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Abstract

Video dehazing aims to recover haze-free frames with
high visibility and contrast. This paper presents a novel
framework to effectively explore the physical haze priors
and aggregate temporal information. Specifically, we de-
sign a memory-based physical prior guidance module to
encode the prior-related features into long-range memory.
Besides, we formulate a multi-range scene radiance recov-
ery module to capture space-time dependencies in multiple
space-time ranges, which helps to effectively aggregate tem-
poral information from adjacent frames. Moreover, we con-
struct the first large-scale outdoor video dehazing bench-
mark dataset, which contains videos in various real-world
scenarios. Experimental results on both synthetic and real
conditions show the superiority of our proposed method.

1. Introduction
Haze largely degrades the visibility and contrast of the

outdoor scenes, which adversely affects the performance of
downstream vision tasks, such as the detection and segmen-
tation in autonomous driving and surveillance. According
to the atmospheric scattering model [18, 38], the formation
of a hazy image is described as:

I(x) = J(x)t(x) +A(1− t(x)) , (1)

where I, J,A, t denote the observed hazy image, scene radi-
ance, atmospheric light, and transmission, respectively, and
x is the pixel index. The transmission t = e−βd(x) describes
the scene radiance attenuation caused by the light scattering,
where β is the scattering coefficient of the atmosphere, and
d denotes the scene depth.

Video dehazing benefits from temporal clues, such as
highly correlated haze thickness and lighting conditions, as
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(a) Hazy frame (b) VDH [46]

(c) CG-IDN [59] (d) Our method

Figure 1. Visual comparison on a real-world hazy video. Our
method trained on our outdoor dehazing dataset clearly removes
haze without color distortion.

well as the moving foreground objects and backgrounds.
Early deep learning-based video dehazing methods lever-
age temporal information by simply concatenating input
frames or feature maps [27, 46]. Recently, GC-IDN [59]
proposes to use cost volume and confidence to align and ag-
gregate temporal information. However, existing video de-
hazing methods suffer from several limitations. First, these
approaches either obtain haze-free frames from the phys-
ical model-based component estimation [27, 46] or ignore
the explicit physical prior embedded in the haze imaging
model [59]. The former suffers from inaccurate interme-
diate prediction, thus leading to error accumulation in the
final results, while the latter overlooks the physical prior in-
formation, which plays an important role in haze estimation
and scene recovery. Second, these methods aggregate tem-
poral information by using input/feature stacking or frame-
to-frame alignment in a local sliding window, which is hard
to obtain global and long-range temporal information.

In this work, we present a novel video dehazing frame-
work via a Multi-range temporal Alignment network with
Physical prior (MAP-Net) to address the aforementioned is-
sues. First, we design a memory-based physical prior guid-
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ance module, which aims to inject the physical prior to help
the scene radiance recovery. Specifically, we perform fea-
ture disentanglement according to the physical model with
two decoders, where one estimates the transmission and
atmospheric light, and the other recovers scene radiance.
The feature extracted from the first decoder is leveraged as
the physical haze prior, which is integrated into the second
decoder for scene radiance recovery. To infer the global
physical prior in a long-range video, we design a physical
prior token memory that effectively encodes prior-related
features into compact tokens for efficient memory reading.

Second, we introduce a multi-range scene radiance re-
covery module to capture space-time dependencies in mul-
tiple space-time ranges. This module first splits the adjacent
frames into multiple ranges, then aligns and aggregates the
corresponding recurrent range features, and finally recov-
ers the scene radiance. Unlike CG-IDN [59], which aligns
the adjacent features frame-by-frame, we align the features
of adjacent frames into multiple sets with different ranges,
which helps to explore the temporal haze clues in various
time intervals. We further design a space-time deformable
attention to warp the features of multiple ranges to the target
frame, followed by a guided multi-range complementary in-
formation aggregation. Also, we use an unsupervised flow
loss to encourage the network to focus on the aligned areas
and train the whole network in an end-to-end manner.

