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Abstract

In many computer vision applications (e.g., robotics and
autonomous driving), high dynamic range (HDR) data is
necessary for object detection algorithms to handle a vari-
ety of lighting conditions, such as strong glare. In this pa-
per, we aim to achieve object detection on RAW sensor data,
which naturally saves the HDR information from image sen-
sors without extra equipment costs. We build a novel RAW
sensor dataset, named ROD, for Deep Neural Networks
(DNNs)-based object detection algorithms to be applied to
HDR data. The ROD dataset contains a large amount of an-
notated instances of day and night driving scenes in 24-bit
dynamic range. Based on the dataset, we first investigate
the impact of dynamic range for DNNs-based detectors and
demonstrate the importance of dynamic range adjustment
for detection on RAW sensor data. Then, we propose a sim-
ple and effective adjustment method for object detection on
HDR RAW sensor data, which is image adaptive and jointly
optimized with the downstream detector in an end-to-end
scheme. Extensive experiments demonstrate that the per-
formance of detection on RAW sensor data is significantly
superior to standard dynamic range (SDR) data in different
situations. Moreover, we analyze the influence of texture in-
formation and pixel distribution of input data on the perfor-
mance of the DNNs-based detector. Code and dataset will
be available at https://gitee.com//mindspore/
models/tree/master/research/cv/RAOD.

1. Introduction
Real-world scenes are complex and of high dynamic

range (HDR), especially in extreme situations like the direct

light of other vehicles. In many computer vision applica-

tions, such as autonomous driving and robotics, HDR data

is important and necessary for making safety-critical deci-

sions [34] since it extends the captured luminance. For in-

stance, images may easily get over-exposed in brighter areas
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on standard dynamic range (SDR) images, but there may be

important information in corresponding raw regions. To ob-

tain the HDR data, recent works use additional cameras and

even unconventional sensors, such as neuromorphic cam-

eras and infrared cameras [13, 25], which inevitably brings

extra costs. In this paper, we make the first effort to achieve

object detection on RAW sensor data, which naturally stores

HDR information without any additional burden.

RAW sensor data is generated from the image sensor,

and is the input data of the image signal processor (ISP),

rendering SDR images suitable for human perception and

understanding. RAW sensor data is naturally HDR and save

all information from image sensors. However, datasets from

the RAW domain are difficult to collect, store and annotate.

And, to the best of our knowledge, there is no large-scale

HDR RAW sensor dataset available for object detection.

Existing RAW sensor datasets are no more than 14-bit and

not large enough for practical applications. For instance,

PASCALRAW dataset [27] is of only 12-bit, which is not

wide enough to handle complex lighting conditions. To fill

this gap, we create a novel RAW sensor dataset for object

detection on the driving scene, named as ROD, which con-

sists of 25k annotated RAW sensor data in a 24-bit dynamic

range on day and night scenarios.

On the other hand, most Deep Neural Networks (DNNs)-

based object detection algorithms are designed for the com-

mon SDR data, which only records information in the 8-bit

dynamic range. Hence, we first investigate the impact of dy-

namic range for DNNs-based detection algorithms and ex-

perimentally find that directly applying these DNNs-based

detectors on HDR RAW sensor data results in significant

performance degradation, and it gets worse when the dy-

namic range increases. Then, we analyze the key compo-

nent of the ISP system and demonstrate the importance of

dynamic range adjustment for RAW detection.

In this paper, we propose an adjustment method for the

effective detection on RAW sensor data, which is jointly op-

timized with the downstream detection network in an end-

to-end scheme. Note that our proposed method is trained

together with the detector from scratch only using object an-
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notations as the supervision. To effectively exploit the HDR

information from RAW sensor data, we devise an image-

adaptive processing network to regulate RAW sensor data

with learnable transformation functions. Specifically, we

design two modules to adjust the dynamic range of RAW

sensor data by image-level and pixel-level information. In

addition, our proposed method is lightweight and computa-

tionally efficient.

Extensive experimental results on the proposed ROD

dataset demonstrate that the performance of object detec-

tion on RAW sensor data is significantly superior to de-

tection on SDR data in different scenarios. Our method

also outperforms recent state-of-the-art neural ISP meth-

ods [23, 41]. Comprehensive ablation experiments show

that our proposed method effectively improves the perfor-

mance of DNNs-based object detection algorithms on HDR

RAW sensor data. Furthermore, we analyze the influence of

texture information and pixel distribution of the input data

for the performance of the downstream detection network.

