16.4 - 73.3 -
LSeg+ [22] COCO ✓ ✓ 3.8 7.8 18.0 46.5 - 55.1
MaskCLIP [15] COCO ✓ ✓ 8.2 10.0 23.7 45.9 - -
ODISE (Ours) COCO ✓ ✓ 11.1 14.5 29.9 57.3 84.6 65.2
GroupViT [76] GCC+YFCC ✓ 4.3 4.9 10.6 25.9 50.7 21.1
OpenSeg [22] COCO ✓ ✓ 6.3 9.0 21.1 42.1 - 36.1
ODISE (Ours) COCO ✓ ✓ 11.0 13.8 28.7 55.3 82.7 52.4

Table 2. Open-vocabulary semantic segmentation performance.

4.8 mIoU on PC-459 with caption supervision; and by 6.2
mIoU on A-150, 4.5 mIoU on PC-459 with category la-
bel supervision, versus the next best method. Notably, it
achieves this despite using supervision from panoptic mask
annotations, which is noted to be suboptimal for semantic
segmentation [10].

4.3. Ablation Study
To demonstrate the contribution of each component of

our method, we conduct an extensive ablation study. For
faster experimentation, we train ODISE with 5122 reso-
lution images and use image caption supervision every-
where. Specifically, we evaluate different visual repre-
sentations; caption generators; open-vocabulary inference
pipelines and diffusion time-step(s) used to extract features
(the latter two ablations are in the supplement).

Visual Representations We compare the internal repre-
sentation of text-to-image diffusion models to those of
other state-of-the-art pre-trained discriminative and gener-
ative models. We evaluate various discriminative models
trained with full label, text or self-supervision. In all ex-
periments we freeze the weights of the pre-trained mod-
els and use exactly the same training hyperparameters and
mask generator as in our method. For each supervision
category we select the best-performing and largest publicly
available discriminative models. We observe from Table 3
that ODISE outperforms all other models in terms of PQ on
both datasets. To offset any potential bias arising from the
larger size of the LAION dataset (2B image-caption pairs)
with which the stable diffusion model is trained, versus
the smaller datasets used to train the discriminative mod-
els, we also compare to CLIP(H) [29, 57], which is trained

Training ADE20K COCO
Model Data PQ mAP mIoU PQ mAP mIoU
Pre-trained with class labels
DeiT-v3(H) [70] IN-21k 21.4 11.4 28.0 41.4 29.2 52.3
Swin(H) [47] IN-21k 20.9 10.7 27.7 42.4 31.6 54.0
ConvNeXt(H) [48] IN-21k 21.0 11.0 27.8 43.1 33.1 54.3
MViT(H) [42] IN-21k 21.1 11.6 28.1 44.0 36.3 54.5
LDM [61] IN-1k 20.7 10.9 26.5 41.7 35.3 50.6
Pre-trained with self-supervision
MoCo-v3(H) [8] IN-1k 19.3 9.6 25.8 37.1 26.8 47.1
DINO(B) [6] IN-1k 20.6 10.5 26.3 39.5 29.8 49.5
MAE(H) [25] IN-1k 21.5 10.9 27.6 37.9 31.6 46.3
BEiT-v2(H) [56] IN-21k 21.4 11.4 28.0 41.4 29.2 52.3
Pre-trained with text
CLIP(L) [57] WIT 20.4 9.6 27.0 40.6 26.7 52.1
CLIP(H) [57] LAION 21.2 10.8 28.1 41.0 27.9 52.1
ODISE LAION 23.3 13.0 29.2 44.2 38.3 53.8
Table 3. Comparison with the state-of-the-art visual represen-
tations. B, L, H in the parentheses denote the model’s size.

on an equal-sized LAION [63] dataset. Our diffusion-based
method outperforms CLIP(H) on all metrics. In the supple-
ment (Fig 3.4), we show k-means clustering of frozen diffu-
sion and CLIP features and find that the diffusion features
are much more semantically differentiated. This demon-
strates that the diffusion model’s internal representation is
indeed superior for open-vocabulary segmentation that that
of discriminative pre-trained models.

The recent DDPMSeg [2] model is somewhat related to
our model. Besides us, it is the only prior work that uses
diffusion models and obtains state-of-the-art performance
on label-efficient segmentation learning. Since DDPMSeg
relies on category specific diffusion models it is not de-
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Figure 4. Qualitative Visualization on COCO (first 2 rows) and ADE20K (last row) validation and test sets. To demonstrate open-
vocabulary recognition capability, we merge category names of LVIS, COCO and ADE20K together and perform open-vocabulary infer-
ence with ∼1.5k classes directly. “Bamboo”, “swimming pool”, “conveyer belt”, “chandelier”, “booth”, “stool”, “column”, “pool table”,
“bannister”, etc., are novel categories from LVIS/ADE20K that are not annotated in COCO. ODISE shows plausible open-vocabulary
panoptic results. The supplement contains more visual results.

ADE20K COCO
Captioner PQ mAP mIoU PQ mAP mIoU

(a) Empty 21.8 11.8 27.3 43.5 37.0 52.3
(b) Heuristic [83] 22.2 12.1 28.1 44.0 36.3 53.3
(c) BLIP [39] 22.3 12.4 28.2 44.1 37.1 53.6
(d) Implict 23.3 13.0 29.2 44.2 38.3 53.8

Table 4. Ablation results of different caption generators.

signed for open-world panoptic segmentation. Hence its
direct comparison to our approach is not feasible. As an al-
ternative, we compare against the internal representation of
a class-conditioned generative model [61] trained on more
categories from ImageNet [12] (LDM row in Table 3). Not
surprisingly, we find that despite both generative models be-
ing diffusion-based, our approach of using a model trained
on Internet-scale data is more effective at generalizing to
open-vocabulary categories.
Caption Generators As discussed in Sec. 3.3, the inter-
nal features of a text-to-image diffusion model are depen-
dent on the embedding of the input caption. To derive the
optimal set of features for our downstream task, we intro-
duce a novel implicit captioning module to directly gener-
ate an implicit text embedding from an image. This module
also facilitates inference on images sans paired captions at
test time. Here, we construct several baselines to show the
effectiveness of our implicit captioning module (Table 4).
The various alternatives that we compare are: providing an
empty string to the text encoder for any given image, such
that the text embedding for all images is fixed (row (a));
employing two different off-the-shelf image captioning net-

works to generate an explicit caption for each image on-the-
fly (rows (b) and (c)), where (c) [39] is trained on the COCO
caption dataset, while (b) [83] is not; and our proposed im-
plicit captioning module (row (d)). Overall, we find that
using an explicit/implicit caption is better than using empty
text. Furthermore, (c) improves over (b) on COCO but has
similar PQ on ADE20K. It may be because the pre-trained
BLIP [39] model does not see ADE20K’s image distribu-
tion during training. Lastly, since our implicit captioning
module derives its caption from a text-image discriminative
model trained on Internet-scale data, it is able to generalize
best among all variants compared.

5. Conclusion
We take the first step in leveraging the frozen internal

representation of large-scale text-to-image diffusion models
for downstream recognition tasks. ODISE shows the great
potential of large generative models in open-vocabulary
segmentation tasks and establishes a new state of the art.
We demonstrate that diffusion models are not only capa-
ble of generating plausible images but also of learning rich
semantic representations. Our work opens a new direction
for how to effectively leverage the internal representation of
large diffusion models for other tasks as well in the future.
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