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Figure 1. Our system takes target 3D shapes together with a 3D part library as input and outputs a set of retrieved and transformed parts
from the part library that recreates the input target shapes.

Abstract

Representing a 3D shape with a set of primitives can aid
perception of structure, improve robotic object manipula-
tion, and enable editing, stylization, and compression of
3D shapes. Existing methods either use simple paramet-
ric primitives or learn a generative shape space of parts.
Both have limitations: parametric primitives lead to coarse
approximations, while learned parts offer too little control
over the decomposition. We instead propose to decompose
shapes using a library of 3D parts provided by the user,
giving full control over the choice of parts. The library
can contain parts with high-quality geometry that are suit-
able for a given category, resulting in meaningful decom-
positions with clean geometry. The type of decomposition
can also be controlled through the choice of parts in the li-
brary. Our method works via a unsupervised approach that
iteratively retrieves parts from the library and refines their
placements. We show that this approach gives higher recon-
struction accuracy and more desirable decompositions than
existing approaches. Additionally, we show how the decom-
position can be controlled through the part library by using
different part libraries to reconstruct the same shapes.

1. Introduction
The ability to compactly represent a 3D shape as a com-

bination of primitive elements has applications in multiple
domains. In computer vision, the ability to automatically
decompose a shape into parts can aid machine perception
of the 3D structure of objects, which can in turn help au-

tonomous agents plan how to manipulate such objects.
In computer graphics, a combination of primitives can

be used as a compressed geometry representation, as a way
to abstract, stylize, or edit a 3D shape by allowing users to
alter the underlying primitive library. Ideally, a system that
performs this kind of shape decomposition should be able
to do so without supervision in the form of ground-truth
decompositions, as such data is rarely available at scale.

Past research in vision and graphics has studied this
unsupervised shape decomposition problem. Initially, re-
searchers sought methods for decomposing 3D shapes into
sets of simple parametric primitives, such as cuboids or su-
perquadric surfaces [18,21,23,26]. These methods produce
clean, parametric geometry as output, and the choice of
primitive type allows a small degree of user control over the
decomposition. However, parametric primitives produce
only a coarse approximation of the input shape, which may
not be desirable in all applications. Thus, more recent work
has investigated unsupervised decomposition of shapes into
arbitrarily-shaped primitives whose geometries are deter-
mined by a neural network [4, 10, 17]. These methods pro-
duce a set of “neural primitives” whose union closely ap-
proximates the input shape. However, the geometries of
these primitives may contain artifacts (e.g. bumps, blobs).
Further, these methods offer little to no control over the type
of decomposition they produce – the network outputs what-
ever primitives it thinks are best to reconstruct the input
shape since it lacks access to a supervised part prior.

Is it possible to obtain a decomposition of a 3D shape
whose primitives exhibit clean geometry and closely recon-
struct the input shape, while also providing more control
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over the type of decomposition produced? This is possible
if, rather than using simple parametric primitives or arbi-
trary neural primitives, one chooses a middle point between
these two extremes: reconstruct an input shape by retrieving
and assembling primitives from a library of pre-defined 3D
parts. This retrieve-and-assemble approach has several ad-
vantages. First, the parts in the library can be high-quality
3D meshes, guaranteeing clean geometry as output. Sec-
ond, a large part library can contain parts that are good
geometric matches for different regions of various shapes,
meaning that accurate reconstructions of input shapes are
possible. Finally, this approach offers a high degree of con-
trollability, as the user can change the part library to produce
different decompositions of the same input shape.