In summary, the main contributions are as follows:

• We build a novel RAW sensor dataset for object detec-

tion on HDR RAW sensor data, which contains 25k driving

scenes on both day and night scenarios.

• We propose a simple and effective adjustment method

for detection on HDR RAW sensor data, which is jointly

optimized with the detector in an end-to-end manner.

• Extensive experiments demonstrate that object detec-

tion on HDR RAW sensor data significantly outperforms

that on SDR data in different situations. It also shows that

our method is effective and computationally efficient.

2. Related Work
2.1. HDR Imaging

HDR imaging is an important technique that greatly ex-

tends the dynamic range of exposure and accurately repre-

sents a wide range of illuminance, ranging from sunlight

to shadows [5, 34, 35, 40]. Traditional methods take multi-

ple SDR images under different exposures, then merge them

with different weights to reproduce HDR data [6,18,26,37].

These methods may lead to ghosting in the generated HDR

data due to misalignment caused by camera movement or

changes in the scene [15, 38]. Recent HDR imaging meth-

ods use additional cameras and even unconventional sensors

to combine a fusion camera system, such as neuromorphic

cameras [4, 13, 33] and infrared cameras [19, 24, 25]. These

methods add extra hardware costs and computational bur-

dens. In addition, the camera sensors of the fusion system

are not perfectly aligned, which distorts the reconstructed

HDR data. In this work, we propose to achieve object de-

tection on the RAW sensor data, which naturally stores the

HDR information without any additional burden. Further-

more, we propose a new RAW sensor dataset with a SONY

IMX490 sensor, which compacts sub-pixels with two expo-

sure times each to generate the 24-bit RAW sensor data by

a linear combination of four SDR RAW sensor data.

2.2. Object Detection
Object detection aims at localizing a set of objects and

recognizing their categories in an image, which is one of

the most fundamental computer vision problems in the past

few decades [7, 21, 36, 42]. Mainstream object detection

pipelines can be roughly divided into two categories. One

category is the one-stage proposal-free detector, which pre-

dicts detection results by regressing the coordinates of pre-

defined anchors and simultaneously classifying categories

by a single CNN, such as SSD [22] and RetinaNet [20].

Especially, YOLO series [8, 28–30] achieve promising per-

formance on many benchmark datasets. Another category

is the two-stage region proposal-based detector, which first

extracts a set of regions of interest (RoIs) from input im-

ages, and then refines the location of each RoI and predicts

its class labels, such as R-CNN [10], Faster R-CNN [31],

DETR [3] and Sparse R-CNN [32] are powerful proposal-

based detectors with high detection performance. However,

the existing object detection methods are designed for the

SDR data and cannot fit the HDR RAW sensor data, which

results in significant performance degradation [43]. We pro-

pose a novel RAW sensor dataset and a method to achieve

object detection on RAW sensor data. Specifically, we em-

ploy YOLO-X [8] and Sparse R-CNN [32] as the base-

line detectors, which are the state-of-the-art methods of the

above two representatives respectively.

3. RAW Object Detection Dataset
For object detection algorithms in many practical appli-

cations, such as autonomous driving, the HDR data is es-

sential to handle complex real-world scenarios. RAW sen-

sor data naturally stores the HDR information without addi-

tional equipment cost. To the best of our knowledge, there

is no large-scale HDR RAW sensor dataset available for ob-

ject detection. To fill this gap, we create a novel RAW sen-

sor dataset for object detection on the HDR driving scene,

named as ROD. We believe that the ROD dataset can serve

as a benchmark for future works targeting object detection

in RAW domain.

3.1. Data Collection and Processing
The ROD dataset consists of 25 thousand annotated

RAW sensor data in both day and night scenarios, which

is collected by a Sony IMX490 imaging sensor (Bayer sen-

sor, with a resolution of 2880 × 1856). To generate the

HDR data, we combine the RAW sensor data acquired with

different exposure times. Specifically, the sensor compacts

sub-pixels with two exposure times each, thus fused 24-

bit RAW sensor data are a linear combination of four 12-

bit RAW sensor data. As shown in Figure 1, the dataset

presents a variety of driving scenes in unconstrained envi-
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Figure 1. Example scenes in our ROD dataset. Top: Image instance captured in the day driving scenes. Bottom: Image instance captured

in night driving scenes. We show the corresponding SDR data for better visualization.

