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Abstract

The recent detection transformer (DETR) has ad-
vanced object detection, but its application on resource-
constrained devices requires massive computation and
memory resources. Quantization stands out as a solution
by representing the network in low-bit parameters and op-
erations. However, there is a significant performance drop
when performing low-bit quantized DETR (Q-DETR) with
existing quantization methods. We find that the bottle-
necks of Q-DETR come from the query information distor-
tion through our empirical analyses. This paper addresses
this problem based on a distribution rectification distillation
(DRD). We formulate our DRD as a bi-level optimization
problem, which can be derived by generalizing the informa-
tion bottleneck (IB) principle to the learning of Q-DETR.
At the inner level, we conduct a distribution alignment for
the queries to maximize the self-information entropy. At the
upper level, we introduce a new foreground-aware query
matching scheme to effectively transfer the teacher informa-
tion to distillation-desired features to minimize the condi-
tional information entropy. Extensive experimental results
show that our method performs much better than prior arts.
For example, the 4-bit Q-DETR can theoretically acceler-
ate DETR with ResNet-50 backbone by 6.6× and achieve
39.4% AP, with only 2.6% performance gaps than its real-
valued counterpart on the COCO dataset 1.

1. Introduction
Inspired by the success of natural language processing

(NLP), object detection with transformers (DETR) has been
introduced to train an end-to-end detector via a transformer
encoder-decoder [4]. Unlike early works [22, 31] that often
employ convolutional neural networks (CNNs) and require
post-processing procedures, e.g., non-maximum suppres-
sion (NMS), and hand-designed sample selection, DETR
treats object detection as a direct set prediction problem.

† Equal contribution.
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1 Code: https://github.com/SteveTsui/Q-DETR
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Figure 1. The histogram of query values q (blue shadow) and cor-
responding PDF curves (red curve) of Gaussian distribution [17],
w.r.t the cross attention of different decoder layers in (a) real-
valued DETR-R50, and (b) 4-bit quantized DETR-R50 (baseline).
Gaussian distribution is generated from the statistical mean and
variance of the query values. The query in quantized DETR-R50
bears information distortion compared with the real-valued one.
Experiments are performed on the VOC dataset [9].

Despite this attractiveness, DETR usually has a tremen-
dous number of parameters and float-pointing operations
(FLOPs). For instance, there are 39.8M parameters taking
up 159MB memory usage and 86G FLOPs in the DETR
model with ResNet-50 backbone [12] (DETR-R50). This
leads to an unacceptable memory and computation con-
sumption during inference, and challenges deployments on
devices with limited supplies of resources.

Therefore, substantial efforts on network compression
have been made towards efficient online inference [7, 33,
43, 44]. Quantization is particularly popular for deploying
on AI chips by representing a network in low-bit formats.
Yet prior post-training quantization (PTQ) for DETR [26]
derives quantized parameters from pre-trained real-valued
models, which often restricts the model performance in a
sub-optimized state due to the lack of fine-tuning on the
training data. In particular, the performance drastically
drops when quantized to ultra-low bits (4-bits or less). Al-
ternatively, quantization-aware training (QAT) [25, 42] per-
forms quantization and fine-tuning on the training dataset
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(b) 4-bit DETR-R50

(a) Real-valued DETR-R50

Figure 2. Spatial attention weight maps in the last decoder of (a)
real-valued DETR-R50, and (b) 4-bit quantized DETR-R50. The
green rectangle denotes the ground-truth bounding box. Follow-
ing [29], the highlighted area denotes the large attention weights
in the selected four heads in compliance with bound predic-
tion. Compared to its real-valued counterpart that focuses on the
ground-truth bounds, quantized DETR-R50 deviates significantly.

simultaneously, leading to trivial performance degradation
even with significantly lower bits. Though QAT meth-
ods have been proven to be very effective in compressing
CNNs [8, 27] for computer vision tasks, an exploration of
low-bit DETR remains untouched.