In addition, the existing learning-based video dehaz-
ing methods are mainly trained and evaluated on indoor
datasets [27, 46, 59], which suffer from performance degra-
dation in real-world outdoor scenarios. Thus, we construct
an outdoor video dehazing benchmark dataset, HazeWorld,
which has three main properties. First, it is a large-scale
synthetic dataset with 3,588 training videos and 1,496 test-
ing videos. Second, we collect videos from diverse out-
door scenarios, e.g., autonomous driving and life scenes.
Third, the dataset has various downstream tasks for eval-
uation, such as segmentation and detection. Various ex-
periments on both synthetic and real datasets demonstrate
the effectiveness of our approach, which clearly outper-
forms the existing image and video dehazing methods; see
Fig. 1. The code and dataset are publicly available at
https://github.com/jiaqixuac/MAP-Net.

Our main contributions are summarized as follows:

• We present a novel framework, MAP-Net, for video
dehazing. A memory-based physical prior guidance
module is designed to enhance the scene radiance re-
covery, which encodes haze-prior-related features into
long-range memory.

• We introduce a recurrent multi-range scene radiance
recovery module with the space-time deformable at-
tention and the guided multi-range aggregation, which
effectively captures long-range temporal haze and
scene clues from the adjacent frames.

• We construct a large-scale outdoor video dehazing
dataset with diverse real-world scenarios and labels for
downstream task evaluation.

• Extensive experiments on both synthetic and real con-
ditions demonstrate our superior performance against
the recent state-of-the-art methods.

2. Related Work
Image dehazing. Single-image dehazing has been widely
studied in computer vision and computer graphics. Early
methods rely on the atmospheric scattering model and phys-
ical priors [2, 18]. Later, deep learning-based methods
show superior performance by leveraging large numbers of
clear/hazy images [1, 28]. These methods either predict the
components of the haze physical model [4, 26, 45, 58] or
directly restore the haze-free images in an image-to-image
translation manner [29, 43] using convolutional neural net-
works (CNNs). Recent works propose more advanced net-
work and module designs to improve the dehazing perfor-
mance [9,12,13,17,33,35,42,49]. However, applying image
dehazing methods to videos leads to discontinuous results
since the temporal information is simply ignored.

Video dehazing. Video dehazing methods leverage tem-
poral information from the adjacent frames to enhance the
restoration quality. Early methods mainly focus on post-
processing to generate temporally consistent results by re-
fining transmission maps and suppressing artifacts [8, 22]
or joint estimating depths from videos [30]. Li et al. [27]
present a CNN to optimize dehazing and detection in videos
end-to-end. Ren et al. [46] use semantic information to reg-
ularize the estimated transmission and to improve the video
dehazing performance. More recently, Zhang et al. [59]
collect a real indoor video dehazing dataset (REVIDE) and
present a confidence-guided and improved deformable net-
work. Liu et al. [34] design a phase-based memory network
for video dehazing. Additionally, a neural compression-
based method [19] for video restoration shows better per-
formance on REVIDE. However, these methods are mainly
trained and evaluated in indoor scenes, and their perfor-
mance in complex outdoor scenarios is limited.

Video alignment. Alignment aims at obtaining spatial
transformation and pixel-wise correspondence from the
misaligned frames. Video restoration methods rely on ex-
plicit optical flow estimation [44] to align the adjacent im-
ages/features [6, 19, 57]. Other methods [51, 53] leverage
deformable convolutions [11] to learn the offsets for feature
alignment. These methods usually perform the frame-to-
frame alignment. More recently, attention [14,52,56] with a
large receptive field has been used together with the optical
flow for feature alignment [5, 31, 32]. Besides, STTN [23]
also considers multiple frames but only transforms the input
images at one space-time range.
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(a) Cityscapes (b) DDAD (c) UA-DETRAC (d) VisDrone (e) DAVIS (f) REDS
Figure 2. Example ground-truth images (the first row), synthetic hazy images (the second row), and transmission maps (the last row) in
our HazeWorld dataset.
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Figure 3. Dataset analysis of our HazeWorld, which contains di-
verse scenarios and supports various downstream evaluations.

3. HazeWorld Dataset
Since the current video dehazing datasets are mostly col-

lected in indoor scenes, we construct a large-scale synthetic
outdoor video dehazing dataset named HazeWorld, with ex-
ample frames shown in Fig. 2.

Data collection. The original videos of HazeWorld
are from six existing datasets, i.e., Cityscapes [10],
DDAD [16], UA-DETRAC [54], VisDrone [62],
DAVIS [41], and REDS [39], resulting in 1,271 haze-free
videos. We use the atmospheric scattering model Eq. (1)
to synthesize hazy videos. The robust video depth
estimation method [24] is used to obtain temporally
consistent depth maps. We follow [3, 47] and choose
β ∈ {0.005, 0.01, 0.02, 0.03} to generate transmission t,
and randomly select A ∈ [0.75, 1.0] for each video. We
split 1,271 haze-free videos into training (897 videos) and
testing (374 videos) sets. Overall, we obtain 3,588 and
1,496 hazy synthetic videos with four β of around 240,000
and 86,000 frames in training and testing sets, respectively.

