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Figure 1. UniDexGrasp via grasp proposal generation and goal-conditioned execution. Left (grasp proposals): each figure demon-
strates two or three diverse and high-quality grasp proposals that vary greatly in rotation, translation, and joint angles; right (grasp execu-
tion): given a grasp goal pose, our highly generalizable goal-conditioned grasping policy can grasp the object in the way specified by the
goal, as shown in the green and blue trajectories and their corresponding goals.

Abstract

In this work, we tackle the problem of learning universal
robotic dexterous grasping from a point cloud observation
under a table-top setting. The goal is to grasp and lift up ob-
jects in high-quality and diverse ways and generalize across
hundreds of categories and even the unseen. Inspired by
successful pipelines used in parallel gripper grasping, we
split the task into two stages: 1) grasp proposal (pose) gen-
eration and 2) goal-conditioned grasp execution. For the
first stage, we propose a novel probabilistic model of grasp
pose conditioned on the point cloud observation that fac-
torizes rotation from translation and articulation. Trained
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on our synthesized large-scale dexterous grasp dataset, this
model enables us to sample diverse and high-quality dex-
terous grasp poses for the object point cloud. For the sec-
ond stage, we propose to replace the motion planning used
in parallel gripper grasping with a goal-conditioned grasp
policy, due to the complexity involved in dexterous grasp-
ing execution. Note that it is very challenging to learn
this highly generalizable grasp policy that only takes re-
alistic inputs without oracle states. We thus propose sev-
eral important innovations, including state canonicaliza-
tion, object curriculum, and teacher-student distillation. In-
tegrating the two stages, our final pipeline becomes the first
to achieve universal generalization for dexterous grasping,
demonstrating an average success rate of more than 60%
on thousands of object instances, which significantly out-
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performs all baselines, meanwhile showing only a minimal
generalization gap.

1. Introduction

Robotic grasping is a fundamental capability for an agent
to interact with the environment and serves as a prerequi-
site to manipulation, which has been extensively studied
for decades. Recent years have witnessed great progress
in developing grasping algorithms for parallel grippers
[8, 16, 17, 20, 49, 50] that carry high success rate on univer-
sally grasping unknown objects. However, one fundamental
limitation of parallel grasping is its low dexterity which lim-
its its usage to complex and functional object manipulation.

Dexterous grasping provides a more diverse way to grasp
objects and thus is of vital importance to robotics for func-
tional and fine-grained object manipulation [2, 29, 38, 40,
52]. However, the high dimensionality of the actuation
space of a dexterous hand is both the advantage that en-
dows it with such versatility and the major cause of the diffi-
culty in executing a successful grasp. As a widely used five-
finger robotic dexterous hand, ShadowHand [1] amounts to
26 degrees of freedom (DoF), in contrast with 7 DoF for a
typical parallel gripper. Such high dimensionality magni-
fies the difficulty in both generating valid grasp poses and
planning the execution trajectories, and thus distinguishes
the dexterous grasping task from its counterpart for paral-
lel grippers. Several works have tackled the grasping pose
synthesis problem [6, 28, 33, 49], however, they all assume
oracle inputs (full object geometry and states). Very few
works [9,38] tackle dexterous grasping in a realistic robotic
setting, but so far no work yet can demonstrate universal
and diverse dexterous grasping that can well generalize to
unseen objects.

In this work, we tackle this very challenging task: learn-
ing universal dexterous grasping skills that can generalize
well across hundreds of seen and unseen object categories
in a realistic robotic setting and only allow us to access
depth observations and robot proprioception information.
Our dataset contains more than one million grasps for 5519
object instances from 133 object categories, which is the
largest robotic dexterous grasping benchmark to evaluate
universal dexterous grasping.

Inspired by the successful pipelines from parallel grip-
pers, we propose to decompose this challenging task into
two stages: 1) dexterous grasp proposal generation, in
which we predict diverse grasp poses given the point cloud
observations; and 2) goal-conditioned grasp execution, in
which we take one grasp goal pose predicted by stage 1 as a
condition and generates physically correct motion trajecto-
ries that comply with the goal pose. Note that both of these
two stages are indeed very challenging, for each of which
we contribute several innovations, as explained below.

