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Figure 1. CIMI4D is a dataset of rock climbing motions recorded using RGB cameras, LiDAR, and IMUs. CIMI4D contains 42 action
sequences of 12 actors climbing 13 climbing walls, and provides finely annotated human poses and global trajectories (orange lines). The
pictures showcase various types of complex scenes (7 of them has high-precision point cloud scan) and challenging actions in CIMI4D.

Abstract
Motion capture is a long-standing research problem. Al-

though it has been studied for decades, the majority of re-
search focus on ground-based movements such as walking,
sitting, dancing, etc. Off-grounded actions such as climb-
ing are largely overlooked. As an important type of action
in sports and firefighting field, the climbing movements is
challenging to capture because of its complex back poses,
intricate human-scene interactions, and difficult global lo-
calization. The research community does not have an in-
depth understanding of the climbing action due to the lack
of specific datasets. To address this limitation, we collect
CIMI4D, a large rock ClImbing MotIon dataset from 12
persons climbing 13 different climbing walls. The dataset
consists of around 180,000 frames of pose inertial mea-
surements, LiDAR point clouds, RGB videos, high-precision
static point cloud scenes, and reconstructed scene meshes.
Moreover, we frame-wise annotate touch rock holds to fa-
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cilitate a detailed exploration of human-scene interaction.
The core of this dataset is a blending optimization pro-
cess, which corrects for the pose as it drifts and is af-
fected by the magnetic conditions. To evaluate the merit
of CIMI4D, we perform four tasks which include human
pose estimations (with/without scene constraints), pose pre-
diction, and pose generation. The experimental results
demonstrate that CIMI4D presents great challenges to ex-
isting methods and enables extensive research opportuni-
ties. We share the dataset with the research community in
http://www.lidarhumanmotion.net/cimi4d/.

1. Introduction

Capturing human motions can benefit many downstream
applications, such as AR/VR, games, movies, robotics,
etc. However, it is a challenging and long-standing prob-
lem [1,7,35,37,75] due to the diversity of human poses and
complex interactive environment. Researchers have pro-
posed various approaches to estimate human poses from
images [15, 16, 19, 30, 67], point clouds [33], inertial mea-
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surement units (IMUs) [21, 69], etc. Although the prob-
lem of human pose estimation (HPE) has been studied for
decades [6, 58, 63], most of the existing solutions focus
on upright frontal poses on the ground (such as walking,
sitting, jumping, dancing and yoga) [54]. Different from
daily activities (such as walking and running) that are on
the ground, climbing is an activity off the ground with back
poses, which is also an important type for sports [22, 50],
entertainment [31, 32, 55], and firefighting.

Climbing is an activity that involves ascending geo-
graphical objects using hands and feet, such as hills, rocks,
or walls. Estimating the pose of a climbing human is chal-
lenging due to severe self-occlusion and the human body’s
closely contact with the climbing surface. These issues
are primarily caused by complex human-scene interactions.
Moreover, understanding the climbing activities requires
both accurate captures of the complex climbing poses and
precise localization of the climber within scenes, which is
especially challenging. Many pose/mesh estimation meth-
ods are data-driven methods [24,45,54,65], relying on huge
climbing motion data for training networks. So a large-scale
climbing dataset is necessary for the holistic understanding
of human poses. Publicly available human motion datasets
are mostly in upright frontal poses [2, 36, 47], which are
significantly different from climbing poses. Albeit some
researchers collected RGBD-based climbing videos [4] or
used marker-based systems [22], their data is private and
the scale of dataset is very limited.

To address the limitations of current datasets and boost
related research, we collect a large-scale multimodal climb-
ing dataset, CIMI4D, under complex human-scene inter-
action, as depicted in Fig. 1. CIMI4D consists of around
180,000 frames of time-synchronized and well-annotated
LiDAR point clouds, RGB videos, and IMU measurements
from 12 actors climbing 13 rock-climbing walls. 12 ac-
tors include professional athletes, rock climbing enthusi-
asts, and beginners. In total, we collect 42 rock climb-
ing motion sequences, which enable CIMI4D to cover a
wide diversity of climbing behaviors. To facilitate deep un-
derstanding for human-scene interactions, we also provide
high-quality static point clouds using a high-precision de-
vice for seven rock-climbing walls. Furthermore, we anno-
tate the rock holds (holds) on climbing walls and manually
label the contact information between the human body and
the holds. To obtain accurate pose and global trajectory of
the human body, we devise an optimization method to an-
notate IMU data, as it drifts over time [10,59] and is subject
to magnetic conditions in the environment.