Dataset analysis. As shown in Fig. 3, our dataset contains
diverse real-world scenarios, which enables us to assess de-
hazing performance on various outdoor applications, such
as autonomous driving [10, 16], video surveillance [54, 62],
and photo editing [39]. Further, the original datasets contain
the labels of multiple video and image downstream scene
understanding tasks, e.g., video panoptic segmentation [21],
object segmentation [41], depth estimation [16], and image

semantic segmentation [10]. Thus we can evaluate the ef-
fectiveness of dehazing on high-level vision tasks.

4. Methodology

4.1. Overall Framework

Fig. 4 illustrates the overall framework of the proposed
MAP-Net, which is a U-Net-like structure that mainly con-
sists of an encoder, a prior decoder, and a scene decoder. A
common image backbone, e.g., ConvNeXt [37], is used as
the feature encoder, which extracts the multi-scale feature
maps. At each scale, features are processed interactively in
the prior decoder layer and scene decoder layers. The initial
prior feature P̃ and initial scene feature J̃ are first fed into
a Memory-based Physical prior Guidance (MPG) module
(see Sec. 4.2), which aims to obtain the memory-enhanced
prior feature P and the prior-guided scene feature J . Then,
P and J are fed into a Multi-range Scene radiance Recov-
ery (MSR) module (see Sec. 4.3) , which is to obtain the
feature for the haze-free scene by aligning and aggregating
recurrent temporal features from the adjacent frames. The
prior decoder and scene decoder jointly perform feature dis-
entanglement according to the physical model.

Specifically, the prior decoder learns the prior-related
feature by predicting the transmission and atmospheric
light, and the scene decoder generates the scene radi-
ance. The intermediate components are obtained using sep-
arate prediction heads and reconstructing the hazy input
via Eq. (1), which are supervised by a physical model dis-
entanglement loss. Moreover, pixel shuffle layers [48] are
used to upsample the features in two decoders and the out-
put from the last scene decoder layer. Lastly, residual pre-
diction is used to produce the final dehazed result.

4.2. Memory-Based Physical Prior Guidance

We design a Memory-based Physical prior Guidance
(MPG) module to enhance the scene recovery by encod-
ing haze prior-related features into the long-range memory.
Fig. 5 shows the architecture of MPG with three parts.
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Figure 4. The overall framework of our MAP-Net for video dehazing. MAP-Net is a U-Net-like structure that mainly contains an encoder,
a prior decoder, and a scene decoder. Features are processed interactively in the prior decoder and scene decoder, which jointly perform
feature disentanglement. The former produces the prior guidance with a memory, and the latter recovers the scene recurrently.

Physical prior compression. The initial prior feature P̃ ∈
RH×W×C is implicitly learned using several convolution
layers on the upsampled features to predict the transmis-
sion map and atmospheric light. H , W , and C denote the
feature height, width, and channel size. Since we aim to
save the physical priors at different times in the memory, we
need to compress the size of each prior to reduce memory
space. To achieve this, we first perform a discretization op-
eration on the prior feature by using categorical classifica-
tion [15, 20] and then normalize the results via the Softmax
function. Specifically, from the initial prior, we generate
the transmission distribution map D ∈ RH×W×D, where
D is the number of transmission categories. After that, we
perform matrix multiplication between the initial prior P̃
and the transmission distribution map D to obtain the value
p ∈ RD×C , which is the compressed prior token.

Memory-enhanced prior. After obtaining the compressed
prior token p, we formulate a prior token memory by saving
multiple prior tokens at different time slots. Then, we obtain
the feature vectors K and V with the dimension of RND×C ,
where N denotes the number of prior tokens. Hence, we
are able to record the historical haze information in video
sequences. To perform the interaction between the cur-
rent haze information and the history information encoded
in prior token memory, we adopt the attention operation to
read the memory information:

Attention(Q,K, V ) = softmax(
QKT

√
c
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Figure 5. The illustration of the Memory-based physical Prior
Guidance (MPG) module, which has (a) physical prior compres-
sion, (b) memory-enhanced prior, and (c) prior feature guidance.

where the query Q is obtained by flatting the initial prior
P̃ , and c is the normalization factor, which is the dimension
of Q and K. By doing so, we obtain the final memory-
enhanced prior P = Attention(Q,K, V ).

