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Abstract

Previous methods solve feature matching and pose esti-
mation using a two-stage process by first finding matches
and then estimating the pose. As they ignore the geomet-
ric relationships between the two tasks, they focus on ei-
ther improving the quality of matches or filtering poten-
tial outliers, leading to limited efficiency or accuracy. In
contrast, we propose an iterative matching and pose es-
timation framework (IMP) leveraging the geometric con-
nections between the two tasks: a few good matches are
enough for a roughly accurate pose estimation; a roughly
accurate pose can be used to guide the matching by pro-
viding geometric constraints. To this end, we implement
a geometry-aware recurrent attention-based module which
jointly outputs sparse matches and camera poses. Specif-
ically, for each iteration, we first implicitly embed geo-
metric information into the module via a pose-consistency
loss, allowing it to predict geometry-aware matches pro-
gressively. Second, we introduce an efficient IMP, called
EIMP, to dynamically discard keypoints without potential
matches, avoiding redundant updating and significantly re-
ducing the quadratic time complexity of attention computa-
tion in transformers. Experiments on YFCC100m, Scannet,
and Aachen Day-Night datasets demonstrate that the pro-
posed method outperforms previous approaches in terms
of accuracy and efficiency. Code is available at https:
//github.com/feixue94/imp-release

1. Introduction
Feature matching and relative pose estimation are two

fundamental tasks in computer vision and especially impor-
tant to visual localization and 3D reconstruction. Tradition-
ally, the two tasks are performed in two stages separately
by first finding correspondences between keypoints ex-
tracted from two images with nearest neighbor (NN) match-
ing and then estimating the relative pose from predicted
matches with robust estimators, e.g. RANSAC [6,7,20,32].
This pipeline has been the de-facto standard framework for
decades [5]. However, due to repetitive textures/structures,
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Figure 1. Process of iterative matching and pose esti-
mation. For each image pair, we report the number in-
liers/rotation/translation errors (top-left) and retained keypoints in
left/right images (top-right) at iterations from 1 to 4. In the it-
erative process, our method finds more inliers spanning almost
the whole image, estimates increasingly precise pose and discards
keypoints without true matches gradually.

changing appearances and viewpoint variations, matches
given by NN often contain a large number of outliers, lead-
ing to poor pose accuracy [36, 37]. To mitigate this prob-
lem, some works [8,10, 16,27,40, 48,49,52] filter potential
outliers of predicted matches with neural networks to im-
prove the pose accuracy. Although they report better results,
their performance is limited by the quality of initial matches
and require extra time for filtering at test time. Alterna-
tively, advanced matchers such as SuperGlue [36] enhance
the matching quality directly by using global information
from all keypoints via transformers [45] with a fixed num-
ber (e.g. 9) of iterations. These methods have obtained re-
markable performance. Yet, their quadratic time complex-
ity for the attention computation degrades the efficiency in
real applications. Some following works [12,38,41] explore
more efficient variations, they run faster but are significantly
less accurate (see Table 1 and 3).

In this paper, we aim to introduce an efficient and accu-
rate framework for iterative matching and pose estimation.
Our approach is built upon the following observations: (1)
a few well distributed matches (e.g. 5) could give a roughly
accurate pose (e.g. essential matrix); (2) in turn, a roughly
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accurate pose could provide strong geometric constraints
(e.g. epipolar line) to find more accurate matches at low
cost; (3) the pose also reveals which keypoints have po-
tential correspondences, preventing redundant operations.
Based on the geometric connections of the two tasks, we
propose an iterative matching and pose estimation frame-
work (IMP), to perform matching and pose estimation it-
eratively as opposed to in two separate stages. Specifically,
we progressively augment descriptors with self and cross at-
tention as [12,36,38,41], find matches and estimate the rela-
tive pose. As descriptors get gradually more discriminative,
more correct matches can be found, leading to increasingly
more precise pose, as shown in Fig. 1. However, due to the
noise [26] and degeneration (e.g. co-planar keypoints) [13],
not all inliers could give a good pose [4, 18]. In addition to
the classification loss mainly used by prior methods [12,36],
we apply a pose-consistency loss [49] to the matching pro-
cess, enabling the model to find matches which are not only
accurate but also able to give a good pose.

Moreover, in order to avoid redundant operations on un-
informative keypoints, we employ a sampling strategy by
combining the matching and attention scores of keypoints
and the uncertainty of predicted poses to adaptively remove
useful keypoints, as shown in Fig. 1. Compared with prior
sampling approaches [19, 44] based mainly on attention
scores, our adaptive strategy overcomes the over-sampling
problem effectively. Our framework reduces the time cost
from two aspects. First, in contrast to adopting a fixed num-
ber of iterations for all cases [12, 36, 38], it runs fewer it-
erations for easy cases with few viewpoint or appearance
changes and more for challenging cases. Second, it re-
duces the cost of each iteration, significantly reducing the
quadratic time complexity of attention computation. We
also show that discarding potential outliers increases not
only efficiency but also accuracy (see Sec. 5). The efficient
version of IMP is called EIMP. Ours contributions are as
follows:

• We propose to perform geometry-aware matching and
pose estimation iteratively, allowing the two tasks to
boost each other in an iterative manner.