In this paper, we present a method for unsupervised de-
composition of 3D shapes using a user-defined library of
parts. Finding a subset of parts from a large part library
which best reconstructs an input shape is a large-scale com-
binatorial search problem. To make this problem tractable,
we represent the library of parts on a continuous manifold
by training a part autoencoder. This continuous representa-
tion of the part library allows us jointly optimize for the
identities and poses of parts which reconstruct the input
shape. To escape the many worst of local optimas in this
optimization landscape, the algorithm periodically uses its
current predicted set of parts to segment the input shape;
these segments are then re-encoded into the part feature
manifold to produce a new estimate of the parts that best
reconstruct the input shape. This data-driven, discontinu-
ous jump in the optimization state is similar to stages from
other non-gradient-based algorithms for global optimiza-
tion or latent variable estimation, including the mean shift
step from the mean shift algorithm and the E-step from ex-
pectation maximization [2].

Our algorithm can be run independently for any individ-
ual target shape, allowing it to work in a “zero-shot” set-
ting. When a larger dataset of related shapes is available, we
can also optimize for their part decomposition in advance (a
“training” phase) and then perform fast decomposition of a
new shape from that category by initializing its decomposi-
tion using its nearest neighbor from the “training” set.

We evaluate our algorithm by using it to reconstruct
shapes from point clouds, using parts from the PartNet
dataset. We compare to the recent Neural Parts unsuper-
vised decomposition system [17] and show that our al-
gorithm produces qualitatively more desirable decomposi-
tions that also achieve higher reconstruction accuracy. We
demonstrate the control offered by our method by show-
ing how it is possible to reconstruct shapes from one cat-
egory using parts from another (e.g. make a chair out of
lamp parts). This also has application for 3D graphics con-
tent creation, which we demonstrate by reconstructing tar-
get shapes using parts from a modular 3D asset library.

In summary, our contribution is an unsupervised algo-
rithm which retrieves and poses 3D parts to reconstruct in-
put 3D shapes. We will release our code upon publication.

2. Related Work
Our contribution is related to prior work on unsupervised

shape decomposition and on modeling by part retrieval and
assembly. We do not discuss the considerable body of work
on supervised decomposition/segmentation of 3D shapes.

Unsupervised shape decomposition: One class of unsu-
pervised shape decomposition method reconstructs shapes
using parametric primitives. Several approaches approxi-
mate 3D shapes as collections of cuboids [21, 23, 26]. One
can obtain slightly more geometric flexibility by using a
collection of superquadric surfaces instead of cuboids [18].
These approaches produce clean output geometry and offer
some small degree of control over the type of decompo-
sition produced, but their low-degree-of-freedom primitive
representation results in a poor fit to the input shape.

Another class of approaches approximates the input
shape with a collection of more general polyhedra. Sev-
eral methods focus on convex polyhedra, either decompos-
ing individual shapes in isolation [1,8,14] or training a neu-
ral network to produce similar convex decompositions for
similar shapes from a category [6]. Another option is to
decompose the input shape into pieces which can be repre-
sented as generalized cylinders [27]. These approaches pro-
duce clean geometry with a better fit to the input shape than
paramatric primitives allow, but they offer no control over
the type of decomposition produced. They also typically
need many primitives to fit the input shape well, making
them non-compact and not well-suited for shape editing.

Recent research in this space has focused on decom-
posing shapes using neural primitives. BAE-Net trains an
implicit shape representation that uses multiple decoder
“heads,” where each head tends to represent the same local-
ized part across many shape instances [4]. Other approaches
represent neural parts as star domains [10] or deformed
sphere meshes [17]. These approaches produce decomposi-
tions that fit the input shape well using a small number of
primitives. However, their output geometry can exhibit un-
desirable artifacts, and they provide no control over the type
of decomposition produced. We compare our algorithm to
one of these approaches later in the paper and show that ours
achieves even better reconstruction accuracy while also pro-
ducing qualitatively better decompositions.

Modeling by retrieval and assembly: A large body
of work in computer graphics has considered computer-
assisted or fully-automated 3D modeling via retrieving and
assembling pre-existing 3D shapes. Early work in this space
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focused on geometric heuristics to decide what object parts
might be connected to one another [7,12]. Later, researchers
began exploring machine learning methods to suggest rele-
vant parts to add to partial 3D object [3] or to synthesize en-
tire 3D objects by putting parts together [9]. More recently,
deep networks have been applied to the problems of sug-
gesting parts [22] and part-based shape synthesis [13, 25].
These methods focus on creating new 3D shapes, rather
than approximating/reconstructing existing ones, so they
tackle a different problem than we do.