Prior feature guidance. The prior-guided scene feature J
is obtained using several convolution layers, which take the
concatenation of the memory-enhanced prior feature P and
the initial scene feature J̃ as input. Hence, the prior is inte-
grated for scene recovery.

4.3. Multi-Range Scene Radiance Recovery

The Multi-range Scene radiance Recovery module
(MSR) aims to capture space-time dependencies in multi-
ple space-time ranges. Fig. 6 shows the detailed struc-
ture of our MSR, which aligns the features of adjacent
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Figure 6. The illustration of our Multi-range Scene radiance Recovery (MSR) module. (a) MSR aligns the features of neighboring frames
into multiple sets with different ranges. (b) The space-time deformable attention (STDA) block aligns the features of different ranges to
the target frame. (c) The guided multi-range aggregation (GMRA) block aggregates the aligned features from multiple sets.

frames J[i−1,i−2,i−3,...] into multiple sets with different
ranges, i.e., J{[i−1],[i−1,i−2],[i−1,i−2,i−3],...}, to explore the
temporal haze clues in various time intervals. As shown
in Fig. 6 (a), the concatenated features with different ranges
are sent to the shared space-time deformable attention block
(STDA), which warps the features to the target frame. After
that, we formulate a guided multi-range aggregation block
(GMRA) to aggregate the aligned features from multiple
sets with the guidance of prior features.

4.3.1 Space-Time Deformable Attention

As shown in Fig. 6 (b), the space-time deformable atten-
tion (STDA) block aligns the concatenated features of the
adjacent frames J n

r = J[i−1,...,i−r] ∈ Rr×H×W×C for
each range r ∈ {1, ..., R} towards the target frame fea-
ture J . The output of the STDA block is the range fea-
ture Jr ∈ RH×W×C . Here, we further learn a space-time
flow, which is used to capture the correspondence from the
previous frames to the current frame. The input space-time
flow of the current STDA block is Õr→i, which is gradually
refined in this block to produce the output space-time flow
Or→i, following SPy-Net [44].

Specifically, given the concatenated features J n
r and a

normalized initial space-time flow Õr→i ∈ [−1, 1]H×W×3,
we first compute the initial aligned feature map J̃ a

r ∈
RH×W×C as follows:

J̃ a
r = S(J n

r , Õr→i) , (3)

where S denotes the differentiable space-time sampling op-
eration [23]. Note that the third dimension of Õr→i ∈
[−1, 1]H×W×3 is three, which means the space-time flow
capture locations on both spatial domain and time slot.
Then, we obtain the refined space-time flow Or→i by com-
puting the flow offset residual:

Or→i = Fo([J , J̃ a
r , Õr→i]) + Õr→i , (4)

where Fo is a lightweight offset network composed of con-
volution layers. Finally, we obtain the aligned feature J a

r

using Eq. (3) with Or→i as input instead.
Cross-attention [52] is used to extract the temporal infor-

mation from the aligned feature. The feature J is used as
the query Q = JUq for the target frame, and the aligned
feature J a

r is used as the key and value [K,V ] = J a
r Ukv ,

where Uq ∈ RC×C , Ukv ∈ RC×2C are learnable projection
matrices. Finally, the range feature Jr is computed as:

Jr = W-MSA(Q,K, V ) , (5)

where the window multi-head self attention (W-MSA) [36]
is leveraged for efficient computation; see Fig. 6 (b). Note
that we further adopt the feed-forward network (FFN) to
process Jr after the W-MSA, following [36].