• We adopt a robust sampling strategy to adaptively dis-
card redundant keypoints in the iteration process, sig-
nificantly decreasing the time complexity.

• We apply the pose uncertainty to the sampling strat-
egy, which further improves the accuracy matching
and pose estimation.

Our experiments on relative pose estimation and large-
scale localization tasks demonstrate that our method out-
performs previous competitors and is more efficient. We
organize the rest of the paper as follows. In Sec. 2, we dis-
cuss related works. In Sec. 3, we give a detailed description

of our method. We test the performance of our model in
Sec. 5 and conclude the paper in Sec. 6.

2. Related works
In this section, we discuss related work on local feature

matching, efficient attention, and outlier filtering.
Local feature matching. Traditionally, NN matching

and its variants, e.g., mutual NN (MNN) and NN with ratio
test (NN-RT) [28] are widely used for finding correspon-
dences between two sets of keypoints [2, 17, 28, 34]. Since
they perform point-wise matching, they are fast but not ro-
bust to large viewpoint and appearance changes, e.g. illu-
mination and season variations. Recently, SuperGlue [36]
utilizes transformers [45] with self and cross attention to
embed spatial information and achieves remarkable perfor-
mance. Despite its excellent accuracy, its limitations are
twofold. First, the complexity of attention is quadratic to
the number of keypoints, degrading the efficiency in real
applications. Second, it adopts a fixed number (9) of layers
for message propagation for all input cases. This causes ex-
tra time cost especially for simple cases with few viewpoint
and appearance changes, which require much fewer number
of iterations to find potential inliers. Therefore, running a
fixed number iterations for all cases leads to redundancy.

Some variants [12, 38, 41] try to solve the first problem
by using a fixed number of seeded keypoints for message
propagation [12], performing cluster-wise matching [38] or
aggregating local and global information separately [41]. In
spite of their high efficiency, they lose significant accuracy.
Besides, like SuperGlue, they also update keypoints without
correspondences redundantly in each iteration and adopt a
fixed number of iterations for all cases constantly. Unlike
these approaches, our model utilizes predicted poses to pre-
vent extra iterations for easy cases. Additionally, as our
method removes keypoints without true matches adaptively
to reduce time complexity in each iteration, both efficiency
and accuracy are guaranteed.

Efficient attention. Many works are proposed to miti-
gate the quadratic time complexity of the attention mecha-
nism [45]. They reduce the complexity by learning a lin-
ear projection function [22, 46], a token selection classi-
fier [19, 24, 33] or shared attention [11], to name a few. We
refer the reader a comprehensive survey [42] for more de-
tails. Since most of these methods are designed to extract
high-level features for downstream tasks e.g. image recog-
nition [1, 9, 11, 19, 22, 44] usually with a fixed number of
tokens, directly transferring these techniques to the match-
ing task which has dynamic numbers of keypoints as input
could cause performance loss. Instead, we utilize the geo-
metric properties of the matching task to adaptively discard
redundant keypoints. Our strategy depends mainly on the
number of inliers in the input and is completely adaptive.

Outlier filtering. Ratio test [28] is often used to remove
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Figure 2. Pipeline of our method. In the iteration process, descriptors are gradually augmented by our recurrent attention-based module.
Augmented descriptors are then used to compute matches M(t), which are further used for estimating the pose P (t). As descriptors
become more discriminative, more correct matches can be found, leading to more precise poses. The pose is utilized to provide geometric
guidance to find more matches and discard redundant keypoints with geometry-aware sampling fS , making next iterations faster. If the
pose converges, iteration stops. Our recurrent attention-based module at tth iteration (b) and pose-guided matching (c) are also visualized.

matches with high uncertainties. Recently, CNNs are used
to leverage the spatial context of input keypoints to filter
potential outliers [8,10,16,27,40,48,49,52]. ACNe [40] in-
troduces an attention mechanism to gather information from
other keypoints for filtering. OANet [49] embeds geomet-
ric priors to further improve the performance. LMCNet [27]
and CLNet [51] use local motion consistency to filter incon-
sistent matches. MS2DG-Net [16] infuses semantics into
a graph network to enhance the accuracy. These methods
have achieved better results than ratio test and could serve
as an additional module to filter potential outliers. How-
ever, their performance relies heavily on the quality of ini-
tial matches and require extra cost for filtering at test time.
In contrast, our method embed geometric information di-
rectly into the matching module, allowing the model to pre-
dict accurate and pose-ware correspondences end-to-end.

3. Method
We first give an introduction to performing iterative

transformer-based matching in Sec. 3.1. Then, we de-
scribe our iterative pose estimation framework, the adaptive
sampling strategy and application at test time in Sec. 3.2,
Sec. 3.3 and Sec 3.4, respectively. We visualize the pipeline
of our framework in Fig. 2a.

3.1. Iterative transformer-based matching

In this section, we introduce how to perform transformer-
based matching iteratively.

Problem formulation. Given two sets of keypoints (e.g.
SuperPoint [17] or SIFT [28]) X = {x1, x2, ..., xm},Y =
{y1, y2, ..., yn} (m, n are the number of keypoints) ex-
tracted from two images, matchers predict matches be-
tween X and Y , denoted as O = {o1, o2, ..., ok}, where
oj = (xk, yl) is the matched pair. Each keypoint xi =
(ui, vi, ci,di) comprises its 2D coordinates (ui, vi), confi-
dence ci and descriptor di ∈ Rd (d is the descriptor size).