For dexterous grasp proposal generation, we devise a
novel conditional grasp pose generative model that takes
point cloud observations and is trained on our synthesized
large-scale table-top dataset. Here our approach empha-
sizes the diversity in grasp pose generation, since the way
we humans manipulate objects can vary in many different
ways and thus correspond to different grasping poses. With-
out diversity, it is impossible for the grasping pose gen-
eration to comply with the demand of later dexterous ma-
nipulation. Previous works [22] leverages CVAE to jointly
model hand rotation, translation, and articulations and we
observe that such CVAE suffers from severe mode collapse
and can’t generate diverse grasp poses, owing to its lim-
ited expressivity when compared to conditional normaliz-
ing flows [12,13, 15, 23,35] and conditional diffusion mod-
els [5, 43, 46]. However, no works have developed normal-
izing flows and diffusion models that work for the grasp
pose space, which is a Cartesian product of SO(3) of hand
rotation and a Euclidean space of the translation and joint
angles. We thus propose to decompose this conditional
generative model into two conditional generative models: a
conditional rotation generative model, namely GraspIPDF,
leveraging ImplicitPDF [34] (in short, IPDF) and a con-
ditional normalizing flow, namely GraspGlow, leveraging
Glow [23]. Combining these two modules, we can sample
diverse grasping poses and even select what we need ac-
cording to language descriptions. The sampled grasps can
be further refined to be more physically plausible via Con-
tactNet, as done in [22].

For our grasp execution stage, we learn a goal-
conditioned policy that can grasp any object in the way
specified by the grasp goal pose and only takes realistic in-
puts: the point cloud observation and robot proprioception
information, as required by real robot experiments. Note
that reinforcement learning (RL) algorithms usually have
difficulties with learning such a highly generalizable pol-
icy, especially when the inputs are visual signals without
ground truth states. To tackle this challenge, we leverage
a teacher-student learning framework that first learns an or-
acle teacher model that can access the oracle state inputs
and then distill it to a student model that only takes realis-
tic inputs. Even though the teacher policy gains access to
oracle information, making it successful in grasping thou-
sands of different objects paired with diverse grasp goals is
still formidable for RL. We thus introduce two critical inno-
vations: a canonicalization step that ensures SO(2) equiv-
ariance to ease the policy learning; and an object curricu-
lum that first learns to grasp one object with different goals,
then one category, then many categories, and finally all cat-
egories.

Extensive experiments demonstrate the remarkable per-
formance of our pipelines. In the grasp proposal generation
stage, our pipeline is the only method that exhibits high di-
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versity while maintaining the highest grasping quality. The
whole dexterous grasping pipeline, from the vision to pol-
icy, again achieves impressive performance in our simula-
tion environment and, for the first time, demonstrates a uni-
versal grasping policy with more than 60% success rate and
remarkably outperforms all the baselines. We will make the
dataset and the code publicly available to facilitate future
research.

2. Related Work
Dexterous Grasp Synthesis Dexterous grasp synthesis, a
task aiming to generate valid grasping poses given the ob-
ject mesh or point cloud, falls into two categories. First,
non-learning methods serve to generate large synthetic
datasets. Among which, GraspIt! [33] is a classical tool
that synthesizes stable grasps by collision detection, com-
monly adopted by early works [7, 26, 27]. Recently, an
optimization-based method [28] greatly improves grasp di-
versity with its proposed differentiable force closure esti-
mator, enabling datasets of higher quality [25, 51]. Sec-
ond, learning-based methods [7,11,21,22,26,44] learn from
these datasets to predict grasps with feed-forward pipelines,
but struggle to possess quality and diversity at the same
time. To tackle this problem, we propose to build a condi-
tional generative model that decouples rotation from trans-
lation and articulation.
Probabilistic Modeling on SO(3) × Rn One way to
generate diverse grasping poses is to learn the distribution
of plausible poses using ground truth poses. GraspTTA [22]
uses conditional VAE and suffers from severe model col-
lapse which leads to limited diversity. In contrast, normal-
izing flow is capable of modeling highly complex distribu-
tions as it uses negative log-likelihood (NLL) as loss, suit-
ing our needs for grasping proposal generation. Building
normalizing flow (NF) in the Euclidean space has been well
studied [12, 13, 23]. But unfortunately, hand pose consists
of a SO(3) part (the rotation) and a Rn part (the transla-
tion and joint angles), and using normalizing flow in SO(3)
is hard due to its special topological structure. Relie [15]
and ProHMR [24] both perform NF in the Euclidean space
and then map it into SO(3). As these two spaces are not
topologically equivalent, they suffer from discontinuity and
infinite-to-one mapping respectively. A more detailed anal-
ysis of these phenomena is in Sec. B.1.2 of our supp. In
comparison, IPDF [34] uses a neural network to output un-
normalized log probability and then normalize it with uni-
form samples or grids on SO(3) and also uses NLL as loss.
As IPDF is insensitive to topological structure, it is a bet-
ter choice to model distributions on SO(3) than existing
NFs. Therefore, our grasp proposal module decouples ro-
tation from translation and joint angles and models these
distributions separately with IPDF [34] and Glow [23].
Dexterous Grasp Execution Executing a dexterous grasp

