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Abstract

The asymmetric dual-lens configuration is commonly
available on mobile devices nowadays, which naturally
stores a pair of wide-angle and telephoto images of the
same scene to support realistic super-resolution (SR). Even
on the same device, however, the degradation for model-
ing realistic SR is image-specific due to the unknown ac-
quisition process (e.g., tiny camera motion). In this paper,
we propose a zero-shot solution for dual-lens SR (ZeDuSR),
where only the dual-lens pair at test time is used to learn an
image-specific SR model. As such, ZeDuSR adapts itself to
the current scene without using external training data, and
thus gets rid of generalization difficulty. However, there are
two major challenges to achieving this goal: 1) dual-lens
alignment while keeping the realistic degradation, and 2)
effective usage of highly limited training data. To overcome
these two challenges, we propose a degradation-invariant
alignment method and a degradation-aware training strat-
egy to fully exploit the information within a single dual-lens
pair. Extensive experiments validate the superiority of Ze-
DuSR over existing solutions on both synthesized and real-
world dual-lens datasets. The implementation code is avail-
able at https://github.com/XrKang/ZeDuSR.

1. Introduction
Mobile devices such as smartphones are generally

equipped with an asymmetric camera system consisting of

multiple lenses with different focal lengths. As a common

configuration, with a wide-angle lens and a telephoto lens,

one can capture the same scene with different field-of-views

(FoVs). Within the overlapped FoV, the wide-angle and

telephoto images naturally store low-resolution (LR) and

high-resolution (HR) counterparts for learning a realistic

super-resolution (SR) model. This provides a feasible way

to obtain an HR image with a large FoV at the same time,

which is beyond the capability of the original device.

There are a few pioneer works along this direction,

which are referred to as dual-lens/camera/zoomed SR inter-
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Figure 1. Degradation kernel (estimated by KernelGAN [1]) clus-

tering on wide-angle images from iPhone11 [43].

changeably. Beyond traditional methods that simply trans-

fer the telephoto content to the wide-angle view in the

overlapped FoV, recent deep-learning-based methods en-

able resolution enhancement of the full wide-angle image.

Specifically, Wang et al. [43] utilize the overlapped FoV of

dual-lens image pairs to learn a reference-based SR model,

where the wide-angle view is super-resolved by using the

telephoto view as a reference. However, the external train-

ing data are synthesized with the predefined bicubic degra-

dation, which leads to generalization difficulty when the

trained SR model is applied to real devices. To narrow the

domain gap between the training and inference stages, they

further adopt a self-supervised adaptation strategy to fine-

tune the pretrained model on real devices. On the other

hand, Zhang et al. [53] adopt self-supervised learning to

train an SR model directly on a dual-lens dataset to avoid

the predefined degradation, with the assumption of consis-

tent degradation on the same device.

In practice, however, the degradation kernel for model-

ing realistic SR is influenced by not only the camera optics

but also tiny camera motion during the acquisition process

on mobile devices [1, 6, 36], resulting in the image-specific

degradation for each dual-lens pair, even on the same de-

vice. Figure 1 gives an exemplar analysis, where we es-

timate the degradation kernels of 146 wide-angle images

captured by the dual-lens device iPhone11 [43] and cluster

them using t-SNE [41]. Although these images are captured

by the same device, they exhibit notably different degrada-

tion kernels due to the unknown acquisition process. This

limits the performances of previous dual-lens SR methods

for practical applications, since they assume that the realis-
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Figure 2. Overview of dual-lens SR methods and visual compari-

son of 2× SR on the real-world data.

tic degradation is at least device-consistent.

In this paper, we propose a zero-shot learning solution

for realistic SR on dual-lens devices, termed as ZeDuSR,

which learns an image-specific SR model solely from the

dual-lens pair at test time. As such, ZeDuSR adapts itself

to the current scene under the unknown acquisition process

and gets rid of the generalization difficulty when using ex-

ternal training data. Figure 2 summarizes the main differ-

ences of ZeDuSR from existing dual-lens SR methods with

a real-world reconstruction example. ZeDuSR gives a visu-

ally improved result compared with its competitors, thanks

to the image-specific degradation assumption.