Descriptor augmentation. As [12,36,38], for each key-
point xi, its coordinates (ui, vi) and confidence ci are en-

coded into a high-dimension vector with a multi-layer per-
ception (MLP) fenc, which is then added to its descriptor
di, as: d

′

i = di + fenc(ui, vi, ci). d
′

i is used to replace di
as input for descriptor augmentation, as:

A(t)
XS = softmax(

fSq (X (t−1))(fSk (X (t−1)))T
√
d

), (1)

A(t)
XC = softmax(

fCq (X (t−1))(fCk (Y(t−1)))T
√
d

), (2)

X (t) = X (t−1) + fSmlp(fSp (A(t)
XS(fSv (X (t−1))))||X (t−1))

+fCmlp(fCp (A(t)
XC(fCv (Y(t−1))))||X (t−1)). (3)

A(t)
XS andA(t)

XC are self (S) and cross (C) attention matri-
ces for X (t). fS/Cq/k/v/p are FC layers. d is descriptor dimen-

sion. fS/Cmlp are 3-layer MLPs. || is channel-wise concate-
nation. We use sharing attention mechanism [11] to further
augment descriptors with pre-computed attention matrices:

X (t) = X (t) + fSmlp(fSp (A(t)
XS(f̄Sv (X (t−1))))||X (t−1))

+fCmlp(φCp (A(t)
XC(f̄Cv (Y(t−1))))||X (t−1)). (4)

f̄
S/C
v are FC layers as well. We conduct the same op-

erations to Y(t−1) to obtain augmented descriptors Y(t),
self A(t)

Y S and cross A(t)
Y C attention matrices. As shown in

Fig. 2b, X (t) and Y(t) are augmented descriptors used for
the next iteration. A(t)

XS , A(t)
XC , A(t)

Y S and A(t)
Y C are self and

cross attention matrices used for message propagation in the
augmentation function fA. In prior works [12, 36], self and
cross attention matrices are only used for augmenting de-
scriptors. However, in our model, they are further utilized
for adaptive sampling (Sec. 3.3).

Iterative matching prediction. Augmented descrip-
tors X (t),Y(t) are used to compute the matching matrix
M(t) ∈ Rm×n with function fM . fM first computes Eu-
clidean distance D(t) ∈ Rm×n for all pairs in X (t)

A × Y
(t)
A

and then uses Sinkhorn algorithm [14, 39] to obtain M(t)

by optimizing D(t) a transport problem [30]. Matches with
scores over than a certain threshold θm are deemed as pre-
dicted matches. In our framework, we predict matches at
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Figure 3. Adaptive sampling. At iteration t, predicted matchesM(t) and pose P (t) are used to select keypoints with potential correspon-
dences. These selected keypoints are expanded by those with high self or cross attention scores. The finally preserved keypoints are those
with potential matches and high contribution, guaranteeing both the efficiency and accuracy.

each iteration t for pose estimation and keypoint sampling
as opposed to at only the last iteration [36, 38].

Iterative matching loss. Similar to SuperGlue [36], we
adopt the classification loss of minimizing the negative log-
likelihood of the matching matrix to enforce the network to
predict correct matches for each iteration t, as:

L
(t)
m = −

∑
(i,j)∈Mgt

logM̄(t)
i,j

−
∑

i∈M̄gt

logM̄(t)
i,n+1 −

∑
j∈M̄gt

logM̄(t)
m+1,j . (5)

M̄(t) is the expanded matrix ofM(t) with an additional
row and column for unmatched keypoints [36] in X (t) and
Y(t). Mgt and M̄gt are the groundtruth matching matrix
and its expansion. Applying the matching loss to each iter-
ation t enables our model to predict correct matches at each
iteration progressively.

3.2. Iterative pose estimation

In this section, we give a detailed description of how to
predict poses and the usage of predicted poses for enhancing
the matching process in each iteration, as shown in Fig. 2b.

Pose-consistency loss. Because of the noise [26] and de-
generated keypoints [13], not all correct matches could give
a good pose [4, 18]. Eq (5) only guarantees that keypoints
with more discriminative descriptors have higher matching
scores and are recognized first to attend pose estimation, but
ignore the geometric requirements needed for robust pose
estimation. Therefore, directly using all potential inliers
with matching score over than θm for pose estimation could
be inaccurate. Instead, we implicitly infuse geometric infor-
mation into matching transformers, enforcing the matching
module to focus first on matches which are not only correct
but also have high probability to give a good pose.