The comprehensive annotations in CIMI4D provide the
opportunity for benchmarking various 3D HPE tasks. In
this work, we focus on four tasks: human pose estima-
tion with or without scene constraints, human pose predic-
tion and generation. To assess the effectiveness of existing

methods on these tasks, we perform both quantitative and
qualitative experiments. However, most of the existing ap-
proaches are unable to capture accurately the climbing ac-
tion. Our experimental results demonstrate that CIMI4D
presents new challenges for current computer vision algo-
rithms. We hope that CIMI4D could provide more opportu-
nities for a deep understanding of human-scene interactions
and further benefit the digital reconstruction for both. In
summary, our contributions can be listed as below:

• We present the first 3D climbing motion dataset,
CIMI4D, for understanding the interaction between
complex human actions with scenes. CIMI4D consists
of RGB videos, LiDAR point clouds, IMU measure-
ments, and high-precision reconstructed scenes.

• We design an annotation method which uses multiple
constraints to obtain natural and smooth human poses
and trajectories.

• We perform an in-depth analysis of multiple methods
for four tasks. CIMI4D presents a significant challenge
to existing methods.

2. Related Work
2.1. Human Pose Datasets

The focus of human pose estimation research is partially
driven by the design of datasets. To recover 2D poses from
RGB videos, researchers have proposed various datasets [3,
8, 25, 74]. For 3D human pose estimation, researchers have
collected multiple datasets [23, 36, 42, 52, 57].

HumanEva [52] contains 4 subjects performing a set
of predefined actions within indoor scenarios, and with
static background. The Human3.6M [23] consists of human
poses from 11 actors within 17 controlled indoor scenarios.
The scenarios consist discussion, greeting, walking, wait-
ing, eating, sitting, etc. Its 3D ground truth is collected
through marker-based approaches. MPI-INF-3DHP [38]
captures human motion using a multi-camera markerless
motion capture system in a green screen studio. It consists
8 actors performing 8 activities including walking/standing,
sitting/reclining, exercising/crouching, dancing/sports. Ex-
cept the diving activities, most of the activities are ground-
based activities. TotalCapture [57] provides a 3D human
pose dataset consists of synchronized multi-view videos and
IMU. It is collected in a green scene studio wherein actors
perform actions such as walking, running, yoga, bending,
crawling, etc. 3DPW [59] is an in-the-wild 3D dataset col-
lected through a set of IMU sensors and a hand-held cam-
era. It contains 51,000 video frames of several outdoor and
indoor activities performed by 7 actors. PedX [27] consists
of 5,000 pairs of stereo images and LiDAR point clouds
for pedestrian poses. AMASS [36] is a large-scale Mo-
Cap dataset, which spans over 300 subjects and contains 40
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hours of motion sequences. The LiDARHuman26M [33]
consists of LiDAR point clouds, RGB videos, and IMU
data. It records 13 actors performing 20 daily activities in
2 controlled scenes. To our best knowledge, SPEED21 [11]
is the only published climbing dataset. It labels climbing
athletes’ 2D joints from sport-events videos (speed climb-
ing only). CIMI4D (120 minutes) is larger than SPEED21
(38 minutes) and has multiple modalities with 3D scenes.