In this paper, we first build a low-bit DETR baseline,
a straightforward solution based on common QAT tech-
niques [2]. Through an empirical study of this baseline,
we observe significant performance drops on the VOC [9]
dataset. For example, a 4-bit quantized DETR-R50 us-
ing LSQ [8] only achieves 76.9% AP50, leaving a 6.4%
performance gaps compared with the real-valued DETR-
R50. We find that the incompatibility of existing QAT
methods mainly stems from the unique attention mecha-
nism in DETR, where the spatial dependencies are first con-
structed between the object queries and encoded features.
Then the co-attended object queries are fed into box coor-
dinates and class labels by a feed-forward network. A sim-
ple application of existing QAT methods on DETR leads to
query information distortion, and therefore the performance
severely degrades. Fig. 1 exhibits an example of informa-
tion distortion in query features of 4-bit DETR-R50, where
we can see significant distribution variation of the query
modules in quantized DETR and real-valued version. The
query information distortion causes the inaccurate focus of
spatial attention, which can be verified by following [29] to
visualize the spatial attention weight maps in 4-bit and real-
valued DETR-R50 in Fig. 2. We can see that the quantized
DETR-R50 bear’s inaccurate object localization. Therefore,
a more generic method for DETR quantization is necessary.

To tackle the issue above, we propose an efficient low-bit
quantized DETR (Q-DETR) by rectifying the query infor-
mation of the quantized DETR as that of the real-valued
counterpart. Fig. 3 provides an overview of our Q-DETR,
which is mainly accomplished by a distribution rectifica-

tion knowledge distillation method (DRD). We find ineffec-
tive knowledge transferring from the real-valued teacher to
the quantized student primarily because of the information
gap and distortion. Therefore, we formulate our DRD as
a bi-level optimization framework established on the infor-
mation bottleneck principle (IB). Generally, it includes an
inner-level optimization to maximize the self-information
entropy of student queries and an upper-level optimization
to minimize the conditional information entropy between
student and teacher queries. At the inner level, we conduct a
distribution alignment for the query guided by its Gaussian-
alike distribution, as shown in Fig. 1, leading to an explicit
state in compliance with its maximum information entropy
in the forward propagation. At the upper level, we introduce
a new foreground-aware query matching that filters out low-
qualified student queries for exact one-to-one query match-
ing between student and teacher, providing valuable knowl-
edge gradients to push minimum conditional information
entropy in the backward propagation.

This paper attempts to introduce a generic method for
DETR quantization. The significant contributions in this
paper are outlined as follows: (1) We develop the first QAT
quantization framework for DETR, dubbed Q-DETR. (2)
We use a bi-level optimization distillation framework, ab-
breviated as DRD. (3) We observe a significant performance
increase compared to existing quantized baselines.

2. Related Work
Quantization. Quantized neural networks often pos-

sess low-bit (1∼4-bit) weights and activations to acceler-
ate the model inference and save memory. For example,
DoReFa-Net [45] exploits convolution kernels with low bit-
width parameters and gradients to accelerate training and
inference. TTQ [46] uses two real-valued scaling coeffi-
cients to quantize the weights to ternary values. Zhuang et
al. [48] present a 2 ∼ 4-bit quantization scheme using a
two-stage approach to alternately quantize the weights and
activations, providing an optimal tradeoff among memory,
efficiency, and performance. In [14], the quantization in-
tervals are parameterized, and optimal values are obtained
by directly minimizing the task loss of the network. Ze-
roQ [3] supports uniform and mixed-precision quantization
by optimizing for a distilled dataset which is engineered to
match the statistics of the batch normalization across dif-
ferent network layers. Xie et al. [41] introduced transfer
learning into network quantization to obtain an accurate
low-precision model by utilizing Kullback-Leibler (KL) di-
vergence. Fang et al. [10] enabled accurate approximation
for tensor values that have bell-shaped distributions with
long tails and found the entire range by minimizing the
quantization error. Li et al. [17] proposed an information
rectification module and distribution-guided distillation to
push the bit-width in a quantized vision transformer. At
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Figure 3. Overview of the proposed Q-DETR framework. We introduce the distribution rectification distillation method (DRD) to refine
the performance of Q-DETR. From left to right, we respectively show the detailed decoder architecture of Q-DETR and the learning
framework of Q-DETR. The Q-Backbone, Q-Encoder, and Q-Decoder denote quantized architectures, respectively.

the same time, we address the quantization in DETR from
the IB principle. The architectural design has also drawn
increasing attention using extra shortcut [27], and parallel
parameter-free shortcuts [25] for example.