To this end, at each iteration t, matches with score over
θm inM(t) along with their scores are used for fundamental
matrix estimation with weighted 8 points function fP , as:

P (t) = fP ({(x(t)
i , y

(t)
i , s

(t)
i )}). (6)

P (t) ∈ R3×3 is the predicted fundamental matrix and
{(x(t)i , y

(t)
i , s

(t)
i )} are predicted matches with matching

score s(t)i = M (t)[idx(x
(t)
i ), idx(y

(t)
i )] (idx(.) is the index

function). We enforce the geometric consistency between
P (t) and the groundtruth P gt by minimizing the pose and
epipolar errors jointly, as:

L
(t)
p = ||P (t) − P gt||2, (7)

L
(t)
pg =

1

Ngt

∑
k

fepipolar(P (t), xgtk , y
gt
k ), (8)

L
(t)
mg =

1

N
(t)
p

∑
k

fepipolar(P gt, x
(t)
k , y

(t)
k ). (9)

fepipolar is Sampson distance [21]. (xgtk , y
gt
k ) and

(x
(t)
k , y

(t)
k ) are the groundtruth and predicted matches. L(t)

p

and L
(t)
pg enforce the predicted pose P (t) to be correct

with constraints provided by the groundtruth pose P gt

and matches (xgtk , y
gt
k ), respectively. L(t)

mg additionally en-
sures the correctness of predicted matches (x

(t)
k , y

(t)
k ) with

groundtruth pose P gt. Ngt and N
(t)
p are the number of

groundtruth and predicted matches.
For each iteration, our final loss combines L(t)

m , L(t)
pg and

L
(t)
mg with weights of αm, αp and αg , as:

L(t) = αmL
(t)
m + αpL

(t)
p + αg(L

(t)
pg + L

(t)
mg). (10)

We apply L(t) to each iteration and compute the total
loss over T iterations, as Ltotal = 1

T

∑T
t L

(t).

3.3. Adaptive geometry-aware sampling

In fact, lots of keypoints are uninformative and a large
number of keypoints don’t have correspondences in the
other image (about 70% of 2k keypoints in YFCC100m
dataset [43]). Updating these keypoints leads to extra time
cost, so we propose an effective strategy to remove these
keypoints, as shown in Fig.3.

Informative keypoints. The information contained by
each keypoint is defined by its contribution to others in the

21320



0 1 2 3 4 5 6 7 8
iteration

200

400

600

800

1000

nu
m

be
r o

f s
am

pl
ed

 k
ey

po
in

ts

X (Ada)
Y (Ada)
X (R50)
Y (R50)

0 1 2 3 4 5 6 7 8
iteration

40

50

60

70

80

90

100

ov
er

la
p 

ra
tio

 (%
)

X (Ada)
Y (Ada)
X (R50)
Y (R50)

(a)

0 1 2 3 4 5 6 7 8
iteration

200

400

600

800

1000

nu
m

be
r o

f s
am

pl
ed

 k
ey

po
in

ts

X (Ada)
Y (Ada)
X (R50)
Y (R50)

0 1 2 3 4 5 6 7 8
iteration

40

50

60

70

80

90

100

ov
er

la
p 

ra
tio

 (%
)

X (Ada)
Y (Ada)
X (R50)
Y (R50)

(b)
Figure 4. Number of Retained keypoints and overlap ratio. We
show (a) the number of retained keypoints and (b) ratio of inliers in
two sets at each iteration. Compared to R50, the adaptive sampling
reduces redundant keypoints more effectively at early stages (a)
and preserves much more inliers at latter iterations (b).

attention matrix A(t)
XS ∈ Rm×n×h (m,n are the number

of keypoints in the query and key and h is the number of
heads). As [42, 44], we compute the score of each key-
point by averaging values along the head and key dimen-
sion, as S(t)

XS = 1
n∗h

∑
(i,j)AXS.,i,j . SXS ∈ Rm is nor-

malized with sum of 1. We also compute scores fromA(t)
XC ,

A(t)
Y S , A(t)

Y C as S(t)
XC , S(t)

Y S , S(t)
Y C . Self and cross attention

scores of 1024 keypoints in X (t) and Y(t) are visualized
in Fig. 3c. Although attention scores can be directly used
for sampling keypoints by keeping a certain ratio of key-
points with the highest scores [24,44], this strategy is prone
to over-pruning. Instead, we use keypoints with potential
matches as guidance to mitigate this problem.

Adaptive sampling. At iteration t, the matching matrix
M(t) containing matching confidence of all pairs, reveals
which keypoints potentially have true correspondences. We
visualize the potential matches and scores of self and cross
attention in Fig. 3a and Fig. 3d.

Based on matching matrix M(t), we generate two sub-
sets X (t)

M ⊆ X (t) and Y(t)
M ⊆ Y(t) which contain matched

keypoints (matching score over θm). Since keypoints in
X (t)
M and Y(t)

M are potential inliers, they can provide guid-
ance to find more informative ones. In detail, let S(t)

MSX =

{S(t)
XS [idx(x)], s.t. x ∈ X (t)

M } be self-attention scores of
keypoints in X (t)

M . We generate another set of keypoints
with high self-attention scores as X (t)

S = {x, s.t. x ∈
X (t), S

(t)
XS [idx(x)] ≥ fmd(S

(t)
MSX)} (fmd returns the me-

dian value). By repeating this process, we obtain another
subset from X (t) with high cross-attention scores as X (t)

C

and two sets Y(t)
S , Y(t)

C from Y(t) with high self and cross
attention scores as well. The final sets are the union of
informative keypoints and those with matches, as X (t)