Table 1. Comparison between the PASCALRAW, LOD, and our RAW sensor datasets.

Dataset Sensor Dynamic Range Images Category Instance Scenario

PASCALRAW [27] Nikon D3200 DSLR 12-bit 4,259 3 classes 6,550 Day

LOD [39] Canon EOS 5D Mark IV 14-bit 2,230 8 classes 9,726 Low-light

Ours Sony IMX490 24-bit 25,207 6 classes 237,379 Day & Night

Figure 2. Number of instances per category for our ROD dataset.

ronments. We aim to build the HDR RAW sensor dataset for

autonomous driving. Specifically, we annotate 237 thou-

sand bounding boxes with 6 common class labels in the

driving scene, which are car, pedestrian, cyclist, tram, tri-

cycle, and track. The number of instances per category for

all 6 categories collected is shown in Figure 2. The dataset

will be made publicly available as a benchmark for future

methods targeting object detection on the HDR RAW data.

3.2. Comparison to Existing Datasets
The ROD dataset is composed of 24-bit RAW sensor

data. It can be observed from Table 1 that our ROD dataset

is larger than other datasets and has a higher dynamic

range. Different from the PASCALRAW dataset [27] and

the LOD dataset [39], our ROD dataset contains day and

night scenarios. Although the LOD dataset has more cat-

egories, our ROD dataset has much more instances. The

LOD dataset consists of the long-exposure RGB and short-

exposure RAW pairs in daily scenes, which is not fit to un-

derstand the practical HDR driving scenes. The proposed

ROD dataset consists of a large number of real-world driv-

ing scenes, which aims to facilitate object detection algo-

rithms to be used in practical applications.

4. Analysis on RAW Detection
4.1. Impact of Dynamic Range for Object Detection

To handle a variety of lighting conditions, HDR data is

necessary and important. But existing object detection algo-

rithms are designed for 8-bit SDR data, which has a much

lower dynamic range than our 24-bit HDR data. Hence,

we try to investigate the impact of dynamic range on ob-

ject detection at first. We train and test the YOLOX [8]

with different parameters on RAW sensor data with differ-

ent dynamic ranges and the corresponding SDR images, re-

spectively. Specifically, the 10-bit dataset is captured by

HUAWEI Mate20 cellphone, the 12-bit dataset is the PAS-

CALRAW [27] dataset, and the 24-bit dataset is the day

scenes of the proposed ROD dataset (10k images). The 10-

bit dataset is only collected for ablation experiments, which

consists of 8k images and 29k instances on the day scenario

with the same categories as the proposed ROD dataset.

Experiment results are shown in Table 2. For the 10-

bit and 12-bit datasets, the SDR data is generated by the

ISPs of the corresponding imaging systems, respectively.

For the 24-bit dataset, the SDR data is generated by the

GEO GW5300 ISP, which is an advanced camera video

processor system-on-chip designed for high-resolution sen-

sor automotive applications. Its on-chip fusion algorithm

combines up to four differently exposed images, achieving

outstanding imaging quality. From the table, we can see

that the performance of 10-bit RAW sensor data is close
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Table 2. Impact of the dynamic range for object detection.

Date Type
10-bit dataset 12-bit dataset 24-bit dataset

Params
AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

SDR 43.8 65.6 47.4 67.3 93.6 78.4 52.1 74.6 56.8
0.90M

RAW 43.3 64.3 47.3 65.3 92.9 75.8 34.6 54.7 35.4

SDR 48.1 69.4 53.2 70.9 94.9 84.0 63.3 88.4 69.6
2.27M

RAW 47.8 69.0 51.6 68.4 93.9 81.5 43.9 66.8 46.1

SDR 51.8 73.2 56.5 72.8 95.5 86.2 69.7 91.3 76.7
8.92M

RAW 51.2 72.6 56.1 70.5 94.7 84.2 47.5 67.1 52.7

RA
W Auto White 

Balance
Dynamic Range 

Adjustment Denois JPEG
Compression SD

R

Figure 3. Key components of the software ISP pipeline.