There has also been some work on retrieval-based re-
construction of input 3D shapes. One method learns to re-
trieve and deform entire shapes from a shape database to
best match an input point cloud or image [24]. If the input is
structurally distinct from any of the shapes in the database,
however, this approach will not perform well. More closely
related to our algorithm is the Structure Recovery by Part
Assembly system [20], which takes a depth scan and a li-
brary of shapes as input and produces a reconstruction of the
shape implied by the scan using parts from the shape library.
This approach relies heavily on having access to a library of
complete shapes drawn from the same semantic category as
the input scan; in contrast, our algorithm assumes only a
library of isolated parts. As a consequence, our algorithm
also supports stylized reconstructions of shapes using e.g.
parts from other semantic shape categories.

3. Method
Our system takes as input either a single target 3D shape

T to reconstruct, or a collection of target 3D shapes T from
the same semantic category; as we will show, by using a
shape collection our system can take advantage of within-
category shape similarity. We assume all 3D target shapes
are represented as volumetric point clouds, which can be
obtained from various sources (e.g. sampling the interior
volume of a mesh or of a learned neural implicit shape rep-
resentation [5, 16]. In addition to the target shapes, our sys-
tem also takes as input a library of 3D parts B that it will use
to reconstruct the target shape(s). The output of our system
is, for each target shape T, a collection of transformed parts
P from the part library that approximates the target shape.
Figure 2 shows a schematic overview of our approach, and
Algorithm 1 provides pseudocode.

Our method begins by pre-training a variational autoen-
coder on all the parts in the part library (Section 3.1). This
VAE’s continuous latent space helps turn the discrete com-
binatorial search problem of part retrieval into a tractable
continuous optimization problem.

The heart of our algorithm is an iterative optimization
process, composed of three phases structured as nested
loops. In Phase I: Part Optimization, for multiple parts
Pi the algorithm directly optimizes the VAE latent code ei,
translation ti, and rotation around world up-axis ri such that

the parts reconstruct the target shape well (Section 3.2.1).
In Phase II: Part Shift, the algorithm segments the tar-
get shape T into regions using the optimized parts P from
Phase I and then re-projects them back to the latent space
using the pre-trained VAE encoder to form the new initial
state for the next iteration of Phase I (Section 3.2.2). By
doing this, Phase II helps Phase I to escape from some of
the worst local optima; its operation is analogous to the
mode-seeking before of the mean shift algorithm or the ex-
pectation maximization algorithm. The algorithm also con-
tains an optional Phase III: Part Borrowing, which it can
use when a collection of target shapes T is available (Sec-
tion 3.2.3). For a given target shape T that is currently not
well-reconstructed by its optimized parts, this phase copies
(or borrows) the optimization state {(ei, ti, ri)} from some
other target shape T′ ∈ T where T′ is geometrically sim-
ilar to T. This phase further helps Phase I to escape from
some of the worst local optima.

To determine the number of parts to use for each shape,
our system runs this iterative optimization process with dif-
ferent numbers of parts k ∈ K, returning the k for which
it achieved the best reconstruction (Section 3.5). Finally,
it retrieves parts from the part library which are the closest
match to the continuous latent space parts produced by the
optimization (Section 3.3).

The process described thus far can be run independently
for each new shape presented to the system. Alternatively,
when given a collection of target shapes T , the system can
run the above optimization procedure on all of them as a
preprocess and treat the output as a “training set.” Given
a new target shape, it can retrieve the geometric nearest
neighbor of this target in its training set, initialize optimiza-
tion using that part decomposition, and execute a short op-
timization run to refine the decomposition to better fit the
new target shape (Section 3.6). We also considered training
a neural network on the “training set” to perform amortized
inference of part decompositions, but we found that it did
not perform as well as our nearest neighbor retrieval + opti-
mization inference scheme (see supplemental for details).