4.3.2 Guided Multi-Range Aggregation

The aligned features of different ranges contain their
specific space-time haze clues, and GMRA aggregates
multi-range features under the guidance of prior features.
Fig. 6 (c) shows the detailed structure, where we com-
pute the aggregation weights from two perspectives, i.e.,
scene radiance and physical prior. First, the concatenated
range features {Jr}Rr=1 are considered as the key and value,
which are multiplied by the target frame query feature J .
For each location, attention weights are computed along the
range (r) dimension. Then, the prior guidance is leveraged
by computing its derived attention weights in the same way.
In specific, we consider the prior feature P as query and ob-
tain the aligned prior features {Pr}Rr=1 as the attention key
using Eq. (3) by taking the prior features Pn

r = P[i−1,...,i−r]

and the refined space-time flow Or→i as the inputs. The fi-
nal attention weight is the summation of the weights gen-
erated from the scene and prior aspects, followed by a
Softmax normalization function for normalization. Finally,
multi-range values are aggregated by performing the final
attention weight on the range features, which is further
summed along the r (range) dimension; see Fig. 6 (c).
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Table 1. Quantitative comparison with state-of-the-art methods on our HazeWorld dataset. Bold and underline indicate the best and
the second-best performance, respectively.

Method DCP [18] AOD [26] GDN [33] DM2F [12] FFA [42] MSBDN [13] UHD [61] AECR [55] Dehamer [17]
PSNR ↑ 16.49 15.46 22.80 24.54 22.11 23.70 19.43 22.04 22.92
SSIM ↑ 0.8126 0.7997 0.9217 0.9130 0.9007 0.8858 0.7807 0.9067 0.9044
Method DehazeFormer [49] EVD [27] VDH [46] CG-IDN [59] FastDVD [50] EDVR [53] NCFL [19] BasicVSR++ [7] Our method
PSNR ↑ 25.44 15.91 17.97 25.25 21.25 22.91 24.33 26.06 27.12
SSIM ↑ 0.9286 0.7968 0.7780 0.9155 0.8678 0.9036 0.9253 0.9207 0.9349

Table 2. Quantitative comparison on the REVIDE dataset [59]. Other baseline results are provided by NCFL [19] paper.

Method DCP [18] GDN [33] MSBDN [13] FFA [42] VDH [46] EDVR [53] CG-IDN [59] NCFL [19] BasicVSR++ [7] Our method
PSNR ↑ 11.03 19.69 22.01 16.65 16.64 21.22 23.21 23.63 21.68 24.16
SSIM ↑ 0.7285 0.8545 0.8759 0.8133 0.8133 0.8707 0.8836 0.8925 0.8726 0.9043

4.4. Loss Functions

The overall loss L is the summation of an output loss
Lout, a physical model disentanglement loss Lphy , and a
flow loss Lflow:

L = Lout + λphyLphy + λflowLflow, (6)

where λrec, λflow are the weighting hyper-parameters.
The output loss Lout = L1(Ĵ , J) supervises the final de-

hazed results Ĵ with the ground truth J . The physical model
disentanglement loss Lphy =

∑3
s=0 2

s−3L1(Îs, Is) +

L1(Ĵs, Js) is to make the prior decoder and scene de-
coder learn the physical model-based components at each
scale s in the U-Net, by predicting t̂s, Âs, and Ĵs, and re-
constructing input Îs using Eq. (1). Moreover, to make
the STDA attend to informative regions, we use an un-
supervised flow loss to regularize the learned space-time
flow in Sec. 4.3.1. Specifically, the flow loss Lflow =∑3

s=0

∑R
r=1 2

s−3L1(Ĵ
a
sr, Js) computes the difference be-

tween the warped image Ĵa
sr and the reference ground truth

frame Js with the scale s for each range r. The warped im-
age is obtained by Eq. (3) with the adjacent ground truth
frames and the learned space-time flow as the inputs.

5. Experimental Results
5.1. Settings

Datasets. We evaluate the effectiveness of the proposed
MAP-Net on our dataset, i.e., HazeWorld, and the widely-
used REVIDE dataset [59]. HazeWorld contains 3,588
training videos and 1,496 testing videos. Meanwhile, REV-
IDE consists of 42 training videos and 6 testing videos.

Evaluation metrics. We utilize PSNR and SSIM to quanti-
tatively evaluate the dehazing performance.

Comparison methods. On HazeWorld, we compare
our method against state-of-the-art methods, including
ten image dehazing methods (i.e., DCP [18], AOD [26],
GDN [33], DM2F [12], FFA [42], MSBDN [13], UHD [61],
AECR [55], Dehamer [17], and DehazeFormer [49]), and

three video dehazing methods (i.e., EVD [27], VDH [46],
and CG-IDN [25]). We also compare several video
restoration methods, including FastDVD [50], EDVR [53],
NCFL [19], and BasicVSR++ [7]. On REVIDE, we com-
pare MAP-Net with state-of-the-art methods of [59].