Detection Transformer. Driven by the success of trans-
formers [37], several researchers have also explored trans-
former frameworks for vision tasks. The first DETR [4]
work introduces the Transformer structure based on the at-
tention mechanism for object detection. But the main draw-
back of DETR lies in the highly inefficient training process.
The approachh of another work modifies the multi-head at-
tention mechanism (MHA). Deformable-DETR [47] con-
structs a sparse and point-to-point MHA mechanism using
a static point-wise query sampling method around the ref-
erence points. SMCA-DETR [11] introduces a Gaussian-
distributed spatial function before formulating a spatially
modulated co-attention. DAB-DETR [21] re-defines the
query of DETR as dynamic anchor boxes and performs
soft ROI pooling layer-by-layer in a cascade manner. DN-
DETR [16] introduces query denoising into query genera-
tion, reducing the bipartite graph matching difficulty and
leading to faster convergence. Another set of arts improves
DETR methods using additional learning constraints. For
example, UP-DETR [6] proposes a novel self-supervised
loss to enhance the convergence speed and the performance
of DETR.

However, prior arts mainly focus on the training effi-
ciency of DETR, few of which have discussed the quan-
tization of DETR. To this end, we first build a quantized
DETR baseline and then address the query information dis-
tortion problem based on the IB principle. Finally, a new
KD method based on a foreground-aware query matching
scheme is achieved to solve Q-DETR effectively.

3. The Challenge of Quantizing DETR

3.1. Quantized DETR baseline

We first construct a baseline to study the low-bit DETR
since no relevant work has been previously proposed. To
this end, we follow LSQ+ [2] to introduce a general frame-
work of asymmetric activation quantization and symmetric
weight quantization:

xq =⌊clip{ (x− z)

αx
, Qx

n, Q
x
p}⌉,wq = ⌊clip{ w

αw
, Qw

n , Qw
p }⌉,

Qa(x) = αx ◦ xq + z, Qw(x) = αw ◦wq,
(1)

where clip{y, r1, r2} clips the input y with value bounds r1
and r2; the ⌊y⌉ rounds y to its nearest integer; the ◦ denotes
the channel-wise multiplication. And Qx

n = −2a−1, Qx
p =

2a−1 − 1, Qw
n = −2b−1, Qw

p = 2b−1 − 1 are the discrete
bounds for a-bit activations and b-bit weights. x generally
denotes the activation in this paper, including the input fea-
ture map of convolution and fully-connected layers and in-
put of multi-head attention modules. Based on this, we first
give the quantized fully-connected layer as:

Q-FC(x) = Qa(x) ·Qw(w) = αxαw ◦(xq⊙wq+z/αx ◦wq),
(2)

where · denotes the matrix multiplication and ⊙ denotes the
matrix multiplication with efficient bit-wise operations. The
straight-through estimator (STE) [1] is used to retain the
derivation of the gradient in backward propagation.

In DETR [4], the visual features generated by the back-
bone are augmented with position embedding and fed into
the transformer encoder. Given an encoder output E, DETR
performs co-attention between object queries O and the vi-
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Figure 4. Performance of 3/4-bit quantized DETR-R50 on VOC
with different quantized modules.

sual features E, which are formulated as:

q = Q-FC(O), k,v = Q-FC(E)

Ai = softmax(Qa(q)i ·Qa(k)
⊤
i /

√
d),

Di = Qa(A)i ·Qa(v)i,

(3)

where D is the multi-head co-attention module, i.e., the co-
attended feature for the object query. The d denotes the
feature dimension in each head. More FC layers transform
the decoder’s output features of each object query for the
final output. Given box and class predictions, the Hungarian
algorithm [4] is applied between predictions and ground-
truth box annotations to identify the learning targets of each
object query.

3.2. Challenge Analysis

Intuitively, the performance of the quantized DETR
baseline largely depends on the information representation
capability mainly reflected by the information in the multi-
head attention module. Unfortunately, such information is
severely degraded by the quantized weights and inputs in
the forward pass. Also, the rounded and discrete quantiza-
tion significantly affect the optimization during backpropa-
gation.

We conduct the quantitively ablative experiments by pro-
gressively replacing each module of the real-valued DETR
baseline with a quantized one and compare the average pre-
cision (AP) drop on the VOC dataset [9] as shown in Fig. 4.
We find that quantizing the MHA decoder module to low
bits, i.e., (1)+(2)+(3), brings the most significant accuracy
drops of accuracy among all parts of the DETR methods,
up to 2.1% in the 3-bit DETR-R50. At the same time, other
parts of DETR show comparative robustness to the quanti-
zation function. Consequently, the critical problem of im-
proving the quantized DETR methods is restoring the infor-
mation in MHA modules after quantization. Other quali-
tative results in Fig. 1 and Fig. 2 also indicate that the de-

graded information representation is the main obstacle to a
better quantized DETR.