requires an agent to perform a complete trajectory, rather
than a static grasping pose. Previous approaches have used
analytical methods [3,4,14] to model hand and object kine-
matics and dynamics, and then optimized trajectories for
robot control. However, these methods typically require
simplifications such as using simple finger and object ge-
ometries to make planning tractable. More recently, re-
inforcement and imitation learning techniques have shown
promise for dexterous grasping [10,32,40,42,48,52]. How-
ever, these methods rely on omniscient knowledge of the
object mesh and struggle to handle realistic task settings,
making them unsuitable for deployment in the real world.
To address this issue, recent works have explored using raw
RGB images [31, 32] or 3D point clouds [39] as policy in-
puts. However, none of these methods have been able to
generalize to a large number of objects under raw vision
input. In contrast, our goal-conditioned grasp execution
method achieves universal generalization on thousands of
object instances by leveraging a teacher-student distillation
trick, object curriculum learning, and state canonicalization.

3. Method
We propose UniDexGrasp, a two-stage pipeline for gen-

eralizable dexterous grasping. We divide the task into two
phases: 1) grasp proposal generation (Sec. 3.2), 2) goal-
conditioned grasp execution (Sec. 3.3). First, the grasp
proposal generation module takes the object point cloud
and samples a grasp proposal. Then, the goal-conditioned
grasping policy takes this proposal as goal pose, and exe-
cutes the grasp in the Isaac Gym simulator [30], taking only
point cloud observations and robot proprioception as input
in every time step t.

3.1. Problem Settings and Method Overview

The grasp proposal generation module, shown on the left
part of Fig. 2, takes the object and table cloud X0 ∈ RN×3

as input, and samples a grasp proposal g = (R, t, q) out
of a distribution, where R ∈ SO(3), t ∈ R3, q ∈ RK

represent the root rotation, root translation, and joint angles
of the dexterous hand, and K is the total degree-of-freedom
of the hand articulations. The proposed grasp g will be the
goal pose of the next module, shown on the right part of
Fig. 2.

The final goal-conditioned grasp execution module is a
vision-based policy that runs in the IsaacGym [30] physics
simulator. In each time step t, the policy takes the goal
pose g from the previous module, object and the scene
point cloud Xt, and robot proprioception srt as observa-
tion, and outputs an action at. The policy should work
across different object categories and even unseen cate-
gories. To simplify the problem, we initialize the hand with
an initial translation t0 = (0, 0, h0) and an initial rotation
R0 = (π2 , 0, ϕ0), where h0 is a fixed height and the hand

4739



GraspIPDF
𝑅

GraspGlow

Input Point Cloud 𝑋!

ℒ!"#$

ℒ$%&
canonicalize

un-canonicalize
𝒔'(

𝒂!

Grasp Orientation Generation

Grasp Translation andArticulation Generation

Goal Pose 𝒈 + Point Cloud 𝑋"

Contact-based Optimization

Robot Proprioception

Student Policy 𝜋𝒮

Goal-Conditioned RL

Grasp translationand joint angles $𝒕, 𝒒

ContactNet

Optimization
𝑝 𝑅 𝑋)

CanonicalizedPoint Cloud (𝑋!

&𝑋) = 𝑅*+𝑋)

𝑝 (𝒕, 𝒒 &𝑋)
Contact map

𝒕 = 𝑅(𝒕

GraspRotationsampleorselect

sampleorselect

𝒈 = (𝑅, 𝒕, 𝒒)

Dexterous Grasp Proposal Generation Goal-Conditioned Dexterous Grasping Policy

Figure 2. Method overview. The left part is the first stage, which generates a dexterous grasp proposal. The input is the object point cloud
at time step 0, X0, fused from depth images, with ground truth segmentation of the table and the object. A rotation R is sampled from
the distribution implied by the GraspIPDF, and the point cloud will be canonicalized by R−1 to X̃0. The GraspGlow then samples the
translation t̃ and joint angles q. Next, the ContactNet takes X̃0 and a point cloud X̃H sampled from the hand to predict the ideal contact
map c on the object. Then, the predicted hand pose is optimized based on the contact information. The final goal pose is transformed by R
to align with the original visual observation. The right part is the second stage, the goal-conditioned dexterous grasping policy that takes
the goal g, point cloud Xt and robot proprioception sr

t to take actions accordingly.

rotation is initialized so that the hand palm faces down and
its ϕ0 = ϕ. The joint angles of the hand are set to zero.
The task is to grasp the object as specified by the goal grasp
label g and lift it to a certain height. The task is successful
if the position difference between the object and the target
point is smaller than the threshold value t0.