There are two major challenges to achieving the success

of ZeDuSR. First, as also noticed in previous works [43,53],

it is non-trivial to exploit the information of the dual-lens

image pair, due to the spatial misalignment caused by the

physical offset between the two lenses. Moreover, we find

that the alignment process for generating the training data

will introduce additional frequency information, which in-

evitably changes the realistic degradation. To overcome

this challenge, we propose to constrain the alignment pro-

cess in spatial, frequency, and feature domains simulta-

neously to keep the degradation. Specifically, we pro-

pose a degradation-invariant alignment method by leverag-

ing adversarial and contrastive learning. The other chal-

lenge is how to effectively use the highly limited data for

learning an image-specific SR model. To this end, we

design a degradation-aware training strategy to fully ex-

ploit the information within a single dual-lens pair. That

is, we calculate the probability of each location for patch

cropping according to the degradation similarity between

the images before and after alignment. As such, samples

that keep the degradation are assigned a higher probabil-

ity to be selected during training, while the contribution of

degradation-variant samples is reduced.

We evaluate the performance of ZeDuSR on both syn-

thesized and real-world dual-lens datasets. For quantita-

tive evaluation with the HR ground-truth, we adopt a stereo

dataset (Middlebury2021 [35]) and a light field dataset

(HCI new [12], with two views selected) to simulate dual-

lens image pairs with different baselines between the two

lenses, by applying image-specific degradation on one of

the two views. Besides, we also perform the qualita-

tive evaluation on two real-world datasets, i.e., CameraFu-

sion [43] captured by iPhone11 and RealMCVSR [18] cap-

tured by iPhone12, where no additional degradation is in-

troduced beyond the realistic one between the two views.

Extensive experiments on both synthesized and real-world

datasets demonstrate the superiority of our ZeDuSR over

existing solutions including single-image SR, reference-

based SR, and dual-lens SR.

Contributions of this paper are summarized as follows:

• We propose a zero-shot learning solution for realis-

tic SR on dual-lens devices, which assumes image-specific

degradation and adapts itself to the current scene under the

unknown acquisition process.

• We propose a degradation-invariant alignment method

by leveraging adversarial and contrastive learning to con-

strain the alignment process in spatial, frequency, and fea-

ture domains simultaneously.

• We design a degradation-aware training strategy to ef-

fectively exploit the information within the highly limited

training data, i.e., a single dual-lens pair at test time.

• We conduct extensive experiments on both synthesized

and real-world dual-lens datasets to validate the superiority

of our zero-shot solution.

2. Related Work
2.1. Realistic Image SR

Based on the predefined degradation assumption, single

image SR has seen significant advances in terms of both re-

construction accuracy [3, 9, 21, 30, 32] and perceptual qual-

ity [11,23] in the deep learning era, thanks to a large amount

of simulated external training data. However, the differ-

ence between the predefined degradation and the realistic

one brings great obstacles to applying the deep SR models

trained with simulated data on real devices. Recently, much

research attention has been drawn to the task of realistic

SR [1,7] (also known as blind SR). That is, the degradation

kernel of the input LR image at test time is unknown.

Existing realistic SR methods characterize the realis-

tic degradation from different perspectives, which can be

roughly divided into four classes: (a) capture a large amount

of well-aligned LR-HR image pairs and implicitly learn an

SR model in a data-driven way [2, 4, 51], (b) estimate the

degradation kernel from the input LR image itself with the

self-similarity prior [1, 36, 38], (c) collect unpaired datasets

in LR-HR spaces and learn the degradation in a circular

fashion [48], and (d) simulate LR-HR image pairs using

a predefined kernel pool consisting of various degradation

kernels [10, 49]. Despite the corresponding merits, these

methods suffer from respective compromises: (a) large ef-

fort of data collection for diverse devices, (b) unstable ker-

nel estimation when the input image lacks self-similarity,
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(c) and (d) difficulty to handle outliers beyond training data

distribution. These drawbacks limit the performances of the

above SR methods when the scene content and degradation

kernel are unpredictable on real devices.