2.2. Human Pose Datasets with Scene Constraints

PROX [17] records human-scene interactions in a vari-
ety of indoor scenes through a RGBD camera. Each indoor
scenes are pre-scanned using Structured RGBD scanners.
4DCapture [34] collects egocentric videos to reconstruct
second-person 3D human body meshes without reliable 3D
annotations. HPS [14] uses IMUs and head-mounted cam-
eras to reconstruct human poses in large 3D scenes, but does
not interact with the scene. EgoBody [72] records human-
interaction from egocentric views. HSC4D [9] is a human-
centered 4D scene capture dataset for human pose estima-
tion and localization. It is collected by body-mounted IMU
and LiDAR through walking in 3 scenes. RICH [20] con-
tains multiview outdoor/indoor video sequences, ground-
truth 3D human bodies, 3D body scans, and high resolution
3D scene scans.

2.3. Pose Estimation Methods

Extensive work has focused on estimating the pose,
shape, and motion of human from pure vision-base data [29,
61]. PiFu [48], PiFuHd [49] and ICON [65] estimate
clothed human from RGB images. GLAMR [71] estimate
global human mesh with dynamic cameras. RobustFu-
sion [53], EventCap [66] and LiDARCap [33] capture hu-
man motion using a RGBD camera, an event camera and
a LiDAR, respectively. FuturePose [64] predicts the move-
ment of skeleton human joints. S3 [68] and TailorNet [41]
represent human pose, using neural implicit function.

Human pose priors are used in pose estimation tasks [13,
24, 28, 43, 45, 56, 73]. Most of them learn priors from the
AMASS dataset [36]. Due to the lack of datasets, only a few
work considers human scene interactions, PROX [17] and
LEMO [73] estimate human poses with scene constraints.
POSER [18] populates scenes with realistic human poses.
Besides the vision-based approaches, body-worn IMUs [9,
14, 21, 44, 59, 60, 70] are used in human pose estimation.
Our dataset can be used for developing better human pose
estimation methods using different modalities with scenes.

Researchers have use various methods to study the
climbing activity [2, 47]. [62] uses multi-view stereo to
reconstruct a rock wall. [40] uses OpenPose [7] to extract
the skeleton of climbers. [46] captures poses and positions
through RGB video and a marker.

Figure 2. CIMI4D provides rich annotations for different modali-
ties, including (a) High Precision Static Point Cloud, (b) Dynamic
Point Cloud Sequence, (c) Reconstructed Mesh Scene, (d) RGB
Video, (e) Ground-truth Pose, (f) Body Point Cloud Sequence, (g)
Ground-truth Trajectory, (h) Contact (rock holds) Annotation.

3. Constructing CIMI4D
CIMI4D is a multi-modal climbing dataset that contains

60 minutes of RGB videos, 179,838 frames of LiDAR point
clouds, 180 minutes of IMU poses, and accurate global tra-
jectory. Fig. 2 depicts different modalities of one scene.
Daily activities such as walking and sitting, could be cap-
tured in typical rooms with many volunteers available. But
capturing the climbing motions should be performed in out-
door or a gym with volunteers having necessary climbing
skills. We have invited 12 climbers (professional athletes,
enthusiasts, and beginners) to climb on 13 climbing walls.
For professional athletes, we do not provide RGB videos.
These participants agreed that their recorded data could be
used for scientific purposes. In total, we collect 42 complex
climbing motion sequences.

Tab. 1 presents statistics of comparison to other pub-
licly available human pose datasets. CIMI4D focuses on
climbing motions, while most other datasets capture ground
movements. Collecting CIMI4D data is more difficult than
collecting daily behavior data, as we require setting up mul-
tiple devices, including RGB cameras and LiDAR. Each
sequence require recalibration of the IMUs to maintain
the quality of the dataset. Secondly, our dataset covers
multiple modalities, including human points, RGB videos,
motion-capture pose data from IMUs, and annotating com-
plex human-scene interactions, which previous datasets did
not provide. In addition, CIMI4D includes high-precision
3D LiDAR-scanned point clouds of climbing scenes. Most
image-based datasets do not provide depth information or
scenes. Finally, CIMI4D consists of the global trajectory of
each climber. Most other datasets do not contain global tra-
jectories that are important for human scene understanding.