Since directly training such a vision-based policy using
reinforcement learning is challenging, we use the idea of
teacher-student learning. We first use a popular on-policy
RL algorithm, PPO [47], with our proposed object curricu-
lum learning and state canonicalization, to learn an oracle
teacher policy that can access the ground-truth states of the
environment (e.g. object poses, velocities and object full
point cloud). This information is very useful to the task and
available in the simulator but not in the real world. Once the
teacher finishes training, we use an imitation learning algo-
rithm, DAgger [45], to distill this policy to a student policy
that can only access realistic inputs.

3.2. Dexterous Grasp Proposal Generation

In this subsection, we introduce how we model the
conditional probability distribution p(g|X0) : SO(3) ×
R3+K → R. By factorizing p(g|X0) into two parts
p(R|X0) ·p(t, q|X0, R), we propose a three-stage pipeline:
1) given the point cloud observation, predict the condi-
tional distribution of hand root rotation p(R|X0) using

GraspIPDF (see Sec. 3.2.1) and then sample a single root
rotation; 2) given the point cloud observation and the root
rotation, predict the conditional distribution of the hand root
translation and joint angles p(t, q|X0, R) = p(t̃, q|X̃0) us-
ing GraspGlow (see Sec. 3.2.2) and then sample a single
proposal; 3) optimize the sampled grasp pose g with Con-
tactNet to improve physical plausibility (see Sec. 3.2.4).

3.2.1 GraspIPDF: Grasp Orientation Generation
Inspired by IPDF [34], a probabilistic model over

SO(3), we propose GraspIPDF f(X0, R) to predict the
conditional probability distribution p(R|X0) of the hand
root rotation R given the point cloud observation X0. This
model takes X0 and R as inputs, extracts the geometric
features with a PointNet++ [37] backbone, and outputs
an unnormalized joint log probability density f(X0, R) =
α log(p(X0, R)), where α is a normalization constant. The
normalized probability density is recovered by computing:

p(R|X0) =
p(X0, R)

p(X0)
≈

1

V

exp(f(X0, R))∑M
i exp(f(X0, Ri))

(1)

where M is the number of volume partitions and V =
π2

M
is the volume of partition.

During train time, GraspIPDF is supervised by an NLL
loss L = − log(p(R0|X0)), where R0 is a ground-truth
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hand root rotation. During test time, we generate an equiv-
olumetric grid on SO(3) as in [19,34,53] and sample rota-
tions according to their queried probabilities.

3.2.2 GraspGlow: Grasp Translation and Articulation
Generation given Orientation

To condition a probabilistic model on X0 and R simul-
taneously, we propose to canonicalize the point cloud to
X̃0 = R−1X0. This trick simplifies the task from pre-
dicting valid grasps for observation X0 with R as the hand
root rotation, to predicting it for X̃0 with identity as hand
rotation. Then, we use a PointNet [36] to extract the fea-
tures of X̃0, and model the conditional probability distri-
bution p(t, q|X0, R) = p(t̃, q|X̃0) where t̃ = R−1t with
Glow [23], a popular normalizing flow model that handles
probabilistic modeling over Euclidean spaces.

During train time, the model is supervised by an NLL
loss LNLL = − log(p(t̃gt, qgt|X̃0)) using ground truth grasp
data tuples (X0, Rgt, tgt, qgt). During test time, samples are
drawn from the base distribution of Glow, and reconstructed
into grasp poses using the bijection of the normalizing flow.

3.2.3 End-to-End Training with ContactNet

Inspired by [22], we use ContactNet to model a map-
ping from flawed raw grasp pose predictions to ideal con-
tact patterns between the hand and the object. The in-
put of the ContactNet is the canonicalized object point
cloud X̃0 and the sampled hand point cloud X̃H ; the out-
put is the contact heat ci ∈ [0, 1] predicted at each point
pi ∈ X̃0. The ground truth of contact heat is given by
ci = f(Di(X̃H)) = 2 − 2 · (sigmoid(β Di(X̃H))), where
β is a coefficient to help map the distance to [0, 1], and
Di(X̃H) = min

j
∥pi − pj∥2, pj ∈ X̃H .