3.1. Part VAE

To turn the combinatorial search problem of part retrieval
into a continuous optimization problem, we construct a con-
tinuous latent space of part geometries by training a vari-
ational autoencoder (VAE) [11] on all the parts in the in-
put library. Part meshes are first converted into volumet-
ric point clouds by sampling their interior with 512 points.
We use a 4-layer PointNet [19] as the encoder network, a
64-dimensional latent space, and a 3 layer MLP decoder
which produces point clouds with 512 points. The VAE
is trained using a combination of Chamfer distance recon-
struction loss and the standard KL divergence latent space
regularization loss. Once trained, the weights of the encoder
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Figure 2. System Overview: Our system takes a target 3D volumetric point cloud T and a library B of parts as input and outputs a set
of transformed parts P from the part library which approximate T. It first pre-trains a variational autoencoder (VAE) to project all parts
into a continuous latent space. This allows it to turn the combinatorial part retrieval problem into a continuous optimization problem
which proceeds in three phases: Phase I: Part Optimization, Phase II: Part Shift and Phase III: Part Borrowing. Phase I directly
optimizes part latent codes e, translations t, and rotations r to reconstruct the target shape. Phase II segments the input target shape
using the optimized parts from Phase I and re-projects them back to the latent space. Phase III is an optional phase which borrows good
part decompositions from other well-reconstructed similar shapes. When the optimization converges, real parts from the part library are
retrieved. Note: This figure shows the example with symmetry constraints, so each part has a reflected duplicate.

and decoder are fixed for all the subsequent processes.

3.2. Iterative Part Optimization

Given the part latent space, the system seeks to optimize
for the latent codes ei and poses (ti, ri) of a set of parts P =
{Pi|i ∈ {1 . . . k}} such that the latent codes, when decoded
and posed, reconstruct the target shape. This optimization
proceeds in three stages, organized in a nested loop.

3.2.1 Phase I: Part Optimization

In Phase I, the system directly optimizes the latent codes
and poses of the parts via gradient-based optimization. For
each target shape T, this phase starts with k randomly ini-
tialized latent codes ei ∈ Rd, k rotation angles about the
world up axis ri ∈ R, and k translation vectors ti ∈ R3. We
don’t consider scaling in our system, as scaling can warp
the geometry of a high-quality part from the part library;
this may be unacceptable for some applications. During the
optimization, each latent part code ei is decoded through the
pre-trained decoder to produce a decoded volumetric point
cloud Di. This point cloud is then rotated and translated
according to ri and ti. The values of these variables are it-
eratively updated by the gradient acquired from an objective
function L which consists a target reconstruction loss and a
part non-overlap collision loss, i.e. L = Lrecon + Loverlap.

Target Reconstruction Loss: To approximate the input
shape, a collection of decoded part volumetric point clouds
D =

⋃
i Di should match the volumetric point cloud of the

Algorithm 1 Iterative Part Optimization
1: Input
2: Target shape T, Other target shapes T , Part library B
3: Possible numbers of parts K
4: Output
5: Retrieved and assembled parts P for target T
6: procedure
7: Encoder,Decoder← PreTrain(B)
8: for k ∈ K do ▷ executed in parallel
9: ei ← rand() ▷ part latent code, i ∈ k

10: ti ← rand() ▷ part translation, i ∈ k
11: ri ← rand() ▷ part rotation, i ∈ k
12: for i3 ∈ n3 do
13: for i2 ∈ n2 do
14: for i1 ∈ n1 do
15: ei, ti, ri ← Optimize(ei, ti, ri,T)
16: end for
17: ei, ti, ri ← Shift(ei, ti, ri,T)
18: end for
19: ei, ti, ri ← Borrow(ei, ti, ri,T, T )
20: end for
21: Dk

i ← Decode(ei)
22: Dk

i ← Pose(Dk
i , ti, ri)