U =

X (t)
M ∪ X

(t)
S ∪ X

(t)
C ,Y(t)

U = Y(t)
M ∪ Y

(t)
S ∪ Y

(t)
C . As shown

in Fig. 3e, X (t)
U ,Y(t)

U will replace X (t),Y(t) to join the next
iteration. The sampling reduces the number of keypoints
from 1024 to 496 and 358 in two sets, reducing the time

cost significantly for next iterations.
Fig. 4a visualizes the number of keypoints in X (t)

U and

Y(t)
U . Fig. 4b shows the value of |X

(t)
U ∩XF |
|XF | and |Y

(t)
U ∩YF |
|YF |

(XF and YF are two sets of matched keypoints without any
sampling; |.| indicates the number of elements), which mea-
sure the ability of retaining inliers. For comparison, we
also generate two sets of keypoints based on sampling ra-
tio by choosing the top 50% keypoints with highest self
and cross attention scores as X (t)

R50S , X (t)
R50C , Y(t)

R50S , and
Y(t)
R50C . The final sampled sets are X (t)

R50 = X (t)
R50S ∪X

(t)
R50C

and Y(t)
R50 = Y(t)

R50S ∪ Y
(t)
R50C . The number of retained key-

points and overlap ratios are also visualized.
Fig. 4a shows the adaptive strategy performs more effec-

tively at discarding keypoints at early stages and preserving
keypoints at later iterations. Fig. 4b illustrates that although
R50 has the close ratio to the adaptive strategy at the 2nd
and 3rd iterations by keeping more redundant keypoints,
the former loses overlap ratio dramatically after 4 iterations
while the latter still keeps the ratio over 90%.

Adaptive sampling with pose uncertainty. The match-
ing matrixM(t) might not be very accurate at the first sev-
eral iterations when descriptors are not discriminative, im-
pairing the accuracy. To mitigate the problem, we make
use of the predicted pose. Note, if most of the pre-
dicted matches are correct, the pose is more precise with
higher inlier ratio. However, if predicted matches contain
many outliers, the pose is probably not accurate and has
low inlier ratio. Consequently, we define the uncertainty
of the pose on its consistency with matches, as r(t) =
|{(xi,yi),s.t.fepipolar(P

(t),xi,yi)≤θe}|
|{(xi,yi,si),s.t.si≥θm}| (θe is threshold deter-

mining inliers). We use r(t) to adjust the sampling threshold
θm, as θ(t)m = θm ∗ r(t), allowing the model to dynamically
sample fewer keypoints when both matches and pose are
accurate and more when they are not.

3.4. Iterative process at test time

At test time, after each iteration, we compute
matches M(t) and estimate the pose from matches with
RANSAC [20]. We adopt the relative error between con-
secutively predicted pose P (t) and P (t−1) as stop criteria
to determine if continuing iteration. Specifically, if the
maximum angular errors of rotations and translations is
less than θP , the iteration stops. Benefiting from the em-
bedded geometry information, for about 55% of the cases
in YFCC100m dataset [43], 6 iterations rather than 9 are
enough to find a good pose. The predicted pose is further
used for adaptive sampling at test time (Sec. 3.3).

Once a good pose is predicted, more matches
can be found from the guidance of the pose with
function fPM . fMP first computes the epipolar
distance for all pairs in X (t),Y(t) as M(t)

e where
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M(t)
eij = fepipolar(X (t)

i ,Y(t)
j ) and fepipolar(x, y) =

(yTP (t)x)2

(P (t)x)21+(P (t)x)22+(P (t)T y)21+(P (t)T y)22
. Then M(t)

e is bina-
rized with errors smaller than 12px as 1 otherwise 0 as
M̄(t)

e . Finally, the pose-guided matching matrix is obtained
as MP = M(t)

⊙
M̄(t)

e (
⊙

is element-wise multiplica-
tion). As shown in Fig. 2c, matches with high uncertainties
caused by similar descriptors at regions with repetitive tex-
tures can be effectively mitigated by pose constraints. These
matches usually require more number iterations to be found.

4. Experiment Setup
Training. We implement the model in PyTorch [29] and

train it on MegaDepth dataset [25] for 900k iterations with
Adam optimizer [23], batch size of 16, initial learning rate
of 0.0001. The learning rate decays with ratio of 0.99996
after 200k iterations and is fixed at 0.00001. We use 1024
SuperPoint [17] and RootSIFT [2, 28] keypoints for train-
ing. As with SuperGlue [36], our network has T (9) itera-
tive blocks. αm, αp, αg , θm, θP , θe are set to 0.6, 0.2, 0.2,
0.2, 1.5 and 0.005, respectively. Note that unlike SuperGlue
which is first trained on Oxford-Paris dataset [31] and then
fine-tuned on Scannet [15] and MegaDepth [25] datasets
for indoor and outdoor models respectively, our models are
trained only on the MegaDepth dataset from scratch.

Datasets and metrics. We first test our method on
YFCC100m [43] and Scannet [15] datasets to evaluate the
performance on relative pose estimation. YFCC100m is a
large-scale outdoor dataset consisting of images with large
illumination and season changes and viewpoint variations.
Scannet is an indoor dataset widely used for depth predic-
tion [3] and pose estimation [12, 36]. For relative pose
estimation, we report the accurate cumulative error curve
(AUC) [36] at thresholds of 5◦, 10◦, and 20◦. The error
is the maximum angular errors of rotations and normalized
translations. We also report the mean matching score (M.S.)
and mean precision (Prec.) of matches.