Implementation details. We use the AdamW optimizer
and the polynomial scheduler. The initial learning rate is
set as 2×10−4. The total number of iterations is 40K. The
batch size is eight, and the patch size of input video frames
is 256×256. The weights λphy and λflow in Eq. (6) are
empirically set as 0.2 and 0.04.

5.2. Comparisons with State-of-the-Art Methods

Quantitative comparison. Table 1 summarizes the quan-
titative results of our network and compared methods on
HazeWorld. From these quantitative results, we can find
that our method outperforms other baselines by a signifi-
cant margin. Specifically, among all compared methods,
BasicVSR++ [7] and DehazeFormer [49] achieve the best
PSNR score of 26.06 and the best SSIM score of 0.9286,
respectively. More importantly, our MAP-Net has a PSNR
improvement of 1.06 dB over BasicVSR++, while our
method has an SSIM gain of 0.0063 over DehazeFormer.

Table 2 shows the PSNR and SSIM of our network and
state-of-the-art methods on REVIDE. Among all compared
methods, NCFL [19] has the best PSNR (23.63 dB) and
the best SSIM (0.8925). And our method further improves
the PSNR from 23.63 dB to 24.16 dB and the SSIM from
0.8925 to 0.9043.

Qualitative comparison. Fig. 7 and Fig. 8 visually com-
pare dehazed results produced by our network and state-of-
the-art methods on video frames from HazeWorld and REV-
IDE. Apparently, compared methods often tend to introduce
color distortion, darken several areas, or preserve some haze
in their dehazed results, while our MAP-Net can effectively
remove haze, avoid color distortion, and better recover the
underlying clear frames. And the predicted haze-free results
produced by our method are closest to ground truths shown
in the last column of Fig. 7 and Fig. 8.
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Hazy MSBDN [13] Dehamer [17] VDH [46] EDVR [53] BasicVSR++ [7] Our method GT

Figure 7. Visual results on our HazeWorld. Our method clearly removes haze and keeps more details. “GT” denotes the ground truth.
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Figure 8. Visual results on REVIDE [59]. Our method produces dehazed results with less haze artifact and color distortion.

Table 3. Comparison of downstream effectiveness. VPQ, mIoU,
RMSE, and J&F are metrics for panoptic segmentation, semantic
segmentation, depth estimation, and object segmentation.

Method Hazy MSBDN [13] Dehamer [17] EDVR [53] BasicVSR++ [7] Ours GT
Cityscapes-VPQ ↑ 21.7 40.2 43.4 47.2 45.9 48.5 56.5
Cityscapes-mIoU ↑ 51.8 47.0 54.1 64.8 63.6 66.2 75.4
DDAD-RMSE ↓ 21.21 14.99 15.01 15.26 14.89 14.71 14.36
DAVIS-J&F ↑ 76.3 79.2 79.4 79.3 79.4 80.0 81.3

Moreover, we also compare our network against state-of-
the-art methods on real-world hazy videos, and the results
are shown in Fig. 9. From these visual results, we can find
that existing methods tend to darken many areas, or main-
tain some haze. Compared to these methods, our network
has a higher visual quality and less color distortion; see the
last column of Fig. 9.

Applications. Our video dehazing method benefits sev-
eral downstream applications, including video panoptic seg-
mentation [21], object segmentation [41], depth estima-
tion [16], and image semantic segmentation [10]. To verify
this, we choose four different methods [16, 21, 40, 60] for
corresponding downstream application validation, and ob-
tain results on the input hazy videos, the dehazed videos,
and the underlying haze-free videos. Table 3 reports the
quantitative results. Apparently, the dehazed videos pro-
duced by different methods improve the downstream appli-
cation performance compared to the original hazy videos.
Notably, our method can better facilitate downstream appli-
cations than other representative dehazing methods.

5.3. Ablation Studies

We conduct a series of ablation studies on our Haze-
World dataset to analyze the effectiveness of major com-
ponents of our network.

Table 4. Ablation studies of our MPG and MSR modules.