3.1. Hardware and Configuration

To construct CIMI4D, We build a convenient collection
system composed of necessary hardware equipment to facil-
itate our data collection both indoors and outdoors. Every
participant wears a Noitom’s inertial MoCap outfit during
climbing. As it is depicted in Fig 3, each outfit contains
17 IMUs, which records pose data at 100 frame-per-second
(FPS). Meanwhile, we use LiDAR (128-beams Ouster-os1)
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Dataset 3D scene Body point Interaction LiDAR RGB video Trajectory IMU Frames Motions In/Out-door

PROX [17] " " " 20k Daily Indoor
LiDARHuman26M [33] " " " " 184k Daily Outdoor
BEHAVE [5] " " " 15k Daily Indoor
HPS [14] " " " " 7k Daily Outdoor
3DPW [59] " - " 51k Daily Outdoor
HSC4D [9] " " " " " 10k Daily Outdoor
AMASS [36] " " 2420mins Many Both
RICH [20] " " " " 577k Many Both
SPEED21 [11] " 46k Climbing Both
CIMI4D(Ours) " " " " " " " 180k Climbing Both

Table 1. Comparison with existing motion datasets.

RGB CameraDigital
 LiDAR

Mini Host IMU Sensors *17

Figure 3. Data Capturing System. Including 17 wearable IMU
sensors, a LiDAR, a RGB camera and a computer.

to capture 3D dynamic point clouds at the speed of 20 FPS,
and the RGB videos are recorded by an RGB camera (DJI
Action 2) at the rate of 60 FPS. The LiDAR has a 360◦ hori-
zon and a 45◦ vertical field of view, we lay it flat to capture
climbers’ point clouds for high FOV on vertical walls. The
13 climbing scenes in CIMI4D are categorized into vertical
and wide walls for lead climbing, speed climbing(heights
up to 20m), and bouldering(long horizontal lengths). We re-
constructed seven walls using high-precision RGB 3D point
clouds with 40M points, obtained with the Trimble X7 3D
laser scanning system.

Coordinate Systems. We define three coordinate systems:
1) IMU coordinate system {I}. 2) LiDAR Coordinate sys-
tem {L}. 3) Global/World coordinate system {W}. We use
subscript k to indicate the index of a frame, and superscript,
I or L or W , to indicate the coordinate system that the data
belongs to. For example, the 3D point cloud frames from
LiDAR is represented as PL = {PL

k , k ∈ Z+}.

Human Pose Model. A human motion is denoted by M =
(T, θ, β), where T represents the N ×3 translation parame-
ters, θ denotes the N ×24×3 pose parameters, and β is the
N×10 shape parameter following SMPL [35], N represents
the temporal point cloud frames. It use Φ to map (T, θ, β) to
its triangle mesh model, Vk, Fk = Φ(T, θ, β), where body
vertices Vk ∈ R6890×3 and faces Fk ∈ R13690×3.

Annotation The pose θ and the translation T obtained from
the IMU measurements may be inaccurate. IMUs suffer se-
vere drifting for long-period capturing. Further, IMUs sub-
ject to the magnetic condition of the environments. We seek

to find the precise T and θ for CIMI4D as annotation labels.

3.2. Data Annotation Pipeline

The data annotation pipeline consists of 3 stages: pre-
processing, blending optimization, and manual annotation.
Fig. 4 depicts the preprocessing and the blending optimiza-
tion stages of the annotation pipeline. Sec. 3.3 describe the
data preprocessing stage which calibrates and synchronizes
multi-modal data. Sec. 3.4 describes the blending optimiza-
tion stage which uses multiple constraints to improve the
quality of human pose and global translation. Sec. 3.5 de-
scribes the manual annotation stage.

3.3. Multi-modal Data Preprocessing Stage

First, we convert high-precision 3D laser scanning data
into colored point cloud scenes, followed by conversion of
point cloud sequences recorded by the LiDAR into dynamic
scenes and register the static and dynamic scenes. Second,
we segment human body point clouds from each frame to
assist annotation process, and obtain human pose θ based
on the SMPL [35] model by IMU measurements. Finally,
we perform frame-level time synchronization and orienta-
tion calibration on the scenes, human poses, human point
clouds, and RGB videos.