Table 3. Ablation of the software ISP pipeline on 24-bit dataset.

Data Type AP AP50 AP75

RAW 32.3 53.7 32.9

RAW (DM+AWB) 34.6 54.7 35.4

RAW (DM+AWB+DRA) 52.1 74.4 56.9

RAW (ISP Pipeline) 53.3 76.8 58.6

RAW (DRA) 51.7 76.1 56.2

RAW (ISP Pipeline w/o DRA) 35.2 56.9 35.7

to the corresponding SDR data, but the performance of 12-

bit RAW sensor data is lower than the corresponding SDR

data. When the dynamic range increases to 24-bit, the per-

formance of HDR RAW sensor data degrades significantly.

The experiment results demonstrate that DNNs-based

object detection algorithms cannot handle the HDR data,

and the performance degradation gets worse when dynamic

range increases. Results also show that ISP system is im-

portant for DNNs-based object detection.

4.2. Ablation Study of ISP System

From the results of Table 2, we can see that the ISP sys-

tem is beneficial to object detection, which transforms the

HDR RAW sensor data into 8-bit SDR data. To investigate

the key component of the ISP system for the DNNs-based

detector, we perform the ablation of the ISP system on the

proposed ROD dataset (24-bit).

We investigate the key components of the aforemen-

tioned ISP system, then simplify them to a multi-stage soft-

ware ISP as shown in Figure 3. Definitions and descrip-

tions of each state are as follows: 1) demosaicing (DM) is

implemented by a convolution operation; 2) auto white bal-

ance (AWB) is a simple gray world algorithm; 3) dynamic

range adjustment (DRA) is applied as a gamma-correction

function; 4) denoising is a bilateral filter; 5) JEPG com-

pression follows a standard JPEG algorithm. Results of ab-

lation experiments are shown in Table 3. The experiment is

conducted on YOLOX [8] with 0.90M parameters. We can

see that all stages are useful, and dynamic range adjustment

shows the most important impact. Especially, the perfor-

mance of the RAW sensor data with only dynamic range

adjustment is close to the full ISP.

In summary, we investigate the impact of dynamic range

and perform the ablation of the ISP system. We find that

the dynamic range adjustment is inevitable to object detec-

tion on the HDR RAW sensor data, since the higher the dy-

namic range, the more difficult it is to extract information by

DNNs. Hence, we propose a method to adjust the dynamic

range of RAW sensor data for object detection.

5. HDR RAW Detection Pipeline
5.1. Overview

The overall framework of our proposed method is shown

in Figure 4. Our method is jointly optimized with the down-

stream detection network in an end-to-end scheme, which

is trained together with the detector from scratch only us-

ing detection loss functions. Our method applies learnable

transformation functions to effectively exploit the HDR in-

formation. Specifically, Our method respectively explores

the image-level and pixel-level information to adjust the

dynamic range of input data for object detection, which is

light-weight and computationally efficient.

Given RAW sensor data X , we first down-sample it as

Xlr, then feed it to the image-level adjustment module and

the pixel-level adjustment module to learn the transforma-

tion functions for adjusting the image, denoted as

YI = g(X,FI(Xlr;ϑI)). (1)

YP = f(X,FP (Xlr;ϑP )). (2)

Here, YI and YP are outputs from the image-level and pixel-

wise adjustment module, g(X, ·) and f(X, ·) stand for the

image-level function and the pixel-level function, respec-

tively. FI(·;ϑI) and FP (·;ϑP ) stand for the image-level

adjustment module and the pixel-level adjustment module.

Then, the outputs of two functions are fused to generate the

processed result for the downstream detector, denoted as

Y = Fc((YI + YP )/2), (3)

where Fc stands for the fusion convolution layers. Finally,

the processed result is fed to the downstream detector for
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Figure 4. The pipeline of our proposed method. We feed the input RAW sensor data into the image-level adjustment module and the

pixel-level adjustment module, respectively. The processed results of two modules are fused to generate the output image of our method,

which is fed to the downstream detector. Our method is optimized with the detector in a end-to-end scheme using detection loss functions.

localization and classification. The information on local

features and global characteristics guarantees the effective-

ness of our method. And the operations performed in low-

resolution space contributes to the overall efficiency.