4. The Proposed Q-DETR

4.1. Information Bottleneck of Q-DETR

To address the information distortion of the quantized
DETR, we aim to improve the representation capacity of the
quantized networks in a knowledge distillation framework.
Generally, we utilize a real-valued DETR as a teacher and a
quantized DETR as a student, which are distinguished with
superscripts T and S, respectively.

Our Q-DETR pursues the best tradeoff between perfor-
mance and compression, which is precisely the goal of
the information bottleneck (IB) method through quantify-
ing the mutual information that the intermediate layer con-
tains about the input (less is better) and the desired output
(more is better) [35, 36]. In our case, the intermediate layer
comes from the student, while the desired output includes
the ground-truth labels as well as the queries of the teacher
for distillation. Thus, the objective target of our Q-DETR
is:

min
θS

I(X;ES)− βI(ES ,qS ;yGT )− γI(qS ;qT ), (4)

where qT and qS represent the queries in the teacher and
student DETR methods as predefined in Eq. (3); β and γ
are the Lagrange multipliers [35]; θS is the parameters of
the student; and I(·) returns the mutual information of two
input variables. The first item I(X;ES) minimizes in-
formation between input and visual features ES to extract
task-oriented hints [40]. The second item I(ES ,qS ;yGT )
maximizes information between extracted visual features
and ground-truth labels for better object detection. These
two items can be easily accomplished by common network
training and detection loss constraints, such as proposal
classification and coordinate regression.

The core issue of this paper is to solve the third item
I(qS ;qT ), which attempts to address the information dis-
tortion in student query via introducing teacher query as a
priori knowledge. To accomplish our goal, we first expand
the third item and reformulate it as:

I(qS ;qT ) = H(qS)−H(qS |qT ), (5)

where H(qS) returns the self information entropy expected
to be maximized while H(qS |qT ) is the conditional en-
tropy expected to be minimized. It is challenging to op-
timize the above maximum & minimum items simultane-
ously. Instead, we make a compromise to reformulate
Eq. (5) as a bi-level issue [5, 20] that alternately optimizes
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the two items, which is explicitly defined as:

min
θ

H(qS∗
|qT ),

s. t. qS∗
= argmax

qS
H(qS).

(6)

Such an objective involves two sub-problems, includ-
ing an inner-level optimization to derive the current opti-
mal query qS∗

and an upper-level optimization to conduct
knowledge transfer from the teacher to the student. Below,
we show that the two sub-problems can be solved in the
forward & backward network propagation’s.

4.2. Distribution Rectification Distillation

Inner-level optimization. We first detail the maximiza-
tion of self-information entropy. According to the defini-
tion of self information entropy, H(qS) can be implicitly
expanded as:

H(qS) = −
∫
qS
i ∈qS

p(qS
i )log p(q

S
i ). (7)

However, an explicit form of H(qS) can only be pa-
rameterized with a regular distribution p(qS

i ). Luckily,
the statistical results in Fig. 1 shows that the query distri-
bution tends to follow a Gaussian distribution, which is
also observed in [17]. This enables us to solve the inner-
level optimization in a distribution alignment fashion. To
this end, we first calculate the mean µ(qS) and variance
σ(qS) of query qS whose distribution is then modeled as
qS ∼ N (µ(qS), σ(qS)). Then, the self-information en-
tropy of the student query can be proceeded as:

H(qS) = −E[logN (µ(qS), σ(qS))]

= −E[log[(2πσ(qS)
2
)

1
2
exp(− (qS

i − µ(qS))
2

2σ(qS)2
)]]

=
1

2
log 2πσ(qS)

2
.

(8)
The above objective reaches its maximum of H(qS∗

) =

(1/2) log 2πe[σ(qS)
2

+ ϵqS ] when qS∗
= [qS −

µ(qS)]/[
√

σ(qS)
2
+ ϵqS ] where ϵqS = 1e−5 is a small

constant added to prevent a zero denominator. In practice,
the mean and variance might be inaccurate due to query data
bias. To solve this we use the concepts in batch normaliza-
tion (BN) [13,34] where a learnable shifting parameter βqS

is added to move the mean value. A learnable scaling pa-
rameter γqS is multiplied to move the query to the adaptive
position. In this situation, we rectify the information en-
tropy of the query in the student as follows:

qS∗
=

qS − µ(qS)√
σ(qS)

2
+ ϵqS

γqS + βqS , (9)

in which case the maximum self-information entropy of
student query becomes H(qS∗

) = (1/2) log 2πe[(σ2
qS +

ϵqS )/γ2
qS ]. Therefore, in the forward propagation, we

can obtain the current optimal query qS∗
via Eq. (9), af-

ter which, the upper-level optimization is further executed
as detailed in the following contents.