Time synchronization. The synchronization between the
IMUs, LiDAR, and RGB video is achieved by detecting the
peak of a jumping event. In each motion sequence, the actor
jumps in place, and we design a peak detection algorithm
to find the height peaks in both the IMU’s and LiDAR’s
trajectories automatically. The RGB video and IMU data
are down-sampled to 20 FPS, which is consistent with the
frame rate of LiDAR. Finally, the LiDAR, RGB video and
IMU are synchronized based on the timestamp of the peak.

Pose and Translation Initialization A person’s motion se-
quence in world coordinate {W} is denoted by MW =
(TW , θW , β). The T I and θI in M I = (T I , θI , β) are pro-
vided by the MoCap devices. We use θW = RWIθ

I to the
pose, where RWI is the coarse calibration matrix from I to
W , and compute the center of gravity of the human body
point cloud as the initial translation.
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Point Cloud Sequences
From LiDAR

Wearable IMU Measurements 

3D Laser Scanning 
Data

RGB Videos

Input

Register and reconstruct
 RGB point cloud scenes

Synchronize and calibrate  point clouds, IMU 
poses and RGB images frame-by-frame

Data Preprocessing

Limb Contact Loss

✕ Wrong rocks
✓Right rocks

SMPL to Point loss

Pose opt

Smooth Translation and Joints LossLimb Sliding Loss
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Pose opt

Pose opt

Blending Optimization

Output
Optimization Pose and Trajectory in Reconstruct Scene 

mesh

mix
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Figure 4. Overview of main annotation pipeline. The blue arrows indicate data flows, and the yellow arrows represent the direction
of optimization. Dotted box: The input of each scene consists of RGB videos, point cloud sequence, IMU measurements, and 3D laser
scanning data. Data pre-processing stage calibrates and synchronizes different modalities. Solid box: The blending optimization stage
optimize including the pose and translation based on multiple constraint losses.

3.4. Blending Optimization Stage

We utilize scene and physical constraints to perform a
blending optimization of pose and translation to obtain ac-
curate and scene-natural human motion MW annotation.
The following constraints are used: the limb contact con-
straint Llc encourages reasonable hand and foot contact
with the scene mesh without penetrating. The limb sliding
constraint Lls eliminates the unreasonable slippage of the
limbs during climbing. The smoothness constraint Lsmooth

makes the translation, orientation, and joints remain tempo-
ral continuity. The SMPL to point constraints Lsp minimiz-
ing the distance between constructed SMPL vertices to the
point clouds of human body. Please refer to the supplemen-
tary material for detailed formulation of the constraints.

The optimization is expressed as:

L = λlcLlc + λlsLls + Lsmooth + λspLsp (1)

where λlc, λls, λsp are coefficients of loss terms. L is
minimized with a gradient descent algorithm that optimize
MW = (T, θ). MW is initialized in Sec. 3.3.

Limb contact Loss. This loss is defined as the distance
between a stable foot or hand and its neighbor among the
scene vertices. First, we detect the state of the foot and
hand based on their movements, which are calculated using

the set of vertices of hands and feet. One limb is marked as
stable if its movement is smaller than 3cm and smaller than
another limb (foot or hand)’s movement. Subsequently, we
perform a neighbor search to obtain the contact environment
in the vicinity of the stable limb. The limb contact loss is
Llc = Llcfeet

+ Llchand
.

Limb sliding Loss. This loss reduces the motion’s slid-
ing on the contact surfaces, making the motion more nat-
ural and smooth. The sliding loss is defined as the dis-
tance of a stable limb over every two successive frames:
Lls = Llsfeet

+ Llshands
.

Smooth Loss. The smooth loss includes the translation
term Ltrans and the joints term Ljoints.

Lsmooth = λtransLtrans + λjointsLjoints (2)

The Ltrans smooths the trajectory T of human (the trans-
lation of the pelvis) through minimizing the difference be-
tween LiDAR and a human’s translation difference. The
Ljoints is the term that smooths the motion of body joints
in global 3D space, which minimizes the mean acceleration
of the joints. For this loss, we only consider stable joints in
the trunk and neck regions. λtrans, λjoints are coefficients.