2.2. Dual-lens SR
Dual-lens SR aims to super-resolve wide-angle images

with the assistance of telephoto images on the asymmetric

camera system [5, 43], which generates HR and large FoV

results beyond the capability of the original device. Tradi-

tional methods either adopt brightness and color correction

under the assumption of geometric alignment between the

two lenses [24, 33] or regard this task as similar to image

registration [29] and simulate the HR result from the tele-

photo image through affine transformation. However, these

methods fail to super-resolve the full wide-angle image and

suffer from limited performance when applied to real data.

Recently, there emerge deep-learning-based methods for

the task of reference-based SR, which aim to exploit the HR

texture information from an additional reference image sim-

ilar to the LR input to guide the SR process [13, 16, 25, 45–

47, 54–57]. Subsequently, from this perspective, Wang et
al. [43] take the telephoto image as the reference to train-

ing an SR model on a dual-lens dataset with the predefined

bicubic degradation. To avoid the predefined degradation,

Zhang et al. [53] train a self-supervised SR model directly

from external dual-lens pairs with the assumption of device-

consistent degradation. However, previous methods ignore

that the realistic degradation is specific to each capture due

to tiny camera motion in the acquisition process of mobile

devices, which leads to generalization difficulty in practice.

3. Analysis of Realistic Dual-lens SR
3.1. Problem Formulation

We consider two images captured by a dual-lens device:

the telephoto image X with a small FoV and the wide-angle

image Y with a large FoV, as shown in Figure 4. Gener-

ally, within the overlapped FoV (denoted by the white dot-

ted rectangle), X corresponds to a central area in Y (de-

noted as Y ∗) but is with a much higher resolution. The

decrease of resolution due to the enlarged FoV, which is

termed Resolution-FoV (RV) degradation DRV (·) in [4],

can be characterized by the LR-HR image pair (Y ∗, X).

In this paper, we argue that, the realistic RV degradation

is not only dependent on the camera optics, but also influ-

enced by tiny camera motion. Therefore, this degradation

is image-specific and our goal is to obtain a parametric SR

function SΘ(·) that reverses DRV (·) for realistic SR, where

Θ denotes the parameters of S(·). To achieve this goal, we

optimize S(·) with the paired data (Y ∗, X) as

min
Θ

L(X,SΘ(Y
∗)), (1)

where L(·, ·) denotes a certain loss function. In this way,

the implicit modeling of the image-specific degradation

Figure 3. Analysis on the alignment process. The warped LR view

using L2 supervision introduces additional frequency information,

resulting in degradation variance (revealed by estimated kernels).

Our method adequately keeps the degradation and largely prevents

the introduction of additional frequency information. Please see

more analysis on frequency change in the supplement.

DRV (·) is jointly achieved with the optimization of SΘ(·),
since the training data is subjected to Y ∗ = DRV (X)1.

3.2. Challenge
As analyzed above, the LR-HR image pair (Y ∗, X) from

each dual-lens pair characterizes the image-specific degra-

dation DRV (·) for the current capture. Therefore, we pro-

pose to learn an image-specific SR model SΘ(·) by lever-

aging a single dual-lens pair at test time, which serves

as a zero-shot learning solution. This solution addresses

the generalization issue caused by the variation of realis-

tic degradation from one capture to another, as encountered

when using external training data.

Despite the clear advantage of zero-shot dual-lens SR,

there are two major challenges to achieving this goal. First,

the physical offset between the two lenses will lead to

complicated misalignment between Y ∗ and X , especially

for the scene with subjects at different depths. This can

be addressed with advanced deep-learning-based alignment

methods [14, 40], however, the alignment process will in-

troduce additional frequency information and change the

degradation DRV (·) after alignment, as shown in Figure 3.

The other challenge is how to effectively use the highly

limited data from a single dual-lens pair to learn the image-

specific SR model SΘ(·). Even in a well-aligned image

pair, there still exist a few regions with variant degradation.

These noisy regions in such limited training data will lead to

optimization difficulty and incorrect degradation modeling.