5.2. Image-Level Adjustment

The pixels of the HDR RAW sensor data are mostly dis-

tributed in the low-value area, resulting in the information

of the RAW data being hard to extract by DNNs. To adap-

tively adjust the distribution of pixels while preserving natu-

ral information at the same time, the image-level adjustment

module explores the global information of the input image

to regulate the RAW sensor data.

We first process the low-resolution image Xlr with a

stack of standard strided convolutional layers to generate

the features F l,ng , where ng stands for the n-th convolution

layers of the image-level adjustment module. The extracted

features are fed to fully-connected layers for generating the

hyperparameters γ of the image-level transformation func-

tion. To handle the intense dynamic adjustment, we define

the transformation function as

YI = g(X,FI(Xlr;ϑI)) = Xγ . (4)

The output of the image-level adjustment module is fed to

the downstream detection network. For each input data, the

function can explore the global-wise feature to adaptively

enhance the HDR information for effective detection.

5.3. Pixel-Level Adjustment

Standard tone modifications, such as exposure change

and color curve adjustment, are commonly subtle and im-

plemented by monotonic and image-level linear functions

using global-wise information. In our work, we propose

the pixel-level adjustment module, which utilizes the pixel-

wise transformation function to explore the local-wise in-

formation for adjusting the RAW sensor data.

We process the low-resolution image Xlr with a stack

of standard strided convolutional layers to generate the fea-

tures F l,nl , where nl stands for the n-th convolution layers

of the pixel-level adjustment module. The extracted fea-

tures F l,nl are used for generating the pixel-wise masks

of the pixel-wise transformation function. The pixel-wise

masks can be denoted as mi, i = 1, ...,K − 1, where K is

the number of pieces. The pixel-wise transformation func-

tion is formulated as

YP = f(X,FP (Xlr;ϑP )) =
∑K−1

k=0
mkδk(X). (5)

δk(X) =

⎧⎨
⎩

0, X ∈ [
0, k

K

)
X− k

K , X ∈ [
k
K , k+1

K

)
k
K . X ∈ [

k+1
K , 1

] (6)

Here δk(X) divides the input RAW sensor data into a stack

of the piece based on the intensity of pixels. For each input

data, the function can explore the local-wise feature to boost

the texture information for detection.

5.4. Loss Function
Our proposed method is jointly optimized with the ob-

ject detector in an end-to-end scheme without constraints

on the processed image representation. In our experiments,

we use YOLOX [8] and Sparse R-CNN [32] as the down-

stream detector. The loss is composed of classification and

regression loss, which can be calculated as

Ltotal = Lcls + λLreg, (7)

where λ is a balancing coefficient. Specifically, we use BCE

Loss as the classification loss and intersection-over-union

(IoU) loss as the regression loss.

6. Experiments
6.1. Dataset

Our experiments are conducted on the proposed ROD

dataset. To eliminate the potential influence of domain

shift, we divide the ROD dataset into two subsets based on

the scenario. There are about 10k images for the day sce-

nario and about 14k images for the night scenario. We ran-

domly select the 9k annotated images from the day scenario

and 13k annotated images of the night scenario as training

datasets, respectively. The remaining data are used as cor-

responding test datasets, respectively.

13388



Table 4. Quantitative comparison with YOLOX (0.90M) on the day and night scenarios of the ROD dataset in terms of AP, AR, AP50, and

AP75. The best results are highlighted with bold fonts.