SMPL to point loss. For each estimated human meshes,
we use Hidden Points Removal (HPR) [26] to remove the
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RGB Point CloudOurs
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Figure 5. Qualitative evaluation. From left to right: RGB image,
our method with the preprocessing and optimization stage, LiDAR
point clouds, IMU pose and translation, after preprocessing stage
(IMU+LiDAR Trans), optimization stage without the smooth loss
(IMU+Opt-Trans).

Scene ACCEL↓ PMPJPE↓ MPJPE↓ PVE↓ PCK0.5↑
Vertical 1 0.57 2.04 6.52 8.08 0.99

Horizontal 1 0.50 1.96 4.26 6.27 0.99

Table 2. Quantitative evaluation of annotations for two scenes.

invisible mesh vertices from the perspective of LiDAR.
Then, we use Iterative closest point (ICP) [51] to register
the visible vertices to P , which is segmented human point
clouds. We re-project the human body mesh in the LiDAR
coordinate to select the visible human body vertices V ′. For
each frame, We use Lsp to minimize the 3D Chamfer dis-
tance between human points Pi and vertices V ′

i. More de-
tails about loss terms definition are given in the appendix.

3.5. Manual Annotation Stage

Pose and translation annotation. After the optimization
stage, the human poses and translations are mostly well
aligned. For some artifacts, we manually change the pose
and the translation parameters of a climber’s motions.
Scene contact annotation. When climbing on a rock
wall, a person should apply physical forces on rock holds
to climb up. For an in-depth human-scene understanding of
the climbing activities, we annotate all the climbing holds in
the scene. Further, we have annotated the hands/feet when
they contact with the holds for some motion sequences.
Cross verification. We have invited two external re-
searchers to inspect our dataset. And we have manually
corrected the artifacts discovered by them.

4. Dataset Evaluations
In this section, the CIMI4D dataset quality is demon-

strated through qualitative and quantitative evaluations.
Qualitative comparison. Fig. 5 depicts a frame of the
CIMI4D dataset. As it is shown in the figure, the LiDAR
can obtain the point clouds of a human, but it does not
contain the translation and pose of a human. The IMU

Constraint term Scene

Llc Lsmooth Lsp Vertical 1 Vertical 2 Horizontal 1 Horizontal 2

% % % 48.28 60.04 59.83 47.74
! ! % 22.64 28.33 41.67 26.64
! % ! 33.48 40.44 44.77 31.44
% ! ! 24.64 38.37 42.07 30.08

! ! ! 16.24 23.46 34.34 20.21

Table 3. Loss of the optimization stage for different constraints

poses (IMU+IMU-trans) drift over time, its translation is
not correct. The preprocessing stage (IMU+LiDAR-Trans)
does improve the quality of the data. However, IMUs are
impacted by the magnetic field of the wall, which con-
tains rebars. IMU pose mistakenly touches a wrong rock
point. Using the optimization stage without the smooth loss
(IMU+Opt-Trans) improves the quality of annotations with
fewer number of wrong touch than IMU+LiDAR-Trans.
Our method can accurately reconstruct the pose and trans-
lation of a person.

Evaluation metrics. In this section and in Sec. 5,
we report Procrustes-Aligned Mean Per Joint Position Er-
ror (PMPJPE), Mean Per Joint Position Error (MPJPE),
Percentage of Correct Keypoints (PCK), Per Vertex Er-
ror (PVE), and Acceleration error(m/s2) (ACCEL). Except
ACCEL, error metrics are measured in millimeters.

Quantitative evaluation. To quantitatively evaluate the
annotation quality of CIMI4D, we have manually annotated
motion sequences from two scenes. And then evaluate the
performance of the optimization stage by comparing the an-
notations generated by the optimization stage (in Sec. 3.4)
with manual annotations.

Tab. 2 shows the error metrics of the annotations gen-
erated by the optimization stage, the errors are quite
small. This indicates that the effectiveness of the annota-
tion pipeline, and suggests that the high quality of CIMI4D.