Upper-level optimization. We continue minimizing the
conditional information entropy between the student and the
teacher. Following DETR [4], we denote the ground-truth
labels by yGT = {cGT

i , bGT
i }Ngt

i=1 as a set of ground-truth
objects where Ngt is the number of foregrounds, cGT

i and
bGT
i respectively represent the class and coordinate (bound-

ing box) for the i-th object. In DETR, each query is associ-
ated with an object. Therefore, we can obtain N objects for
teacher and student as well, denoted as yS = {cSj , bSj }Nj=1

and yT = {cTj , bTj }Nj=1.
The minimization of the conditional information entropy

requires the student and teacher objects to be in a one-to-one
matching. However, it is problematic for DETR due primar-
ily to the sparsity of prediction results and the instability
of the query’s predictions [16]. We propose a foreground-
aware query matching to rectify “well-matched” queries to
solve this. Concretely, we match the ground-truth bounding
boxes with this student to find the maximum coincidence
as:

Gi = max
1≤j≤N

GIoU(bGT
i , bSj ), (10)

where GIoU(·) is the generalized intersection over union
function [32]. Each Gi reflects the “closeness” of student
proposals to the i-th ground-truth object. Then, we re-
tain highly qualified student proposals around at least one
ground truth to benefit object recognition [38] as:

bSj =

{
bSj , GIoU(bGT

i , bSj ) > τGi, ∀ i
∅, otherwise, (11)

where τ is a threshold controlling the proportion of distilled
queries. After removing object-empty (∅) queries in q̃S ,
we form a distillation-desired query set of students denoted
as q̃S associated with its object set ỹS = {c̃Sj , b̃Sj }Ñj=1.
Correspondingly, we can obtain a teacher query set ỹT =

{c̃Tj , b̃Tj }Ñj=1. For the j-th student query, its corresponding
teacher query is matched as:

c̃Tj , b̃
T
j = argmax

c̃Tk ,b̃Tk

N∑
k=1

µ1 GIoU(b̃Sj , b
T
k )− µ2∥b̃Sj − bTk ∥1,

(12)
where µ1 = 2 and µ2 = 5 control the matching function,
values of which is to follow [4].

Finally, the upper-level optimization after rectification in
Eq. (6) becomes:

min
θ

H(q̃S∗
|q̃T ). (13)
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Optimizing Eq. (13) is challenging. Alternatively, we
minimize the norm distance between q̃S∗

and q̃T , optima
of which, i.e., q̃S∗

= q̃T , is exactly the same with that in
Eq. (13). Thus, the final loss for our distribution rectifica-
tion distillation loss becomes:

LDRD(q̃S∗
, q̃T ) = E[∥D̃S∗

− D̃T ∥2], (14)

where we use the Euclidean distance of co-attented feature
D̃ (see Eq. 3) containing the information query q̃ for opti-
mization.

In backward propagation, the gradient updating drives
the student queries toward their teacher hints. Therefore we
accomplish our distillation. The overall training losses for
our Q-DETR model are:

L = LGT (y
GT ,yS) + λLDRD(q̃S∗

, q̃T ), (15)

where LGT is the common detection loss for missions such
as proposal classification and coordinate regression [4], and
λ is a tradeoff hyper-parameter.

5. Experiments
In this section, we evaluate the performance of the pro-

posed Q-DETR mode using popular DETR [4] and SMCA-
DETR [11] models. To the best of our knowledge, there
is no publicly available source code on quantization-aware
training of DETR methods at this point, so we implement
the baseline and LSQ [8] methods ourselves.

5.1. Datasets and Implementation Details

Datasets. We first conduct the ablative study and
hyper-parameter selection on the PASCAL VOC dataset
[9], which contains natural images from 20 different
classes. We use the VOC trainval2012, and VOC
trainval2007 sets to train our model, which contains
approximately 16k images, and the VOC test2007 set
to evaluate our Q-DETR, which contains 4952 images.
We report COCO-style metrics for the VOC dataset: AP,
AP50 (default VOC metric), and AP75. We further con-
duct the experiments on the COCO 2017 [18] object de-
tection tracking. Specifically, we train the models on
COCO train2017 and evaluate the models on COCO
val2017. We list the average precision (AP) for IoUs∈
[0.5 : 0.05 : 0.95], designated as AP, using COCO’s stan-
dard evaluation metric. For further analyzing our method,
we also list AP50, AP75, APs, APm, and APl.