Method
Day Night

Params (M) Flops (G)
AP AR AP50 AP75 AP AR AP50 AP75

SDR 52.1 57.2 74.6 56.8 50.3 59.7 80.0 53.7 - -

RAW 34.6 40.6 54.7 35.4 1.7 5.1 4.5 0.9 - -

Gamma [12] 52.1 57.3 74.4 56.9 50.8 60.2 80.8 55.0 - -

Mu-Log [2] 51.5 56.5 74.0 55.6 49.8 57.7 79.3 52.3 - -

IA-Gamma [12] 53.5 59.7 78.2 57.1 51.8 59.8 81.4 55.8 0.02 0.97

IA-Mu-Log [2] 23.0 31.3 41.9 21.9 50.2 58.9 80.1 54.4 0.02 0.97

GTM [16] 45.1 51.4 68.4 47.6 1.7 4.2 4.1 1.1 0.02 0.97

GTM-DI [16] 45.7 51.9 69.8 48.6 4.8 11.0 10.5 3.7 0.02 0.97

MW-ISPNet [17] 43.4 50.4 67.2 45.8 33.6 44.6 59.1 33.3 9.14 1690.54

Lite-ISPNet [17] 46.8 52.4 68.9 47.3 37.5 47.1 61.9 36.6 5.94 2860.12

IA-ISPNet [23] 54.6 61.2 81.9 59.3 52.7 60.9 81.9 56.8 0.26 0.91

Ours 58.7 63.9 85.3 61.3 54.2 61.7 83.0 58.2 0.08 0.64

6.2. Experimental Setup and Implementation
For the real-time requirement of automatic driving sce-

narios, we adopt a YOLOX [8] model as the downstream

detection network, which has only 0.90 (M) parameters and

2.27 (G) FLOPs. For training, we employ data augmenta-

tion strategies including random horizontal, flip, scale jitter

of resizing, and Mosaic. During training and testing, we

resize RAW sensor data to a size of 1280 × 1280. As for

evaluation metrics, we adopt the average precision and the

average recall over all IOU thresholds (AP and AR), AP at

IOU thresholds 0.5 (AP50) and 0.75 (AP75).

We train all models for a total of 300 epochs with 5

epochs warmup on two subsets. We use stochastic gradi-

ent descent (SGD) for training. We use a learning rate of

linear scaling [11] and the cosine learning rate schedule.

The weight decay is 5 × 10−4 and the SGD momentum is

0.9. Our training follows the mini-batch strategy and the

batch size is 32. During adjustment, we set the size of Xlr

is 256 × 256, ng = 3, and nl = 2 for two modules. Our

method is implemented by MindSpore [1].

6.3. Experimental Results
In order to verify the superiority of our method, we

compare the proposed methods with typical state-of-the-

art methods on the RAW object detection task, includ-

ing traditional dynamic range compression algorithms (the

Gamma correction algorithm (Gamma) [12] and the Mu-

log correction algorithm (Mu-log) [2]), tone mapping

methods (the image-adaptive Global-wise tone mapping

(GTM) [16]), DNNs-based ISP methods (MW-ISPNet [17],

Lite-ISPNet [41] and IA-ISPNet [23]). In addition, we

modify the traditional dynamic range compression method

to the image-adaptive Gamma correction algorithm (IA-

Gamma) and the Mu-log correction algorithm (IA-Mu-

Log). The image-adaptive strategy follows IA-ISPNet [23]

for a fair comparison with our method. We also modify the

GTM algorithm to dynamically learn the interval of piece-

wise linear functions for better dynamic range adjustment,

named as GTM-DI. The SDR data is generated by the GEO

GW5300 ISP. For a fair comparison, we train all methods

with the downstream object detection network using detec-

tion loss functions in an end-to-end scheme.

Quantitative Evaluation The quantitative comparison

results on the day and night scenarios are shown in Ta-

ble 4. We can see that the DNNs-based detector is inef-

fective on night scenario RAW sensor data, which shows

that the information of HDR RAW sensor data is difficult

to be extracted by DNNs. The performance of our method

surpasses SDR data with improvements of 6.6% and 3.9%

on the day and night scenarios, respectively. The compar-

ison results demonstrate that the detection on RAW sensor

data is significantly superior to the detection on SDR data.

In addition, our method effectively boosts the performance

of the DNNs-based detector on RAW sensor data with only

0.08 (M) parameters and 0.64 (G) FLOPs. Results from

MW-ISPNet and Lite-ISPNet show that simply increasing

the model capacity does not necessarily lead to performance

gains, which in turn shows the superiority of our method.

Qualitative Evaluation In Figure 5, we show qualitative

results of original RAW data, SDR data, and our method by

visualizing detection results with confidence scores over 0.4

in the day and night scenarios of the ROD dataset. For the

day scenario, we can see that detection on the HDR RAW

data with our method can effectively deal with the strong

glare of sunlight and the severe lighting variance, but detec-

tion on the SDR data fails in these challenging cases. For

the night scenario, we can see that detection on the HDR

RAW data with our method can effectively handle the low-

light condition and accurately recognize objects. In sum-

mary, the results of the qualitative evaluation demonstrate

that detection on the HDR RAW data can handle a variety

of lighting conditions to make safety-critical decisions.