Leveraging ContactNet, we construct a self-supervised
task to improve the sample quality of GraspGlow by train-
ing it end-to-end with RotationNet. To be specific, in this
stage, we first sample rotations with GraspIPDF, use them
to canonicalize point clouds, then feed the point clouds
to GraspGlow to get translations and joint angles sam-
ples. Next, ContactNet takes the grasp samples, and out-
puts ideal contact maps. Here we use four additional loss
terms: 1) Lcmap: MSE between current and target con-
tact map; 2) Lpen: Total penetration from object point
cloud to hand mesh calculated using signed squared dis-
tance function; 3)Ltpen: Total penetration depth from some
chosen hand key points to the plane; 4)Lspen: Self pene-
tration term inspired by [54]. Then the joint loss becomes
Ljoint = LNLL + Ladd where Ladd is defined as:

Ladd = λcmapLcmap+λpenLpen+λtpenLtpen+λspenLspen (2)

In this stage, we freeze RotationNet as experiments
demonstrate that it learns quite well in its own stage.

Figure 3. The goal-conditioned dexterous grasping policy
pipeline. S̃E

t = (s̃r
t , s̃

o
t , X

O, g̃) and S̃S
t = (s̃r

t , X̃t, g̃) denote
the input state of the teacher policy and student policy after state
canonicalization, respectively; ⊕ denotes concatenation.

3.2.4 Test-Time Contact-based Optimization

Since the randomness of the flow sometimes leads to
small artifacts, the raw outputs of GraspGlow may contain
slight penetration and inexact contact. So we use Contact-
Net to construct a self-supervised optimization task for test-
time adaptation to adjust the imperfect grasp as in [22].

When GraspGlow predicts a grasp, ContactNet takes the
scene and hand point cloud, then outputs a target contact
map on the scene point cloud. Next, the grasp pose is opti-
mized for 300 steps to match this contact pattern. The total
energy ETTA consists of the four additional loss term de-
scribed in Sec. 3.2.3:

λTTA
cmapEcmap + λTTA

pen Epen + λTTA
tpenEtpen + λTTA

spenEspen (3)

For network structures, hyperparameters, and other im-
plementation details, please refer to Sec. B.1.1 of our supp.

3.3. Goal-Conditioned Dexterous Grasping Policy

In this section, we will introduce our goal-conditioned
grasp policy learning. We introduce our proposed state
canonicalization, object curriculum learning and other
method details for training the teacher policy in Sec. 3.3.1.
We then introduce the vision-based student policy train-
ing in Sec. 3.3.2. The teacher policy πE has a state space
SE
t = (srt , s

o
t , X

O, g) where srt is the robot hand proprio-
ception state, sot is the object state, XO is the pre-sampled
object point cloud and g is the goal grasp label. The state
of the student is defined as SS = (srt , Xt, g) where Xt is
the raw scene point cloud. Details about the state and action
space are provided in Sec. C.1 of our supp.

3.3.1 Learning Teacher Policy

We use a model-free RL framework to learn the ora-
cle teacher policy. The goal of the goal-conditioned RL is
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to maximize the expected reward E
[∑T−1

t=0 γtR(st,at, g)
]

with πE . We use PPO [47] for policy updating in our
method. Inspired by ILAD [52], we use a PointNet [36] to
extract the geometry feature of the object. ILAD pre-trains
the PointNet using behavior cloning from the motion plan-
ning demonstrations and jointly trains the PointNet using
behavior cloning from the RL demonstrations during policy
learning. Although ILAD performs very well in one sin-
gle category (96% success rate [52]), we find that directly
using this method cannot get good results under the setting
of goal-conditioned and cross-category. We then propose
several techniques on top of it. First, we do state canonical-
ization according to the initial object pose which improves
the sample efficiency of the RL with diverse goal inputs.
Second, we design a novel goal-conditioned function. We
then do 3-stage curriculum policy learning which signifi-
cantly improves the performance under cross-category set-
ting. Additionally, we find that doing object category clas-
sification when joint training the PointNet using behavior
cloning which is proposed in [52] can also improve the per-
formance under cross-category setting.
State Canonicalization Ideally, this goal-conditioned
grasping policy should be SO(2) equivariant, that is, when
we rotate the whole scene and the goal grasp label with the
same angle ϕ about the z axis (gravity axis), the grasp-
ing trajectory generated by the policy should rotate in the
same way. To ensure this SO(2) equivariance, we define a
static reference frame (denoted by ·̃ ) according to the ini-
tial hand pose: the origin of the reference frame is at the
initial hand translation (0, 0, h0) and the Euler angle of the
reference frame is (0, 0, ϕ) so that the initial Euler angle
of the hand in this reference frame is always a fixed value
R̃0 = (π2 , 0, 0). Before we input the states to the policy,
we transfer the states from the world frame to this reference
frame: S̃E