23: Pk
i ← Retrieve(Dk

i ,B)
24: Pk ←

⋃
i P

k
i

25: end for
26: return ChooseK(

⋃
k∈K P

k)
27: end procedure

target shape T. We use chamfer distance between these two
volumetric point clouds to measure this matching:

Lrecon = dchamfer(D,T)
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Part Overlap Penalty Loss: The optimized parts should
not only cover the target shape; they also should not over-
lap with each other. Since decoded parts can have complex
geometry, it would be non-trivial and time consuming to
compute a bounding proxy for them for differentiable colli-
sion checking. We thus design the collision penalty between
two decoded parts Da and Db to be computed by summing
point-to-point pairwise distances between all points in those
parts. If the distance ||pi − pj ||2 between a pair of points
pi ∈ Da,pj ∈ Db is below a threshold τ = 0.1, an overlap
penalty is added as τ−||pi−pj ||2, otherwise the penalty is
zero. The final overlap penalty is the average penalty across
all point pairs.

Loverlap =
1

|Da||Db|
∑

pi∈Da

∑
pj∈Db

max(0, τ − ||pi − pj ||2)

3.2.2 Phase II: Part Shift

The optimization problem solved by Phase I is non-convex
with many local minima. In particular, it can be sensitive to
different initializations of part latent codes and poses. Phase
II of the algorithm is designed to help the optimization es-
cape some worst of such local optima. It does so by shifting
the optimized parts Di from Phase I around the target to
capture more regions in the target shape.

Given the optimized latent code ei and pose (ti, ri) for
each part, the algorithm produces the decoded part point
cloud Di via the pre-trained decoder and poses it accord-
ing to (ti, ri). As shown in Figure 3 2nd column, these
parts may have become stuck in a local optimum, missing
large regions of the target shape. Thus, instead of using
the decoded parts directly, the algorithm instead uses them
to segment the target point cloud T into a set of segments
S =

⋃
i Si, where Si consists of all points from T which

are closer to Di than to any other decoded part (Figure 3,
4th column). This guarantees that each every point in the
target point cloud is assigned to one of the optimized parts.

However, the shapes of these segments may be implausi-
ble; for example, the green segment in the Figure 3 bottom
row example is divided into two connected components,
which is implausible for a single physical part. Ideally, we
want each part to consist of a single connected component,
and for those parts to cover the target point cloud. Thus,
for each segment, the algorithm discards all but one of its
connected components (Figure 3 column 6). Specifically,
it chooses the connected component which is farthest from
any of the other segments, so as to focus on the most dis-
tinct part of the target point cloud covered by this segment.
We have found that this connected component selection step
performs most consistently when the segmented target point
cloud S is first filtered to remove points which were very
well-covered by one of the original decoded parts Di (i.e.
this helps the algorithm shift each segment to include the

less-well-covered regions of the target shape). Specifically,
the algorithm computes the distance between each point in
the target point cloud T and its closest point in the part
Di to which it is assigned, and discards the points with the
smallest p = 30% (hyperparameter) of these distances (Fig-
ure 3 column 5).

We now have one connected component Ci for each seg-
ment Si of the segmented target point cloud S. The algo-
rithm normalizes the pose of each connected component by
translating its centroid to the origin and rotating it such that
the axes of its minimum volume bounding box align with
the world axes. This normalized part is re-encoded to the
part latent space to produce a new part latent code e′i. This
code, along with the inverse of the pose normalization trans-
formation (t′i, r

′
i), become the optimization variables for

the next round of Phase I (Figure 3 column 7).

Finally, we have found that it can be helpful to add an
additional part rearrangement step to the beginning of Phase
II (Figure 3 column 3). This step directly replaces one of
the optimized parts Di with the segment Si ∈ S which
is least covered by any of the parts (call this T−), before
proceeding with the rest of Phase II. The algorithm accepts
whichever replacement results in the greatest improvement
in coverage of the target points by the resulting set of parts
(if any does).