6.4. Ablation Studies
Model Generalization To better validate the effective-

ness of object detection on the RAW sensor data, we per-
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Figure 5. Visual examples of object detection. (a) and (b) are detection results on the day and night scenarios of the ROD dataset, respec-

tively. From top to bottom are the results of RAW data, SDR data, and our method, respectively. Our method significantly outperforms the

SDR data. Please zoom in for confidence scores and class predictions. More visual results are in the supplementary document.

Table 5. Quantitative comparison with Sparse R-CNN (104.54M)

on the day scenario of the ROD dataset.

Method AP AR AP50 AP75

SDR 73.5 80.8 91.8 84.0

RAW 66.3 73.6 88.1 78.9

Gamma [12] 73.7 82.0 92.2 83.1

Mu-Log [2] 72.7 81.4 91.0 84.0

IA-Gamma [12] 75.1 82.4 92.4 85.7

IA-Mu-Log [2] 74.2 80.2 91.2 84.6

GTM [16] 71.4 78.5 89.4 82.2

GTM-DI [16] 72.6 79.2 89.6 82.5

MW-ISPNet [17] 71.6 77.8 91.4 84.2

MW-ISPNet [17] 72.7 79.2 91.9 85.2

IA-ISPNet [23] 75.6 81.2 91.6 85.1

Ours 77.4 83.6 93.2 87.3

form a comparison experiment with the proposal-based de-

tector on the day scenario of the ROD dataset. We employ

Sparse R-CNN as the downstream detector and the results

of experiments are shown in Tabel 5. From the table, we

can see that our method significantly outperforms the SDR

data on the proposal-based detector, which outperforms the

SDR data and IA-ISPNet by 3.9% and 1.8%, respectively.

The results demonstrate that detection on the RAW sensor

data is effective and outperforms the SDR data both with

the proposal-free and the proposal-based detector.

Model Size To evaluate the impact of the model size for

detection on the RAW sensor data, we employ the YOLOX

with different parameters on the day scenario of the ROD

dataset. We increase the number of channels of all detec-

Table 6. Quantitative comparison with YOLOX (8.92M) on the

day scenario of the ROD dataset.

Method AP AR AP50 AP75

SDR 69.3 72.4 91.3 76.7

RAW 47.5 52.2 67.1 52.7

Gamma [12] 71.2 74.7 94.2 82.4

Mu-Log [2] 69.1 72.8 93.9 78.1

IA-Gamma [12] 72.4 75.6 94.4 82.3

IA-Mu-Log [2] 42.7 64.6 46.9 48.0

GTM [16] 66.0 70.3 88.9 76

GTM-DI [16] 66.4 71.9 90.3 72.7

MW-ISPNet [17] 51.3 66.4 83.3 71.2

Lite-ISPNet [17] 54.6 68.8 85.3 77.2

IA-ISPNet [23] 73.1 76.7 94.5 83.1

Ours 75.5 78.6 94.9 83.9

tor convolutions by a factor of 4, increasing the number of

model parameters to 8.92(M). The experiment results are

shown in Table 6. We can see that the proposed model out-

performs the SDR data by 6.2%. The results demonstrate

that detection on the RAW sensor data outperforms the SDR

data with a large model size.

Dynamic Range We perform a comparison experiment

using YOLOX with different parameters on different dy-

namic range datasets. The results of the experiments are

shown in Table 7. From the table, we can see that our

method significantly boosts the performance of RAW sen-

sor data, which outperforms the SDR data on different dy-

namic range datasets. Specifically, the proposed method

outperforms the SDR data by 1.0 percent and 1.4 percent on
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Table 7. Quantitative comparison with YOLOX (0.90M) on dif-

ferent dynamic range datasets.