t = (s̃rt , s̃
o
t , X

O, g̃). Thus, the system is SO(2)
equivariant to ϕ. This improves the sample efficiency of the
goal-conditioned RL.
Object Curriculum Learning Since it’s difficult to train
the grasping policy cross-category due to the topological
and geometric variations in different categories, we propose
to build an object curriculum learning method to learn πE .
We find that πE can already perform very well when train-
ing on one single object but fails when training directly on
different category objects simultaneously. We apply cur-
riculum learning techniques. Our curriculum learning tech-
nique is constructed as follows: first train the policy on one
single object and then on different objects in one category,
several representative categories, and finally on all the cat-
egories. We find that this 3-stage curriculum learning sig-
nificantly boosts the success rates. More details about the
ablations on the curriculum stages are in Sec. 4.3 and Tab. 4.
Pre-training and Joint Training PointNet with Classi-
fication ILAD [52] proposed an important technique that

jointly does geometric representation learning using behav-
ior cloning when doing policy learning. We use this tech-
nique in our method and add additional object category clas-
sification objectives to update the PointNet.
Goal-conditioned Reward Function We are supposed
to conquer the dexterous manipulation problem with RL,
therefore the reward design is crucial. Here is our novel
goal-conditioned reward function which can guide the robot
to grasp and lift the object by the standard of the goal grasp
label: r = rgoal + rreach + rlift + rmove.

The goal reward rgoal punished distance between the cur-
rent hand configuration and the goal hand configuration.
The reaching reward rreach encourages the robot fingers to
reach the object. The lifting reward rlift encourages the
robot hand to lift the object. It’s non-zero if and only if the
goal grasp label is reached within a threshold. The moving
reward rmove encourages the object to reach the target.

3.3.2 Distilling to the Vision-based Student Policy

We then distill the teacher policy πE into the student pol-
icy πS using DAgger [45] which is an imitation method that
overcomes the covariate shift problem of behavior cloning.
We optimize πS by: πS = argmin

πS
∥πE(SE

t ) − πS(SS
t )∥2.

We also use state canonicalization but this time ϕ is the
initial Euler angle of the robot hand root around the z
axis in the world frame because we don’t know the ob-
ject pose in the student input states. Similarly, we trans-
fer the states from the world frame to this reference frame:
S̃S
t = (s̃rt , X̃t, g̃). The pipeline/network architecture is

shown in Fig. 3. For implementation details, please refer
to Sec. B.2.1 of our supp.

4. Experimentals
4.1. Data Generation and Statistics

We used a similar method from [51] to synthesize grasps.
Data Generation First, we randomly select an object
from the pool of our training instances and let it fall ran-
domly onto the table from a high place. Next, we randomly
initialize a dexterous hand and optimize it into a plausible
grasp. The optimization is guided by an energy function
proposed by [51]. We add an energy term on top of this to
punish penetration between the hand and the table. Finally,
the grasps are filtered by penetration depth and simulation
success in Isaac. Please refers to Sec. A of our supp.
Statistics We generated 1.12 million valid grasps for 5519
object instances in 133 categories. These objects are split
into three sets: training instances (3251), seen category un-
seen instances (754), unseen category instances (1514).

4.2. Results on Grasp Proposal Generation

Baselines [22] takes point cloud as input, generates
grasps with CVAE, then performs test-time adaptation with
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Method seen cat unseen cat σR ↑ σT |R ↑ σθ|R ↑ σkeypoints ↑
Q1 ↑ obj. pen.↓ Q1 ↑ obj. pen.↓ (degree) (cm) (degree) (cm)

GraspTTA [22] (C + T) 0.0269 0.354 0.0239 0.363 4.9 / / 2.909
DDG [26] 0.0357 0.319 0.0223 0.338 0.0 / / 0.000
R + C + T 0.0362 0.251 0.0336 0.235 128.0 0.095 0.227 5.982
ReLie [15] + T 0.0190 0.219 0.0191 0.225 109.9 / / 6.698
ProHMR [24] + T 0.0210 0.202 0.0221 0.192 88.4 / / 5.837
ours (R + GL + T) 0.0423 0.205 0.0322 0.220 127.6 1.143 5.806 6.389

Table 1. Results on grasp goal generation. R: GraspIPDF, C: CVAE, T: test-time adaptation, GL: GraspGlow, and obj. pen. is the
penetration between the hand and the object.