4. Zero-Shot Dual-Lens SR
An overview of our proposed zero-shot learning solution

for dual-lens SR (ZeDuSR) is shown in Figure 4(a). During

the training stage, we first downsample the HR telephoto

image X (by the bilinear operator) to obtain the same reso-

lution as its LR wide-angle counterpart Y ∗, denoted as X↓.

1Strictly speaking, this excludes the dual-lens misalignment.
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Figure 4. Pipeline of our proposed method. (a) Overview of ZeDuSR, which learns an image-specific SR model on the dual-lens pair

at test time. (b) Degradation-invariant alignment, which constrains the alignment process on the spatial, frequency, and feature domains

leveraging the adversarial and contrastive learning. (c) Degradation-aware training, which calculates the probability of each location for

patch cropping according to a degradation-aware map for reducing the contribution of degradation-variant regions.

With our proposed degradation-invariant alignment method,

we then warp the LR image Y ∗ toward X↓ to obtain the

aligned LR-HR image pair (Y ∗
w , X) with X↓ as a bridge2.

After that, through our designed degradation-aware train-

ing strategy, an image-specific SR network is trained with

properly selected patches from the aligned image pair. Dur-

ing the inference stage, we apply the SR network to the full

wide-angle image Y and generate the HR and large FoV

image YSR beyond the capability of the original device.

4.1. Degradation-invariant Alignment

To warp the LR image Y ∗ to the downsampled HR image

X↓, we adopt the photometric consistency loss for training

an unsupervised alignment network, formulated as

L2 = ‖X↓ − Y ∗
w‖2. (2)

However, if we only apply the photometric consistency loss

here, the warped LR image Y ∗
w would suffer from addi-

tional frequency information that is induced by the prede-

fined degradation in X↓ (i.e., bilinear here) and lose the re-

alistic degradation in Y ∗, as analyzed in Section 3.2. There-

fore, to keep the realistic degradation during alignment, we

propose to constrain the alignment process in spatial, fre-

quency, and feature domains by leveraging adversarial and

contrastive learning, as shown in Figure 4(b).

Spatial adversarial loss. Adversarial learning has been

successfully applied to learn data distribution [1,44], which

consists of a generator and a discriminator. The generator

2Warping HR toward LR will result in heavy information loss and lim-

ited performance, please see ablation in the supplement.

can learn indistinguishable distribution by fooling the dis-

criminator. Based on this idea, we apply an adversarial loss

to preserve the distribution consistency between Y ∗ and

Y ∗
w in the spatial domain. Specifically, we take the align-

ment network as the generator and employ a patch-level dis-

criminator Ds(·) to distinguish the local spatial distribution,

since the aligned pair will be cropped to patches for training

the SR network. The spatial adversarial loss is denoted as

Ls
adv = −EY ∗

w
[log(Ds(Y ∗

w))], (3)

and the loss for the patch-level discriminator is in a sym-

metrical form, denoted as

Ls
disc =− EY ∗ [log(Ds(Y ∗))]

− EY ∗
w
[log(1−Ds(Y ∗

w))].
(4)

As such, the alignment process is forced to keep the spatial

distribution consistency between Y ∗ and Y ∗
w , and thus keep

the realistic degradation in Y ∗.

Frequency adversarial loss. We also apply an adversar-

ial loss in the frequency domain to avoid introducing addi-

tional frequency information in the warped LR image Y ∗
w .

Specifically, we employ an image-level discriminator Df (·)
to distinguish the global frequency distribution. To this end,

we transform Y ∗ and Y ∗
w to the frequency domain by the

Fourier Transform. The frequency image can be converted

to the amplitude spectrum, formulated as

A[·] = [
R2[·] + I2[·]]1/2 , (5)

where R2[·] and I2[·] represent the real and imaginary parts

of the frequency image, respectively. Since the amplitude

spectrum represents texture information [15, 50], we utilize
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Figure 5. Error maps between the “ideal” LR image and results

from different warping methods. The “ideal” LR image is gener-

ated from the HR telephoto image under the same realistic degra-

dation as the wide-angle LR image (only available for simulation).

it to formulate the frequency adversarial loss as

Lf
adv = −EY ∗

w
[log(Df (A[Y ∗

w ]))], (6)

and the loss for the image-level discriminator is defined as

Lf
disc =− EY ∗ [log(Df (A[Y ∗]))]

− EY ∗
w
[log(1−Df (A[Y ∗

w ]))].
(7)

As such, the alignment process is forced to avoid introduc-

ing additional frequency information in Y ∗
w , and thus keeps

the realistic degradation in Y ∗.