Implementation Details. Our Q-DETR is trained with
the DETR [4] and SMCA-DETR [11] framework. We se-
lect the ResNet-50 [12] and modify it with Pre-Activation
structures and RPReLU [25] function following [23]. Py-
Torch [30] is used for implementing Q-DETR. We run the
experiments on 8 NVIDIA Tesla A100 GPUs with 80 GB
memory. We use ImageNet ILSVRC12 [15] to pre-train
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Figure 5. (a) We select τ and λ using 4-bit Q-DETR-R50 on VOC.
(b) The mutual information curves of I(X;E) and I(yGT ;E,q)
(Eq. 4) on the information plane. The red curves represent the
teacher model (DETR-R101). The orange, green, red, and purple
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line + FQM, and 4-bit baseline + DA + FQM (4-bit Q-DETR).

the backbone of a quantized student. The training protocol
is the same as the employed frameworks [4, 11]. Specif-
ically, we use a batch size of 16. AdamW [28] is used
to optimize the Q-DETR, with the initial learning rate of
1e−4. We train for 300/500 epochs for the Q-DETR on
VOC/COCO dataset, and the learning rate is multiplied by
0.1 at the 200/400-th epoch, respectively. Following the
SMCA-DETR, we train the Q-SMCA-DETR for 50 epochs,
and the learning rate is multiplied by 0.1 at the 40-th epoch
on both the VOC and COCO datasets. We utilize a multi-
distillation strategy, where we save the encoder and decoder
network as real-valued at the first stage. Then we train the
fully quantized DETR at the second stage, where we load
the weight from the checkpoint of first stage. We select
real-valued DETR-R101 (84.5% AP50 on VOC and 43.5%
AP on COCO) and SMCA-DETR-R101 (85.3% AP50 on
VOC and 44.4% AP on COCO) as teacher network.

5.2. Ablation Study

Hyper-parameter selection. As mentioned above, we
select hyper-parameters τ and λ in this part using the 4-bit
Q-DETR model. We show the model performance (AP50)
with different setups of hyper-parameters {τ, λ} in Fig. 5
(a), where we conduct ablative experiments on the baseline
+ DA (AP50=78.8%). As can be seen, the performances in-
crease first and then decrease with the increase of τ from
left to right. Since τ controls the proportion of selected
distillation-desired queries, we show that the full-imitation
(τ = 0) performs worse than the vanilla baseline with no
distillation (τ = 1), showing query selection is necessary.
The figure also shows that the performances increase first
and then decrease with the increase of τ from left to right.
The Q-DETR obtains better performances with τ set as 0.5
and 0.6. With the varying value of λ, we find {λ, τ} =
{2.5, 0.6} boost the performance of Q-DETR most, achiev-
ing 82.7% AP on VOC test2007. Based on the ablative
study above, we set hyper-parameters τ and λ as 0.6 and 2.5
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Table 1. Evaluating the components of Q-DETR-R50 on the VOC
dataset. #Bits (W-A-Attention) denotes the bit-width of weights,
activations, and attention activations. DA denotes the distribution
alignment module. FQM denotes foreground-aware query match-
ing.

Method #Bits AP50 #Bits AP50 #Bits AP50

Real-valued 32-32-32 83.3 - - - -
Baseline 4-4-8 78.0 3-3-8 76.8 2-2-8 69.7

+DA 4-4-8 78.8 3-3-8 78.0 2-2-8 71.6
+FQM 4-4-8 81.5 3-3-8 80.9 2-2-8 74.9

+DA+FQM
(Q-DETR) 4-4-8 82.7 3-3-8 82.1 2-2-8 76.4

for the experiments in this paper.
Effectiveness of components. We show quantitative im-

provements of components in Q-DETR in Tab. 1. As shown
in Tab. 1, the quantized DETR baseline suffers a severe per-
formance drop on AP50 (13.6%, 6.5%, and 5.3% with 2/3/4-
bit, respectively). DA and FQM improve the performance
when used alone, and the two techniques further boost the
performance considerably when combined. For example,
the DA improves the 2-bit baseline by 1.9%, and the FQM
achieves a 5.2% performance improvement. While com-
bining the DA and FQM, the performance improvement
achieves 6.7%.