ContactNet. Apart from this baseline, we also designed two
ablations to verify the two key designs in our pipeline. First,
we substituted GraspGlow for the same CVAE from [22] to
demonstrate the severe mode collapse of CVAE. Second,
we substituted GraspIPDF with ReLie to demonstrate the
problem of discontinuity, as described in Sec. 2.
Metrics We use some analytical metrics to evaluate qual-
ity and diversity. 1) Q1 [18]. The smallest wrench needed
to make a grasp unstable. 2) Object penetration depth(cm).
Maximal penetration from object point cloud to hand mesh.
3) σ2

R/keypoints. Variance of rotation or keypoints. 4) σ2
T/θ|R.

Variance of translation or joint angles with fixed rotation.
Ablation 1: Decoupling. Tab. 1 shows that the Q1

of the fourth row and the fifth row is significantly lower
than the last row, implying that the normalizing flow on
SO(3) × R3+22 failed to learn a good distribution. On
the other hand, our model can produce grasps with much
higher quality. We argue that this improvement is con-
tributed by rotation factorization, which allows us to use
IPDF and GLOW to model the distributions on SO(3) and
R22 separately. However, as shown in Tab. 2, further decou-
pling translation and joint angles will result in worse perfor-
mance as it is less end-to-end.
Ablation 2: GLOW vs CVAE. The reason we favored
GLOW over CVAE can be interpreted from the last two
columns of Tab. 1. If the input object point cloud is fixed,
then no matter what the latent z vector is, CVAE will always
collapse to a single mode. However, GLOW can propose
diverse results. Fig. 4 shows a typical case.
Ablation 3: TTA. As discussed in Sec. 3.2.4 and shown
in Tab. 2, poses sampled from flow are usually imperfect
and need TTA to make them plausible.

4.3. Grasp Execution

Environment Setup and Data We use a subset of the
train split proposed in Sec. 4.1 as our training data. For the
state-based policy evaluation, we use the grasp proposals
sampled by our grasp proposal generation module. For the
final vision-based policy evaluation, we use both the train-
ing data (“GT” in Tab. 4) and grasp proposals sampled by
our grasp proposal generation module (“pred” in Tab. 4) as

Figure 4. Comparison of diversity in grasp translation and ar-
ticulation given the rotation. Left: 8 outputs of CVAE (com-
pletely collapsed to one pose); Middle: 8 outputs of GraspGLOW;
Right: a ground truth grasp.

Method decoup.T w/o TTA ours
seen Q1 ↑ 0.0003 0.0013 0.0423
cat. pen.↓ 0.862 0.744 0.205

unseen Q1 ↑ 0.0061 0.0000 0.0322
cat. pen.↓ 0.843 0.764 0.220

Table 2. Ablation study on decoupling translation and joint an-
gles and TTA. decoup.T: decouple translation, w/o TTA: without
TTA and pen. is the penetration between the hand and the object.

the goal of our policy to do testing on the train object set
and test object set. Details are in Sec. C.2 of our supp.
Baselines and Compared Methods We adopt PPO [47]
as our RL baseline and DAPG [42] as our Imitation Learn-
ing (IL) baseline. We also compared our method with ILAD
[52] which can reach a very high success rate in one cate-
gory and can generalize to novel object instances within the
same category. We further do ablations on our proposed
techniques. All methods are compared under the same set-
ting of teacher policy. Once we get the teacher policy with
the highest success rate, we distill it to the student policy.
Main Results The top half of Tab. 3 shows that our
method outperforms baselines by a large margin. The PPO
(RL) and DAPG (IL) baseline only achieve an average suc-
cess rate of 14% and 13% on train set. Our teacher method
achieves an average success rate of 74% on train set, 69%
on test set, which is about 49% and 47% improvement over
ILAD. Since our method has a teacher policy with the high-
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Model Train Test
unseen obj

seen cat
unseen cat

MP 0.12±0.01 0.02±0.00 0.02±0.01
PPO [47] 0.14±0.06 0.11±0.04 0.09±0.06
DAPG [42] 0.13±0.05 0.13±0.08 0.11±0.05
ILAD [52] 0.25±0.03 0.22±0.04 0.20±0.05
Ours 0.74±0.07 0.71±0.05 0.66±0.06
Ours(w/o SC) 0.59±0.06 0.54±0.07 0.51±0.04
Ours(w/o cls) 0.65±0.05 0.64±0.06 0.60±0.07
Ours(w/o OCL) 0.31±0.07 0.23±0.06 0.21±0.04
Ours(1-stage OCL) 0.58±0.07 0.55±0.03 0.55±0.05
Ours(2-stage OCL) 0.68±0.06 0.67±0.07 0.62±0.05