(a) (b) (c) Our method
Basic ✓ ✓ ✓ ✓
MPG ✓ ✓
MSR ✓ ✓
PSNR 25.37 26.24 26.38 27.12
SSIM 0.9087 0.9171 0.9292 0.9349

Ablation studies of two major modules. We start by con-
structing a basic model (denoted as “Basic”), which has the
only scene decoder, and STDA only considers one previous
frame for temporal alignment. Then, we gradually add two
proposed modules, i.e., MPG and MSR. Table 4 compares
their results. Compared to “Basic”, the MPG module and
the MSR module have a PSNR improvement of 0.87 dB
and 1.01 dB, respectively, due to the physical model-based
priors at the MPG module, and multiple temporal haze clues
at the MSR module. Moreover, combining both MPG and
MSR modules together into our method can further improve
our video dehazing performance.

Effectiveness of guidance information in our MSR mod-
ule. As shown in Fig. 4, our MPG module learns prior
guidance features, i.e., J and P , to guide the STDA block
to align video frames and the GMRA block to aggregate fea-
tures in our MSR module for video dehazing. Therefore, we
conduct an ablation study to evaluate the effectiveness of the
guidance information for the STDA block and the GMRA
block, respectively. We achieve this by building three base-
line networks: (1) we remove guidance information from
both the STDA block and the GMRA block; (2) we only
use the guidance at the STDA block; (3) we only utilize
the guidance at the GMRA block. Note that we keep both
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Hazy DCP [18] MSBDN [13] Dehamer [17] VDH [46] EDVR [53] BasicVSR++ [7] Our method

Figure 9. Visual results on the real outdoor hazy videos. Our method generates frames with more natural color and less haze remaining.

Table 5. Effectiveness of the guidance at the STDA and GMRA
blocks of the MSR module.

STDA ✓ ✓
GMRA ✓ ✓
PSNR 26.38 26.92 26.61 27.12

Table 6. Ablation studies of the number of ranges in MSR.
(a) Discussion on the number of ranges.

#Range 1 2 3 (Ours) 4
PSNR 26.24 26.71 27.12 26.84

(b) Discussion on the temporal alignment.

Manner 1set 3sets-1range Our method
PSNR 26.39 26.64 27.12

the STDA block and the GMRA block in our MSR mod-
ule but only remove the guidance parts during the ablation.
As shown in Table 5, our video dehazing performance is
reduced if we remove the prior guidance information from
either the STDA block or the GMRA block.

Discussion on different ranges of our MSR module. We
perform two ablation study experiments on our MSR mod-
ule: one is to discuss the number of space-time ranges used
in our MSR module, while another experiment is to discuss
how to leverage multiple adjacent frames when the num-
ber of ranges is fixed. Table 6a reports PSNR scores of our
video dehazing with different numbers of ranges. We can
observe that our PSNR is progressively improved when we
increase the number of ranges from one to three. The reason
is that a larger range value involves more temporal informa-
tion for aligning video frames. However, when we further
increase the range value from three to four, our video dehaz-
ing performance is reduced since the weights are shared for
the STDA blocks, where a single STDA needs to tackle dif-
ferent ranges of temporal alignment. Hence, a larger range
may introduce difficulty in the flow estimation, and thus we
empirically set the number of frames/ranges as three.

Moreover, we further discuss how to use the adjacent
video frames for temporal alignment when the number of
frames is fixed as three. Here, we construct two baselines:

(1) the 1st baseline (denoted as “1set”) is to change the
three-set alignment in our method to only one set, which
takes all three neighboring video frames. (2) the 2nd base-
line (denoted as “3sets-1range”) is constructed by only us-
ing one adjacent frame in each set, i.e., frame-by-frame
alignment (three sets in total). As shown in Table 6b, our
method has a better PSNR value than “1set” and “3sets-
1range”, which indicates that considering three frames at
multiple ranges incurs a better video dehazing performance.

6. Conclusion
This work designs a video dehazing framework via

a multi-range temporal alignment network with physical
prior. Two new techniques, a memory-based physical prior
guidance module and a multi-range scene radiance recov-
ery module, are formulated to effectively explore the phys-
ical haze priors and aggregate temporal information. We
construct the first large-scale benchmark dataset for outdoor
video dehazing, which enables us to evaluate the dehazing
performance on various application scenarios and down-
stream tasks. In the end, the experimental results on both
synthetic and real conditions demonstrate the superior of
our framework against the recent state-of-the-art methods.

Limitations. Our method might not work well for videos
with extremely heavy haze, and more prior knowledge is
required. Also, though our method achieves superior per-
formance and faster speed than many dehazing methods, it
still cannot meet the real-time requirement.
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