3.2.3 Phase III: Part Borrowing

If the system is given a collection of target shapes T as in-
put, this opens up the possibility of using similarities be-
tween target shapes to further improve part decompositions
and escape from some of the worst local optima. In this op-
tional phase, the system identifies all target shapes T that
are currently not well-reconstructed and sets their optimiza-
tion variables {(ei, ti, ri)} to the values of those copied
from other geometrically-similar target shapes that are well-
reconstructed. The algorithm performs this update on the
subset of target shapes Tbad whose reconstruction error is
in the worst 60% (hyperparameter) of all target shapes T .
To quickly identify geometrically-similar targets, we pre-
compute a target-to-target distance matrix M, where Mij

is the chamfer distance between target shapes Ti and Tj .
For each T ∈ Tbad, the algorithm iterates over the m = 5
nearest neighbors of T in T /Tbad according to the geomet-
rical similarity and uses their current optimization variables
{(ei, ti, ri)} to reconstruct T. If the resulting reconstruc-
tion error is within the best 10% of reconstruction errors
across T , then these variable values become the new values
for T for the next iteration of optimization Phase I. Other-
wise, T’s variables are re-initialized to a random state.
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Figure 3. Phase II Part Shift. Given decoded and posed parts {Di} (2nd column), the algorithm segments the target point cloud (1st
column) T based on which part each point is closest to (4th column). It then discards some of the points which were very close to their
assigned part (5th column) and then retains only one connected component for each segment–whichever is farthest away from any other
segment (6th column). These segments are finally re-encoded into the part latent space to produce the input for the next round of Phase
I optimization (7th column shows what these parts look like when decoded). When the entire optimization procedure has converged, the
output segments from this process will be the same as the original segments (last column). Purple boxes denote decoded part point clouds;
orange boxes denote segmentations of the target point cloud using those decoded parts.

Figure 4. The final part retrieval phase. The target shape point
cloud is segmented into regions based on optimized part point
cloud. Then, for each segment, the part that matches best is re-
trieved.

3.3. Final Part Retrieval

The output from the above three phases is the decoded
and posed part volumetric point clouds {Di}. To convert
these point clouds into actual parts from our part library, the
algorithm first segments the target shape T into segments
U =

⋃
i Ui, where Ui consists of all points from T which

are closer to Di than to any other decoded part (as in Phase
II). For each segment Ui, it then considers the q nearest
neighbors of Ui in the part library B by Chamfer distance.
We could use our pre-trained part latent space to accelerate
this nearest neighbor search using standard Euclidean ap-
proximate nearest neighbor methods. However, for fairer
comparison with methods which do not build such a latent
space, in our experiments we set q = |B|, i.e. a linear scan
across the entire part library. The algorithm then optimizes
poses (t, r) for each of these q candidate parts and takes the
one which achieves minimal volumetric Chamfer distance
between the part and the target shape segment as the final
retrieved part. Figure 4 visualizes this process.

3.4. Leveraging Symmetry

Many manufactured shapes exhibit symmetries; our al-
gorithm takes advantage of this property to improve its re-

constructions. As a preprocess, we automatically detect
the bilateral symmetry plane (if there is one) of each tar-
get shape. If a target shape T has a bilateral symmetry,
then whenever the algorithm decodes and poses a part point
cloud Di, it also produces a symmetric copy of this part
Di+k by duplicating Di and reflecting it about the symme-
try plane. We disable collision checking between pairs of
symmetric parts in Phase I. At the beginning of Phase II,
if two symmetric parts are in contact, then the algorithm
merges them together into one part. The same merge step is
also applied before performing final part retrieval.