Feature contrastive loss. Recent works adopt con-

trastive learning to abstract the representation of images for

distinguishing the degradation in the feature domain [20,

42]. Inspired by this idea, we further exploit the feature

representation of images to constrain the alignment process.

Specifically, we utilize contrastive learning to ensure the

warped LR image Y ∗
w is pulled closer to the original LR

image Y ∗ and pushed far away from the downsampled HR

image X↓, in the feature domain realized by the commonly

used VGG feature extractor [37]. The feature contrastive

loss can be formulated as

Lcl =

∑n
i=1 ‖Φi(Y

∗
w),Φi(Y

∗)‖2∑m
j=1 ‖Φj(Y ∗

w),Φj(X↓)‖2 , (8)

where Φi, i = 1, ..., n and Φj , j = 1, ...,m represent the i-
th and j-th layers from the VGG feature extractor, m and n
represent the number of used layers. Different from the per-

ceptual loss [17] that also uses the VGG feature extractor,

our contrastive loss adopts the positive-negative samples to

constrain the alignment in the feature domain.

Finally, the overall loss function for our unsupervised

alignment network is denoted as

Lalign = L2 + λ1Ls
adv + λ2Lf

adv + λ3Lcl, (9)

where λi, i = 1, 2, 3 is the weighting factor balancing dif-

ferent loss items. As shown in Figure 5, our proposed align-

ment method adequately keeps the degradation consistency

between the LR images before and after alignment, which

plays a key role in training a realistic SR model. The effec-

tiveness of each loss term is validated in Section 7.

Figure 6. Illustration of the degradation-aware probability map.

The error map (between the warped LR image and the “ideal”

LR image) indicates regions with degradation variance, which is

largely consistent with the inversed probability map.

4.2. Degradation-aware Training
The above alignment process, although designed to be

degradation-invariant, cannot be perfect in practice. There-

fore, we design a degradation-aware training strategy to re-

duce the contribution of degradation-variant regions during

the training of the image-specific SR network.

Specifically, we generate a probability map for patch

cropping during training, by reusing the output map of the

patch-level discriminator in the alignment process. Each

location of the output map indicates the similarity of the

warped patch to the original patch distribution. The larger

the discriminator outputs, the lower the possibility that the

warped result loses the realistic degradation. By regarding

this output map as a degradation-aware map Ms, we then

normalize Ms and upsample it (by the bilinear operator) to

the same resolution as the warped LR view Y ∗
w , and obtain

a probability map PD, denoted as

PD = (Ms/(sum(Ms)))↑. (10)

According to this probability map, the degradation-invariant

patches are assigned with a higher probability during train-

ing, while the contribution of degradation-variant patches is

reduced, as shown in Figure 6. We optimize the SR network

with selected LR-HR patches ({Zy
k}Kk=1 and {Zx

k }Kk=1) us-

ing the L2 loss, formulated as

Lsr =
∑K

k=1
‖Zx

k − Zy
k‖2, (11)

where K represents the number of patches. In this way,

we can fully exploit the limited training data and reduce the

influence of degradation-variant regions. The effectiveness

of our strategy is validated in Section 7.

5. Experiments on Synthesized Data
Datasets. To simulate the dual-lens configuration

on mobile devices, we adopt a light field dataset (HCI

new [12], two views selected, with a small baseline) and

a stereo dataset (Middlebury2021 [35], with a relatively

large baseline) for quantitative evaluation, where the HR

ground-truth of the synthesized wide-angle view is avail-

able. To generate the dual-lens image pair, we apply three

groups of image-specific degradation kernels, i.e., isotropic
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Table 1. Quantitative comparisons with SISR, RefSR, and dual-lens SR for 2× and 4× SR on synthesized dual-lens data with image-

specific degradation (IG and AG). PSNR/SSIM (the higher, the better) are adopted for the evaluation of reconstruction accuracy. Red,

blue, and orange indicate the best, second best, and third best performance, respectively.