Information analysis. We further show the information
plane following [39] in Fig. 5(b). We adopt the test AP50

to quantify I(yGT ;E,q). We employ a reconstruction de-
coder to decode the encoded feature E to reconstruct the
input and quantify I(X;E) using the ℓ1 loss. As shown
in Fig. 5(b), the curve of the larger teacher DETR-R101 is
usually on the right of the curve of small student models,
which indicates a greater ability of information representa-
tion. Likewise, the purple line (Q-DETR-R50) is usually on
the right of the three left curves, showing the information
representation improvements with the proposed methods.

5.3. Results on PASCAL VOC

We first compare our method with the 2/3/4-bit baseline
and LSQ [8] based on the same frameworks for object de-
tection task with the VOC dataset. We also report the de-
tection performance of the 8-bit post-training quantization
networks, such as percentile [19], VT-PTQ [26]. We use the
input resolution following [4], i.e. 1333×800. We mainly
discuss the AP50 (default VOC metric) in the following.

We evaluate the proposed Q-DETR on DETR-R50 mod-
els in Tab. 2. For the DETR-R50 model, compared with
the 8-bit PTQ method, our 4-bit Q-DETR achieves a much
larger compression ratio than 8-bit VT-PTQ, but with a bit
of performance improvement (82.7% vs. 82.3%). Also, the
proposed method boosts the performance of 2/3/4-bit base-
line by 6.7%, 5.3%, and 4.7% with the same architecture

Table 2. We report AP, AP50, and AP75 (%) with state-of-
the-art quantization methods on DETR and SMCA-DETR using
VOC test2007. #Bits (W-A-Attention) denotes the bit-width of
weights, activations, and attention activations.

Model Method #Bits AP AP50 AP75

DETR-R50

Real-valued 32-32-32 59.5 83.3 64.7
Percentile 8-8-8 54.7 79.2 60.1
VT-PTQ 57.6 82.3 63.1

LSQ
4-4-8

49.7 76.9 53.0
Baseline 51.3 78.0 54.1
Q-DETR 57.1 82.7 61.5

LSQ
3-3-8

47.0 75.3 49.1
Baseline 49.2 76.8 51.8
Q-DETR 56.8 82.1 61.2

LSQ
2-2-8

42.6 68.2 44.8
Baseline 44.0 69.7 45.8
Q-DETR 50.7 76.4 54.1

SMCA-DETR
-R50

Real-valued 32-32-32 56.7 83.7 62.0
Percentile 8-8-8 54.7 79.2 60.1
VT-PTQ 55.9 83.0 61.3

LSQ
4-4-8

49.6 78.6 53.4
Baseline 50.7 79.5 55.4
Q-DETR 56.2 83.3 61.6

LSQ
3-3-8

47.7 76.5 51.7
Baseline 49.9 77.5 53.6
Q-DETR 54.3 82.6 59.5

LSQ
2-2-8

42.3 69.7 44.8
Baseline 43.9 70.4 46.1
Q-DETR 50.2 76.7 52.6

and bit-width, which significantly validates the effective-
ness of our method.

Besides, our method generates convincing results on
SMCA-DETR. As shown in Tab. 2, the performance of the
proposed Q-DETR with SMCA-DETR-R50 outperforms
the 2/3/4-bit Baseline method by 6.3% , 5.1% and 3.8% on
AP50, a large margin. Compared with 8-bit post-training
quantization methods, our method achieves a significantly
higher compression rate and comparable performance.

5.4. Results on COCO

We further show comparison on the large-scale COCO
[18] dataset. We compare our method with the 2/3/4-bit
baseline and LSQ [8] based on the same frameworks. We
also report the detection performance of the 8-bit post-
training quantization networks, such as percentile [19] , VT-
PTQ [26]. The AP with different IoU thresholds, and AP of
objects with varying scales are all reported in Tab. 3.

Tab. 3 lists the comparison of several quantization ap-
proaches and detection frameworks in computing complex-
ity, storage cost. Our Q-DETR significantly accelerates
computation and reduces storage requirements for various
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Table 3. Comparison with state-of-the-art quantization methods using DETR and SMCA-DETR on COCO val2017. #Bits (W-A-
Attention) denotes bit-width of weights, activations, and attention activations.