3.5. Choosing the Number of Parts

Due to the structural complexity of the input shapes, dif-
ferent numbers of parts k can lead to the best reconstruc-
tion for different shapes. Thus, our algorithm runs iterative
multi-phase part optimization for different numbers of parts
k ∈ K = [2, 4, 6, 8, 10]. Then for each target shape T, it
selects the k whose optimized parts Pk give the minimum
value of a penalty function dchamfer((Pk),T) + α|(Pk)|.
This penalty function is a linear combination of a recon-
struction error term and a complexity penalty term (which
prefers fewer parts, all else being equal). We set α = 1.5−4

in our experiments. Figure 5 shows examples of target
shapes reconstructed with different numbers of parts.

3.6. Amortized Inference

If our system receives a set of target shapes T as input,
then the optimized part decompositions for these shapes can
facilitate amortized inference on new target shapes. Given
a never-before-seen target shape T, the system first finds
its nearest neighbor in T , runs another round of optimiza-
tion Phase I with T’s variables initialized to those of the
retrieved nearest neighbor, and finally retrieves parts for T
from the part library. This short optimization is consider-
ably faster than optimizing for T from scratch.
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Figure 5. Choosing the number of parts k. The value of k which
achieves the best balance between reconstruction quality and com-
plexity is chosen. Note: some reconstructions of k may contain
fewer than k parts because symmetric pairs of parts are merged.

4. Results & Evaluation

We evaluate our method by using it to reconstruct target
shapes from three categories from the PartNet dataset [15]:
Chair, Lamp and Faucet. For each category, we split the
shapes into source shapes (from which we construct part
libraries), training shapes, and testing shapes. For each
category, the sizes of the source set / part library / train-
ing set / test set are: Chair (601/1766/1000/120), Lamp
(601/1985/1000/120), Faucet (151/780/250/100). For all
three categories, 100 randomly selected shapes from the
training set are used when evaluating training set perfor-
mance. The part libraries are built using the ground-truth
part segmentations from PartNet. On a machine with an In-
tel(R) i9-9900K CPU and a NVIDIA RTX 2080 Ti GPU,
our algorithm takes 12 to 20 seconds on average to opti-
mize for one shape from scratch and takes 5 to 8 seconds on
average for amortized inference.

Comparison to baselines: In this section, we compare
our method against several baselines in terms of how well
their part decompositions reconstruct the target shape. We
evaluate the reconstruction quality using two metrics: Sur-
face Chamfer Distance (SCD) and Volume Chamfer Dis-
tance (VCD), i.e. chamfer distance evaluated between sur-
face point cloud and volume point cloud shape representa-
tions, respectively. We compare against the following base-
lines:
• Joint Learning of 3D Shape Retrieval and Deforma-

tion (JRD) [24] learns to reconstruct shapes by retrieving
and deforming 3D shapes from a database. It requires
complete 3D shapes, whereas ours requires only parts.
Since our method does not deform parts, we compare
against a version of JRD with deformation disabled.

• Neural Parts (NP) [17] learns to reconstruct shapes by
deforming a set of sphere meshes. In their paper, the au-
thors focus on reconstruction from images; we swap out
their image encoder with the 3D voxel encoder in their

Figure 6. Comparing our method with Brute Force (BF) and Neu-
ral Parts (NP) with different final decomposition output formats.
NP’s direct reconstruction mesh visualized as sampled point cloud.

code for fair comparison to our method, which receives
3D data as input. Also motivated by fair comparison to
our method, we primarily evaluate NP by using its pre-
dicted meshes to retrieve parts from our part library (us-
ing the same logic from Section 3.3).

• Brute Force (BF) is a naive baseline which randomly
samples k parts from the part library and optimizes their
poses to best reconstruct the target shape. For fair com-
parison, we let this process run iteratively for as long as
our method took to run, and then take the best result.

Table 1 shows the results of comparing our method to
JRD and NP. Our method outperforms both across all met-
rics. JRD can only retrieve whole shapes, which may not
structurally match the target shape. The gap between our
method and NP is largest on more geometrically-complex
categories such as Faucet and Lamp, where knowledge of
the irregular potential part geometries via the part latent
space helps our method. Figure 7 show qualitative results
for NP and Ours. See the supplemental material for JRD
results and other comparison experiments.