Method

HCI new Middlebury2021

IG AG IG AG

2× scale 4× scale 2× scale 4× scale 2× scale 4× scale 2× scale 4× scale

Bicubic 29.45/0.8119 27.62/0.7168 28.27/0.7505 27.33/0.7003 33.43/0.9409 30.87/0.9001 32.44/0.9267 30.33/0.8911

RCAN [52] 30.15/0.8371 28.23/0.7415 28.99/0.7670 28.00/0.7191 34.11/0.9465 31.84/0.9084 33.17/0.9326 31.30/0.9053

CSNLN [31] 30.24/0.8376 28.25/0.7379 28.94/0.7682 27.97/0.7172 34.23/0.9487 31.89/0.9136 33.10/0.9366 31.39/0.9040

SwinIR [22] 30.19/0.8329 28.27/0.7405 28.84/0.7652 27.90/0.7140 34.28/0.9492 31.96/0.9144 33.05/0.9361 31.27/0.9022

ZSSR [36] 30.29/0.8236 27.75/0.7186 28.63/0.7580 27.42/0.7041 33.93/0.9453 30.92/0.9021 32.91/0.9331 30.49/0.8925

KernelGAN [1] - - 29.78/0.8042 28.36/0.7358 - - 33.65/0.9399 31.83/0.9032

TTSR [46] - 28.03/0.7367 - 27.67/0.7082 - 31.39/0.9045 - 30.97/0.8991

MASA [25] - 28.32/0.7498 - 28.05/0.7212 - 32.01/0.9094 - 31.42/0.9011

DCSR [43] 30.40/0.8306 28.38/0.7440 29.22/0.7627 27.99/0.7176 34.29/0.9434 32.02/0.9073 33.18/0.9382 31.36/0.8992

SelfDZSR [53] 29.86/0.8382 27.91/0.7297 28.97/0.7943 27.60/0.7244 33.91/0.9442 31.32/0.9132 32.96/0.9405 31.03/0.9033

DCSR+SRA [43] 30.61/0.8424 28.56/0.7486 29.44/0.7910 28.18/0.7317 34.37/0.9468 32.17/0.9124 33.38/0.9404 31.59/0.9037

ZeDuSR 31.01/0.8529 28.87/0.7536 30.02/0.8146 28.66/0.7420 34.78/0.9553 32.41/0.9117 33.79/0.9421 31.76/0.9019

ZeDuSR∗ 31.17/0.8594 29.25/0.7601 30.23/0.8183 29.09/0.7483 34.89/0.9571 32.77/0.9212 33.94/0.9450 32.42/0.9141

Table 2. Quantitative comparisons with blind SR for 2× and 4× SR on synthesized dual-lens data with image-specific degradation (IG and

IG JPEG). PSNR/SSIM are adopted for the evaluation of reconstruction accuracy.

Method

HCI new Middlebury2021

IG IG JPEG IG IG JPEG

2× scale 4× scale 2× scale 4× scale 2× scale 4× scale 2× scale 4× scale

Bicubic 29.45/0.8119 27.62/0.7168 29.42/0.7839 27.21/0.6881 33.43/0.9409 30.87/0.9001 33.02/0.9277 30.41/0.8822

DANv1 [27] 30.29/0.8569 28.43/0.7534 29.07/0.7747 27.19/0.6917 34.44/0.9519 32.22/0.9159 33.10/0.9182 30.45/0.8720

DANv2 [28] 30.16/0.8539 28.48/0.7586 28.82/0.7721 27.28/0.6911 34.36/0.9516 32.29/0.9150 32.97/0.9169 30.56/0.8695

DCLS [26] 30.63/0.8651 28.68/0.7524 29.21/0.7841 27.45/0.6928 34.72/0.9528 32.46/0.9173 33.38/0.9250 30.71/0.8725

ZeDuSR 31.01/0.8529 28.87/0.7536 29.98/0.8006 27.82/0.7035 34.78/0.9553 32.41/0.9171 33.63/0.9316 30.97/0.8805

ZeDuSR∗ 31.17/0.8594 29.25/0.7601 30.06/0.8032 28.17/0.7179 34.89/0.9571 32.77/0.9212 33.79/0.9332 31.57/0.8929

and anisotropic Gaussian downsampling (IG and AG) and

isotropic Gaussian downsampling with slight JPEG com-

pression (IG JPEG)3, on one of the two views (acting as

wide-angle), while the other view acts as telephoto after

center cropping. Details of synthesized data generation and

degradation simulation are in the supplement.