Table 3. The success rate of state-based policy. The experi-
ment is evaluated with three different random seeds. “MP”: mo-
tion planning;“SC”: state canonicalization; “cls”; joint learning
object classification; “OCL”: object curriculum learning.

est success rate, we distill this policy to a vision-based stu-
dent policy and the success rate decreases by 6% and 7% on
train and test set respectively (the first line of Tab. 4). This
indicates that the vision-based, goal-conditional, and cross-
category setting is difficult and the student’s performance is
limited by the teacher’s performance.
Ablation Results We evaluate our method without the
state canonicalization (w/o SC), without the object clas-
sification (w/o classification) and without object curricu-
lum learning (w/o OCL). Tab. 3 shows that each technique
yields considerable performance improvement. We do more
specific ablations on stages of object curriculum learning
(OCL). We stipulate—a: train on one object; b: train on
one category; c: train on 3 representative categories; d: train
on all the categories. We formulate the experiment as fol-
lows: w/o OCL: d; 1-stage OCL: a → d; 2-stage OCL:
a → b → d; 3-stage OCL: a → b → c → d; As shown
in Tab. 3, without OCL, the policy seldom succeeds both
during training and testing. However, as the total stages of
the curriculum increase, the success rate improves signif-
icantly. In Tab. 4, we conduct the robustness test for our
vision-based policy by jittering our predicted grasp poses
to cause small penetration (a), large penetration (b), and no
contact (c) and observe our grasp execution policy is robust
to such errors.

4.4. Language-guided Dexterous Grasping

A natural downstream task for our method is to introduce
specific semantic meaning parsing, e.g. “grasping a hammer
by the handle”. Thanks to the great diversity of grasp pro-
posals, this can be easily done by adding a filtering module
using CLIP [41], a large text-image pre-train model which
shows significant generalizability for computing the simi-
larity between text and images. Combined with the goal-
conditioned policy network, the robot is endowed with the

Penetration (cm) Train Test
unseen obj

seen cat
unseen cat

0.117 (GT) 0.68±0.06 0.65±0.05 0.63±0.04
0.208 (pred) 0.66±0.04 0.59±0.04 0.58±0.05
0.512 (a) 0.63±0.05 0.54±0.05 0.57±0.04
1.058 (b) 0.47±0.04 0.37±0.05 0.39±0.04
-0.309 (c) 0.50±0.03 0.38±0.02 0.35±0.03

Table 4. The success rate of our vision-based policy. We test our
trained vision-based policy with jittered goal grasp on the train and
test set.

(a) Grasp a bottle by the body/bottleneck, or from below 

(b) Grasp a hammer by the head/handle

Figure 5. Qualitative results of language-guided grasp proposal
selection. CLIP can select proposals complying with the language
instruction, allowing the goal-conditioned policy to execute poten-
tially functional grasps.

ability to grasp an object according to human instructions.
One of the most promising applications is for the functional
grasping of certain tools, e.g. bottles and hammers. In de-
tail, we select images rendered from grasp proposals with
the highest image-text similarity following the user com-
mand (e.g. “A robot hand grasps a hammer by the handle.”).
As shown in Fig. 5, with only 10 minutes of fine-tuning, the
model can achieve around 90% accuracy in the bottle and
hammer categories. This validates the feasibility of gen-
erating grasps with specific semantic meanings using our
generation pipeline together with the CLIP model.

5. Conclusions and Discussions
In our work, we propose a novel two-stage pipeline com-

posed of grasp proposal generation and goal-conditioned
grasp execution. The whole pipeline for the first time
demonstrates universal dexterous grasping over thousand of
objects under a realistic robotic setting and thus has the po-
tential to transfer to real-world settings. The limitation is
that we only tackle the grasping of rigid objects, in contrast
to articulated objects like scissors. Furthermore, functional
dexterous grasping still remains a challenging but promis-
ing field to explore.
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