Method
10-bit Dataset 12-bit Dataset 24-bit dataset

Params
AP AP50 AP AP50 AP AP50

SDR 43.8 65.6 67.3 93.6 52.1 74.6

0.90(M)RAW 43.3 64.3 65.3 92.9 34.6 54.7

Ours 44.8 66.2 68.7 94.2 58.7 85.3

SDR 48.1 69.4 70.9 94.9 63.3 88.4

2.27(M)RAW 47.8 69.0 68.4 93.9 43.9 66.8

Ours 50.6 71.2 70.2 94.9 67.8 92.2

SDR 51.8 73.2 72.8 95.5 69.7 91.3

8.92(M)RAW 51.2 72.6 70.5 94.7 47.5 67.1

Ours 54.1 74.9 72.5 95.2 75.5 94.9

Figure 6. Pixel distribution and feature visualization of RAW sen-

sor data and the processed result of our method.

the 10-bit dataset and 12-bit dataset with YOLOX (0.90M),

respectively. The results demonstrate that our method can

effectively improve the performance of object detection on

the RAW sensor data with different dynamic ranges.

6.5. Analysis
We experimentally find that directly applying the RAW

sensor data to the DNNs-based object detection methods re-

sults in a significant performance drop in different scenarios

and it gets even worse when the dynamic range increases.

We hypothesize the reason is that RAW sensor data raises

the difficulty of feature extraction in DNNs. Since the pix-

els of RAW sensor data are distributed in the low-value area

resulting in a lack of texture information, making it difficult

for DNNS to recognize and understanding [9]. As shown

in the top row of Figure 6, there is very little information

of the features from RAW sensor data. What’s more, con-

sidering the case of imaging a strong glare in an extremely

dark scene, which means several close-to-one values inside

a nearly zero-value background. If directly processing these

raw data, those large values will dominate the gradient de-

scent process, and spread out when it goes deeper. Whereas,

our method balances well between those ones and zeros,

which are both meaningful for downstream detectors.

To analyze the impact of the texture information of

RAW sensor data on the performance of DNNs-based de-

tection methods, we employ the entropy of the gray-level

co-occurrence matrix (GLCM) [14] as the metric to evalu-

ate the necessity of dynamic range adjustment methods. We

employ the YOLOX (0.90M) as the detection network for

Table 8. Impact of texture information on the performance of de-

tection with YOLOX on the day scenario of the ROD dataset.

Method Skew Entropy of GLCM AP

RAW 8.1742 11.1691 34.6

GTM-DI [16] 2.3311 20.9431 45.1

Gamma [12] 0.8873 24.0634 52.1

IA-Gamma [12] 0.6098 24.1645 53.5

Ours 0.9719 24.5954 58.7

analysis. As shown in Table 8 we can see that the dynamic

range adjustment method is effective to boost texture infor-

mation, and the performance of detection is positively asso-

ciated with the entropy of GLCM. And Figure 6 shows that

our proposed method significantly boosts the information

of the features extracted by the DNN. Experiment results

demonstrate that the pixel distribution and texture informa-

tion of RAW sensor data is important factors for detection.

7. Conclusion and Discussion
In this paper, we propose to achieve end-to-end object

detection on RAW sensor data, which naturally stores the

HDR information without extra equipment cost. For DNN-

based detection methods to extract and explore the HDR

information of RAW sensor data, we build a novel RAW

sensor dataset, named ROD, which consists of 25k anno-

tated RAW sensor data in a 24-bit dynamic range in day

and night driving scenarios. Based on the ROD dataset, we

investigate the impact of dynamic range on object detection

and propose a method for effective detection on RAW sen-

sor data. Specifically, we devise an image-adaptive network

to regulate RAW sensor data with learnable transformation

functions, which adjusts the dynamic range by image and

pixel-level information. Extensive experiments on the ROD

dataset demonstrate that the performance of detection on

RAW sensor data is significantly superior to detection on

SDR data in different situations.

Despite object detection on RAW sensor data with our

proposed method can effectively handle a variety of light

conditions and significantly outperforms SDR data, it still

needs extra processing before DNNs-based detectors. It is

worth noting that, for a large proposal-based detector, the

performance drop caused by RAW sensor data is smaller

than with an efficient proposal-free detector. Hence, we

believe that well-designed detector networks can directly

handle the HDR RAW sensor data without any processing,

which can further exploit the information of RAW sensor

data and improve the efficiency and effectiveness of detec-

tion. This is considered as our future work.
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