Implementation Details. For the alignment network,

we modify FlowNet-S [14] by decreasing the convolu-

tion layers to suit the limited training data. We use the

RCAN [52] backbone as the image-specific SR network.

The embodiments of the alignment and SR networks can

be replaced, the ablation studies are in Section 7. More im-

plementation details are in the supplement.

Comparison Methods. We compare ZeDuSR with

several representative methods including five categories:

1) non-blind single-image SR (SISR): RCAN [52],

CSNLN [31], and SwinIR [22], 2) blind SISR with a ker-

nel pool: DANv1 [27], DANv2 [28], and DCLS [26],

3) zero-shot SISR with kernel prediction: ZSSR [36]

and KernelGAN [1], 4) reference-based SR (RefSR):

TTSR [46] and MASA [25], 5) dual-lens SR: DCSR [43],

DCSR+SRA [43], and SelfDZSR [53]. SISR methods

use only the wide-angle image during training and infer-

ence, while RefSR and dual-lens SR methods use the wide-

3JPEG is commonly used on mobile devices, which is signal-dependent

and thus image-specific degradation, even at fixed compression ratio.

angle/telephoto image pair. These methods are reproduced

with the best possible training configurations following

their original papers. Besides, we provide an updated ver-

sion of ZeDuSR to demonstrate its promising potential (de-

noted as ZeDuSR*), where the parameters of the image-

specific SR network are initialized by a pretrained model

with bicubic degradation. Note that, still, no extra dual-lens

data is required during training.

Quantitative Comparison. We compare ZeDuSR

with non-blind SISR, zero-shot SISR, RefSR, and dual-

lens SR under image-specific degradation IG and AG

in Table 1. The methods using external training data

with bicubic degradation (e.g., SwinIR [22], MASA [25],

and DCSR [43]) inevitably face the domain gap caused

by the degradation variance between training and infer-

ence. Zero-shot SISR methods (e.g., KernelGAN [1]) may

meet difficulty for degradation kernel estimation. Self-

supervised dual-lens SR methods (DCSR+SRA [43] and

SelfDZSR [43]) still assume consistent degradation on the

external training data from the target device, which limits

their generalization capabilities. It can be seen that Ze-

DuSR shows superior performance over the previous meth-

ods in most cases, thanks to the image-specific degradation

assumption. Meanwhile, ZeDuSR* achieves further im-

proved results, surpassing the previous methods by a large

margin. We compare ZeDuSR with blind SISR methods un-

der image-specific degradation IG and IG JPEG in Table 2,
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Figure 7. Visual comparisons on synthesized data. The white dotted box indicates the overlapped FoV. Top: “Origami” from HCI new.

Bottom: “Bandsaw1” from Middlebury2021.

0% 20% 40% 60% 80% 100%

vs. SelfDZSR

vs. DCSR-SRA

vs. DCLS

vs. KernelGAN

Figure 8. User study on the real-world dual-lens SR results.

where the blind SISR methods are trained using external

data with a kernel pool of AG degradation. As can be seen,

ZeDuSR achieves better results overall since the realistic

degradation is not within the kernel pool of blind SISR.

Qualitative Comparison. Examples of qualitative com-

parison between ZeDuSR and other methods are shown in

Figure 7. It can be observed that our method recovers more

accurate and reliable details, while others suffer from blurry

or unrealistic artifacts due to the degradation variance.

6. Real-world Experiments
Dataset. We conduct experiments on real-world datasets

captured by off-the-shelf smartphones, including Camer-

aFusion [43] (by iPhone11) and RealMCVSR [19] (by

iPhone12). The former supports 2× dual-lens SR while the

latter supports both 2× and 4× dual-lens SR. More details

of the datasets are in the supplement.