We also conducted an experiment evaluating the im-
pact of part output representations on reconstruction qual-
ity, comparing our method to NP and BF. The representa-
tions are: using the predicted geometry from the method
directly (Direct Recon); retrieving parts which best match
the predicted geometry (Direct Retrieval); retrieving parts
which best match the segmentation of the target shape in-
duced by the predicted geometry (Segment Retrieval). For
Ours, the predicted geometry is the part point clouds out-
put by the pre-trained decoder; for NP, it is the part meshes
output by their network; for BF, it is a point sampling of
the randomly-retrieved parts. Table 2 shows quantitative re-
sults, and Figure 6 shows qualitative results. For BF, Direct
Recon and Direct Retrieval are quite bad, as BF is unlikely
to find a good part decomposition by random sampling; it
performs better for Segment Retrieval, as the segments can
happen to correspond to an actual part in the part library.
NP and Ours give reliable results across all output formats,
with ours consistently outperforming NP.

Cross-category reconstruction: Since our method does
not require assembled shapes as training data, it reconstruct
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Category Method Train (SCD) ↓ Train (VCD) ↓ Test (SCD) ↓ Test (VCD) ↓

Lamp NP 0.349 0.204 0.390 0.195
Ours 0.307 0.163 0.303 0.163

Faucet NP 0.326 0.171 0.370 0.174
Ours 0.256 0.135 0.288 0.134

Chair JRD 0.746 0.448 0.669 0.397
NP 0.495 0.233 0.547 0.240

Ours 0.470 0.219 0.539 0.234

Average JRD 0.746 0.448 0.669 0.397
NP 0.390 0.203 0.436 0.203

Ours 0.344 0.172 0.377 0.177

Table 1. Comparing our method to two baselines, JRD and NP, on
reconstructing shapes from three PartNet categories. CD values
are multiplied by 100. JRD is evaluated only on Chair because it
does not provide data for the other categories.

Method Direct Recon↓ Direct Retrieval↓ Segment Retrieval↓

BF (VCD) 0.680 0.750 0.182
NP (VCD) 0.128 0.207 0.153

Ours (VCD) 0.114 0.142 0.124

Table 2. Comparing our method with Brute Force (BF) and Neural
Parts (NP) with different output formats. Values multiplied by 100.

Targets

NP

Ours

Targets

NP

Ours

Figure 7. Neural Parts (NP) vs. Ours on reconstructing Lamps,
Chairs and Faucets

shapes out of different sets of parts than those from which
they were originally built. Figure 8 shows examples of re-
constructing chairs out of lamp and faucet parts, respec-
tively. See the supplemental material more for results.

Ablation study: Table 3 shows the results of ablating dif-
ferent optimization phases for the Faucet category. Using
all phases gives the best performance; Phase II matters more
than Phase III. See the supplement for additional ablations.

Targets

Ours

Targets

Ours

Figure 8. Cross Category Reconstruction: reconstructing Chairs
from Lamp parts (top) or Faucet parts (bottom)

Method SCD↓ VCD↓

Phase I 0.337 0.175
Phase I + Phase III 0.328 0.171
Phase I + Phase II 0.282 0.144
Phase I + Phase II + Phase III 0.255 0.134

Table 3. Ablation for phase components in our system. CD values
are multiplied by 100.

5. Conclusion
We presented an unsupervised algorithm which retrieves

and places 3D parts from a given part library to reconstruct
3D target shapes. Our approach uses a continuous relax-
ation of this combinatorial problem via a pre-trained part
latent space, plus a multi-phase direct optimization scheme
to fit part shape and poses while avoiding many of the worst
local optimas. Experimental evaluation shows that our ap-
proach outperforms strong baselines for retrieval-based re-
construction and unsupervised part decomposition. Poten-
tial directions for improvement include introducing phys-
ical priors into the optimization to make reconstructions
more physically plausible and supporting incomplete point
clouds as input.
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