We additionally test our method on large-scale localiza-
tion task at Aachen Day-Night (v1.0 and v1.1) datasets [37,
50]. Aachen v1.0 dataset comprises of 4,328 reference
and 922 query (824 day, 98 night) images. Aachen v1.1
extends v1.0 by adding additional 2,369 reference and 93
night query images. We use HLoc [35] pipeline for mapping
and localization and report the accuracy at error thresholds
of 0.25m/2◦, 0.5m/5◦, and 5m/10◦.

Baselines. The baselines comprise of simple match-
ers such as MNN and NN-RT [28]. Also, filtering-based
methods including OANet [49], AdaLAM [10], CLNet [51]
and LMCNet [27] are also included. The final part is
transformer-based matchers such as SuperGlue [36], SGM-
Net [12], and ClusterGNN [38]. As it is difficult to repro-
duce the results of SuperGlue from custom training (official
training code is not released), we follow SGMNet and show

Feature Matcher @5◦ @10◦ @20◦ M.S.(%) Prec.(%)

RootSIFT [28]

NN-RT [28] 26.7 43.2 59.4 4.4 56.4
AdaLAM (4k) [10] 27.5 44.5 60.5 6.3 84.3
OANet [49] [49] 22.4 36.3 50.3 5.6 53.7
CLNet [51] 33.0 52.1 68.5 7.8 75.2
LMCNet [27] 35.8 55.6 72.2 - 86.9
SuperGlue* [36] 35.3 56.1 73.6 - -
SuperGlue [12, 36] 35.1 54.2 70.9 16.6 81.7
SGMNet [12] 34.8 54.1 70.9 17.1 86.1
ClusterGNN [38] 32.8 50.3 65.9 - -
IMP 36.7 56.6 72.9 18.0 87.6
EIMP 36.8 56.3 72.8 13.7 89.8

SuperPoint [17]

MNN 6.5 15.4 28.5 16.2 16.2
AdaLAM (2k) [10] 20.8 36.5 51.9 10.9 72.0
OANet [49] 19.2 34.5 50.3 9.4 62.1
CLNet [51] 27.8 46.4 63.8 11.9 75.1
LMCNet [27] 17.4 33.2 51.1 - 88.9
SuperGlue* [36] 37.1 57.2 73.6 21.7 88.5
SuperGlue [12, 36] 33.2 53.5 70.8 19.7 78.7
SGMNet [12] 33.0 53.0 70.0 22.3 85.1
ClusterGNN [38] 35.3 56.1 73.6 - -
IMP 39.4 59.4 75.2 23.0 84.9
EIMP 37.9 57.9 74.0 19.9 88.4

Table 1. Results on YFCC100m dataset [43]. We report the AUC
of relative poses at error thresholds of 5◦, 10◦, and 20◦. The mean
matching score (M.S.) and mean matching accuracy (Prec.) are
also reported. The best and second best results are highlighted.

results of original SuperGlue (SuperGlue*) and the model
trained by SGMNet (SuperGlue).

5. Experiment Results
In this section, we first show results on relative pose esti-

mation and localization tasks in Sec. 5.1 and Sec. 5.2. Next,
we analyze the computational cost in Sec. 5.3. Finally, we
conduct a full ablation study to test each component in our
framework in Sec. 5.4.

5.1. Relative pose estimation

Comparison with filtering-based methods. Table 1
shows our IMP and efficient IMP (EIMP) give higher ac-
curacy than previous filtering-based approaches such as
OANet [49] and LMCNet [27] for both RootSIFT [2, 28]
and SuperPoint [17] features. Because these filtering-based
methods rely purely on the geometric information to filter
potentially wrong correspondences, their performance is in-
fluenced heavily by the quality of initial matches. In con-
trast, we use both the geometric information and descriptors
for matching, which are able to give more accurate matches,
resulting in more precise poses.

Comparison with matchers. Augmented with spatial
information, SuperGlue [36] and its variants [12, 38] out-
perform MNN and NN-RT obviously. Although SGM-
Net [12] and ClusterGNN [38] are faster, they give worse
accuracy than SuperGlue* due to the loss of information
in the message propagation process. With implicitly em-
bedded geometric information, our IMP gives more pose-
aware matches and hence outperforms SuperGlue* espe-
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Feature Matcher @5◦ @10◦ @20◦ M.S.(%) Prec.(%)

RootSIFT [28]

NN+RT [28] 9.1 19.8 32.7 2.3 28.8
AdaLAM (4k) [10] 8.2 18.6 31.0 3.1 47.6
OANet [49] 10.7 23.1 37.4 3.2 36.9
CLNet [51] 5.8 15.1 26.8 2.0 43.9
LMCNet [27] 8.5 19.3 32.4 - 47.0
SuperGlue* [36] - - - - -
SuperGlue [12, 36] 14.7 29.4 45.6 8.4 42.2
SGMNet [12] 14.4 29.9 46.0 8.8 45.6
IMP 15.6 30.9 47.4 5.8 42.0
EIMP 15.3 30.8 46.6 7.7 45.7