Model Method #Bits Size(MB) OPs(G) AP AP50 AP75 APs APm APl

DETR-R50

Real-valued 32-32-32 159.32 85.51 42.0 62.4 44.2 20.5 45.8 61.1
Percentile 8-8-8 39.83 23.01 38.6 - - - - -
VT-PTQ 41.2 - - - - -

LSQ
4-4-8 19.92 13.02

33.3 53.7 33.9 12.8 37.0 51.6
Baseline 34.1 55.3 35.4 14.3 38.0 53.8
Q-DETR 39.4 60.2 41.4 17.7 43.4 59.9

LSQ
3-3-8 15.03 7.61

31.0 52.3 32.1 11.3 33.9 48.5
Baseline 32.3 52.2 32.9 12.3 35.4 50.3
Q-DETR 36.1 55.9 37.5 14.6 39.4 55.2

LSQ
2-2-8 10.03 5.32

24.7 44.6 26.5 6.3 25.3 42.7
Baseline 26.6 46.6 26.5 8.4 28.2 44.4
Q-DETR 31.4 51.3 31.6 11.6 34.3 49.6

SMCA-DETR-R50

Real-valued 32-32-32 164.75 86.65 41.0 62.2 43.6 21.9 44.3 59.1
Percentile 8-8-8 41.19 23.66 37.5 58.5 40.1 17.6 39.1 55.9
VT-PTQ 40.2 61.0 42.6 20.3 42.9 57.7

LSQ
4-4-8 20.59 13.48

33.9 55.0 35.0 13.2 37.2 51.4
Baseline 35.0 56.4 36.4 15.6 38.3 52.5
Q-DETR 38.3 59.7 39.8 17.7 41.7 56.8

LSQ
3-3-8 15.68 8.05

30.1 52.6 31.4 11.9 33.4 46.6
Baseline 31.8 53.7 32.6 12.6 35.2 49.8
Q-DETR 35.0 56.3 36.9 15.0 39.0 53.1

LSQ
2-2-8 10.84 4.54

23.9 42.2 24.2 9.4 26.2 37.5
Baseline 25.4 44.3 25.2 8.4 27.2 40.3
Q-DETR 30.5 51.8 31.8 12.0 33.2 48.0

detectors. We follow [40] to calculate memory usage, by
adding 32× the number of real-valued weights and a× the
number of quantized weights in the a-bit networks. The
number of operations (OPs) is calculated in the same way
as [40]. Current CPUs can handle both bit-wise XNOR and
bit-count operations in parallel. The respective number of
FLOPs adds { 1

32 ,
1
16 ,

1
8} of the number of {2,3,4}-bit mul-

tiplications equals the OPs following [24].
We summarize the experimental results on COCO

val2017 of Q-DETR-R50 from lines 2 to 17 in Tab. 3.
For the DETR-R50 model, compared with the 8-bit PTQ
method, our 4-bit Q-DETR achieves a much larger accel-
eration than the 8-bit VT-PTQ but with an acceptable per-
formance gap. Also, the proposed method boosts the per-
formance of 2/3/4-bit baseline by 4.8%, 3.8% and 5.1%
AP with the same architecture and bit-width, which is
significant on the large-scale COCO dataset. Compared
with the real-valued counterparts, the proposed 2/3/4-bit Q-
DETR achieves computation acceleration and storage sav-
ings by 16.07×/11.23×/6.57× and 15.88×/10.60×/7.99×.
The above results are of great significance in the real-time
inference of object detection. All of the improvements have
impacts on object detection.

For the SMCA-DETR-R50 model, we observe similar

performance improvements and compression ratios. For
example, the 4-bit Q-SMCA-DETR-R50 theoretically ac-
celerates 6.42× with only a 2.7% performance gap com-
pared with the real-valued counterpart, which is significant
for real-time DETR methods.

6. Conclusion

This paper introduces a novel method for training quan-
tized DETR (Q-DETR) with knowledge distillation to rec-
tify the query distribution. Q-DETR generalizes the infor-
mation bottleneck (IB) principle and leads a bi-level dis-
tribution rectification distillation. We effectively employ
a distribution alignment module to solve inner-level and a
foreground-aware query matching scheme to solve upper
level. As a result, Q-DETR significantly boosts perfor-
mance of low-bit DETR. Extensive experiments show that
Q-DETR surpasses state-of-the-arts in DETR quantization.
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