Statistic Evaluation. Since the HR ground-truth image

is NOT available on the real-world dual-lens data, we per-

form a user study on the real-world results generated by rep-

resentative methods. We provide the users with anonymous

pair comparisons (ZeDuSR vs. the other method) and ask

them to select the one with higher quality. We collect 1200

votes from 30 users and the statistics are summarized in Fig-

ure 8. The user study verifies the superiority of our method

Table 3. Ablation on the loss function and training strategy.

Ls
adv Lf

adv Lcl DaTS PSNR SSIM

� � � � 30.48 0.8362

� � � � 30.59 0.8429

� � � � 30.72 0.8452

� � � � 30.89 0.8512

� � � � 31.01 0.8529

on real-world data. We also provide non-reference evalua-

tions in the supplement.

Visual Comparison. Examples of real-world visual re-

sults are shown in Figure 9. It can be observed that ZeDuSR

reconstructs higher-fidelity outputs within and outside the

overlapped FoV, by leveraging the implicit modeling of the

image-specific degradation, where more realistic textures

and sharper edges are recovered. More real-world results

are provided in the supplement.

7. Ablation Study
Loss Function and Training Strategy. To investi-

gate the effectiveness of our proposed loss function for

degradation-invariant alignment and the degradation-aware

training strategy (DaTS), we conduct an ablation study on

the HCI new dataset with IG degradation for 2× SR. As can

be seen in Table 3, the PSNR gradually increases by adding

the three loss terms to the L2 loss when training the align-

ment network. If the image-specific SR network is trained

with DaTS, the PSNR further increases.

Alignment and SR backbones. To investigate the im-

pact of the embodiments for the alignment network and

the image-specific SR network, we take SPyNet [34] and

PWCNet [39] as the alternative alignment networks, while

CSNLN [31] and SwinIR [22] are selected as the alterna-
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Figure 9. Visual comparisons on real-world data. The white dotted box indicates the overlapped FoV. More results are in the supplement.

Table 4. Ablation on the alignment backbone.

Alignment Network IG AG

FlowNet-S [8] 31.01/0.8529 30.02/0.8146

SPyNet [34] 31.05/0.8533 29.97/0.8139

PWCNet [39] 29.98/0.8515 30.06/0.8159

tive SR networks. We retrain our method on the HCI new

dataset with IG and AG degradation for 2× SR. As can be

seen in Table 4 and Table 5, the performances of different

embodiments are close, which demonstrates the robustness

of ZeDuSR for different backbones.

8. Conclusion
In this paper, we present a zero-shot learning solution

for dual-lens SR (ZeDuSR), which learns an image-specific

SR model with the single dual-lens pair at test time. Specifi-

cally, we propose a degradation-invariant alignment method

to generate an aligned LR-HR image pair for training the SR

model while keeping the realistic degradation, along with

a degradation-aware training strategy to effectively exploit

the information within the highly limited training data. Ex-

periments on synthesized and real-world datasets demon-

strate the superiority of ZeDuSR over existing solutions.

Table 5. Ablation on the SR backbone.

SR Network IG AG

RCAN [52] 30.15/0.8371 28.99/0.7670

RCAN [52] + ZeDuSR 31.01/0.8529 30.02/0.8146

CSNLN [31] 30.24/0.8376 28.94/0.7682

CSNLN [31] + ZeDuSR 31.03/0.8516 29.97/0.8135

SwinIR [22] 30.19/0.8329 28.84/0.7652

SwinIR [22] + ZeDuSR 31.04/0.8531 29.91/0.8128

Similar to zero-shot SISR methods, ZeDuSR has the

drawback of online training, i.e., a long inference time (see

supplement). This problem can be alleviated by initializ-

ing the parameters with a pretrained model as in ZeDuSR*,

or it will no longer be a problem if cloud computing is en-

abled on mobile devices. We believe ZeDuSR moves closer

to addressing realistic SR on the widely available dual-lens

devices, which would benefit downstream applications that

require HR and large FoV inputs.
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