SuperPoint [17]

MNN 9.4 21.6 36.4 13.3 30.2
AdaLAM (2k) [10] 6.7 15.8 27.4 13.2 44.2
OANet [49] 10.0 25.1 38.0 10.6 44.6
CLNet [51] 4.1 11.0 21.6 8.6 44.2
LMCNet [27] 14.6 33.6 53.6 - 36.8
SuperGlue* [36] 16.2 32.6 49.3 16.8 47.9
SuperGlue [12, 36] 12.0 26.3 42.4 15.0 45.9
SGMNet [12] 16.4 32.1 48.7 17.0 48.1
IMP 16.6 33.1 49.4 15.8 42.0
EIMP 15.9 32.4 48.9 15.9 46.2

Table 2. Results on Scannet dataset [15]. We show the AUC of
relative poses at error thresholds of 5◦, 10◦, and 20◦. The mean
matching score (M.S.) and mean matching accuracy (Prec.) are
also reported. The best and second best results are highlighted.

cially for very precise pose estimation at error threshold of
5◦. Enhanced by geometric information, our EIMP even
gives slightly better results than SuperGlue* at error thresh-
olds of 5◦ and 10◦. Our EIMP outperforms previous effi-
cient methods such as SGMNet and ClusterGNN at all error
thresholds but has close even higher efficiency.

Table 2 shows results on the Scannet dataset [15]. Our
IMP and EIMP also give higher accuracy than filtering-
based approaches and other matchers on RootSIFT key-
points. When using SuperPoint, our IMP gives slightly bet-
ter performance than SuperGlue* and SGMNet, which yield
close performance to our EIMP. LMCNet [27] reports the
best accuracy at error thresholds of 10◦ and 20◦ with Super-
Point because LMCNet uses SuperGlue* to provide initial
matches and is further trained on the indoor dataset [47].

Qualitative comparison. As shown in Fig. 5, in the it-
eration process, IMP and EIMP produce more inliers and
more accurate poses progressively. Besides, EIMP dynam-
ically discards useless keypoints after each iteration. We
also show the results of SuperGlue* [36] and SGMNet [12].
Due to large viewpoint changes, both SuperGlue and SGM-
Net give much fewer inliers from only a small area and have
larger errors compared to our models. In the iterative pro-
cess, inliers span almost the whole meaningful regions, re-
sulting in more robust pose estimation.

5.2. Visual localization

As most filtering methods don’t provide results on visual
localization task, we only show results of OANet [49] and
AdaLAM [10]. OANet and AdaLAM give close accuracy
to MNN at error thresholds of 0.25m, 2◦ and 0.5m, 5◦, but
much better performance at threshold of 5m, 10◦, because

Feature Matcher Day Night
(0.25m, 2◦)/(0.5m, 5◦)/(5m, 10◦)

SuperPoint [17]

MNN 85.4 / 93.3 / 97.2 75.5 / 86.7 / 92.9
OANet [49] - 77.6 / 86.7 / 98.0
AdaLAM [10] - 78.6 / 86.7 / 98.0
ELAM [41] - 78.6 / 87.8 / 96.9
SuperGlue [12, 36] - 76.5 / 88.8 / 99.0
SuperGlue* [36] 89.6 / 95.4 / 98.8 86.7 / 93.9 / 100.0
SGMNet [12] 86.8 / 94.2 / 97.7 83.7 / 91.8 / 99.0
ClusterGNN [38] 89.4 / 95.5 / 98.5 81.6 / 93.9 / 100.0
IMP 89.1 / 95.4 / 99.0 86.7 / 94.9 / 100.0
EIMP 90.0 / 96.5 / 99.2 84.7 / 94.9 / 100.0

SuperPoint [17]

MNN 87.9 / 93.6 / 96.8 70.2 / 84.8 / 93.7
AdaLAM [10] - 73.3 / 86.9 / 97.9
SuperGlue* [36] 89.8 / 96.6 / 99.4 75.9 / 90.1 / 100.0
SGMNet [12] 88.7 / 96.2 / 98.9 75.9 / 89.0 / 99.0
IMP 89.1 / 95.4 / 99.0 75.9 / 92.7 / 99.5
EIMP 90.0 / 96.5 / 99.0 77.0 / 91.6 / 99.5

Table 3. Results on Aachen v1.0 (top) and v1.1 (bottom)
dataset [37,50]. The best and second best results are highlighted.

test images with larger viewpoint changes are more sensi-
tive to outliers which can be partially filtered by OANet and
AdaLAM. Our IMP obtains similar performance to Super-
Glue* [36] and outperforms SGMNet and ClusterGNN es-
pecially for night images. Note that our models are only
trained on the MegaDepth dataset [25] while SuperGlue* is
additionally pretrained on Oxford and Pairs dataset [31].

EIMP slightly outperforms IMP and SuperGlue*. That
is because in the long-term large-scale localization task,
query and reference images usually have larger viewpoint
and illumination changes with more keypoints without true
matches. EIMP effectively discards these keypoints, guar-
anteeing the quality of matches and thus improving the lo-
calization accuracy.

5.3. Running time

As the source code of ClusterGNN [38] is not released,
we mainly compare our method with SuperGlue* [36] and
SGMNet [12]. The total time for each method is the sum-
mary of the time used at each iteration. IMP reduces the
time by reducing the number of iterations and EIMP further
decreases the time of each iteration.

Fig. 6a shows the number of iterations for relative pose
estimation on YFCC100m dataset [43]. SuperGlue* and
SGMNet adopt a fixed number of layers and only give
matches at the last layer, so they don’t report any results
before the last iteration. In contrast, IMP needs only 4 iter-
ations for 30% cases and 5 iterations for 55% cases to find
a good pose (relative pose error less than 1.5), avoiding ex-
tra computation. Although EIMP loses some matches by
discarding useless keypoints, it obtains close results to IMP.
Fig. 6b shows the running time of SuperGlue*, SGMNet,
IMP and EIMP. When using 1k and 2k keypoints, IMP and
EIMP run slower than SuperGlue* because of additional in
shared attention. However, when using more than 3k key-
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Figure 5. Qualitative comparison. We visualize the iterative process (left→right) of IMP (top) and EIMP (bottom). For each pair, we
report the number inliers/matches and rotation/translation errors (bottom) and the number of preserved keypoints in two sets (top) at each
iteration. Inliers between two images are visualized. In the iterative process, our model not only finds more inliers but enforces inliers to
span wider regions. However, both SuperGlue* and SGMNet predict fewer matches from a small area, resulting higher pose errors.
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Figure 6. Running time analysis. We show (a) the number of
iterations required for each pair YFCC100m dataset [43] and (b)
the mean running time of 1k pairs on RTX 3090.

points, IMP runs faster because it uses fewer number of it-
erations (10) for sinkhorm optimization [14, 39]. Benefit-
ing from adaptive pooling strategy, EIMP works even faster
than SGMNet when using less than 6k keypoints but gives
better accuracy, as demonstrated in Table 1.

5.4. Ablation study

We conduct a full ablation study for relative pose esti-
mation on YFCC100m dataset [43] with SuperPoint [17]
keypoints to verify all components in our model including
the shared attention (S), pose-consistency loss (C), pose-
aware iteration (P), adaptive pooling (A), and adaptive pool-
ing with pose uncertainty (U).

Table 4 shows that shared attention (S) improves both
the pose and matching accuracy by propagating more mes-
sage to each keypoint. By infusing the geometric informa-
tion in the iterative process, pose-consistency loss (C) and
pose-aware iteration (P) also enhance the performance of
IMP and EIMP. Comparisons between IMP-SC and EIMP-
SCA indicate that our adaptive pooling loses 5% matches
(M.S. 23.7 vs. 18.4) and gains 1% inliers (Prec. 87.7
vs. 88.7). The pose uncertainty (U) further increases the
number of matches (M.S. 18.3 vs. 19.9) and inliers (Prec.
86.5 vs. 88.4) and enhances the pose accuracy about 0.7%
by dynamically adjusting the sampling ratio to avoid over-
pruning at each iteration. EIMP-S, which is a ratio-based

Model S C P A U @5◦ @10◦ 20◦ M.S.(%) Prec.(%)

IMP 7 7 7 7 7 36.9 57.1 73.7 23.7 85.2
IMP-S (base) 3 7 7 7 7 38.6 58.3 74.6 23.6 87.2
IMP-SC 3 3 7 7 7 39.1 59.0 75.0 23.7 87.7
IMP-SCP (full) 3 3 3 7 7 39.4 59.4 75.2 23.0 84.9

EIMP-S 3 7 7 7 7 35.4 55.5 72.1 7.8 91.2
EIMP-SA (base) 3 7 7 3 7 36.4 56.5 73.0 18.4 88.8
EIMP-SCA 3 3 7 3 7 36.9 56.6 73.3 18.4 88.7
EIMP-SCPA 3 3 3 3 7 37.2 57.2 73.3 18.3 86.5
EIMP-SCPAU (full) 3 3 3 3 3 37.9 57.9 74.0 19.9 88.4

Table 4. Ablation study. We test the efficacy of shared attention
(S), pose-consistency loss (C), adaptive pooling (A), pose-aware
iteration (P), and adaptive sampling with pose uncertainty (U) on
YFCC100m dataset [43] with SuperPoint [17] features. The best
and second best results are highlighted.

sampling, gives promising pose accuracy but loses over
10% matches (M.S. 7.8 vs. 18.4) than adaptive pooling,
EIMP-SA, which effectively mitigates this problem.

6. Conclusions
In this paper, we propose the iterative matching and

pose estimation framework, allowing the two tasks to boost
each other and thus improving the accuracy and efficiency.
Particularly, we embed the geometric information into the
matching module, enforcing the model to predict matches
which are not only accurate but also able to give a good
pose. Moreover, in each iteration, we utilize the predicted
matches, relative pose, and attention scores to remove key-
points without potential true matches adaptively at each iter-
ation, improving the efficiency and preserving the accuracy.
Experiments demonstrate that our method achieves better
performance than previous approaches on relative pose es-
timation and large-scale localization tasks and has high ef-
ficiency as well.
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