Further, to understand the impact of different constraints
used in the optimization stage, we conduct ablation study of
3 different constraints: Lcont, Lsmt and Lstp. Tab. 3 shows
the loss of using different combinations of constraints for
motions from 4 scenes. The loss is an indicator of viola-
tion of motion constraints. Without using any term, the loss
is largest, which suggests that motions may seem unnatu-
ral. The Lct and Lsmt terms can reduce total loss, which
indicates that they can improve the overall quality of data.
Combing Lstp can further improve the quality of motions.
Overall, all constraint terms are necessary to produce accu-
rate and smooth human pose and translation.

5. Tasks and Benchmarks
In this section, we perform an in-depth analysis on the

performance of state-of-the-art approaches on the CIMI4D
dataset. To evaluate the merit of the CIMI4D dataset, we
consider four tasks: 3D pose estimation, 3D pose estima-
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RGB Image Ground Truth Point Clouds Openpose(Body25) PROX

Figure 6. Qualitative results of several algorithms on the CIMI4D dataset. It is challenging to reconstruct a climbing pose with high
ductility, even if algorithms are re-trained (marked by ⋆) or fine-tuned (marked by ⋄) based on CIMI4D. As indicated by the red circles,
all these methods have artifacts for limbs. As a scene-aware method, PROX performs better than other methods that do not use scene
constraints. This suggests that it is necessary to consider the human-scene interaction annotation provided in CIMI4D.

tion with scene constraints, motion prediction with scene
constraints, and motion generation with scene constraints.
We have randomly split the motion sequences with a ratio of
7:3 into training and test sets. We provide results of baseline
methods and existing methods. The experimental results for
these tasks and the new challenge brought by CIMI4D are
discussed in this section.

5.1. 3D Pose Estimation

Pose Estimation. In this task, the poses of climbing hu-
mans are estimated from RGB imagery or LiDAR point
clouds based on the CIMI4D dataset. For the methods eval-
uated in this section, VIBE [28], MEAD [61] and Dyn-
aBOA [13] estimate poses from RGB images, while Li-
DARCap and P4Transformer [12] recover the motions from
point clouds. The qualitative results of pose estimation are
depicted in Fig. 6. As it is pointed out by the red circles in
this figure, all these methods have artifacts. The quantitative
results are depicted in Tab. 4. The pretrained LiDARCap
model performs bad (PCK0.5= 0.46) on CIMI4D. Further,
we train LiDARCap and P4Transformer on CIMI4D. The
RGB-based approach (VIBE) does not perform good on this
dataset too. After fine-tuning on CIMI4D, the performance
of VIBE is improved. However, the performance is still
poor compared to the original paper. Overall, the error met-
rics for all these methods are increasing, which indicates
that CIMI4D is a challenging dataset for pose estimation.

Pose Estimation with Scene Constraints. PROX [17]
and LEMO [73] are common-used pose estimation method
with scene constraints. To test them on CIMI4D, we ob-

Input Method ACCEL↓ PMPJPE↓ MPJPE↓ PVE↓ PCK0.5↑

LiDAR
LiDARCap 12.39 222.11 358.13 422.65 0.50

LiDARCap⋆ 2.59 86.38 115.93 136.83 0.90
P4Transformer⋆ 3.32 100.58 130.99 156.27 0.87

RGB

VIBE 68.02 287.14 770.77 857.83 0.17
VIBE⋄ 57.88 116.78 161.21 187.70 0.76

MAED⋄ 17.50 135.57 170.43 197.66 0.74
DynaBOA 52.4 230.86 303.16 285.62 0.54

Scene
PROX - 109.34 265.34 279.50 0.53

PROX⋄ - 109.33 147.41 165.12 0.79
LEMO 98.3 317.64 669.38 359.11 0.45

Table 4. Comparison of pose estimation by SOTA on different
modal data. ⋆ indicates training based on the CIMI4D dataset. ⋄
denotes fine-tuned based on the CIMI4D dataset. Other experi-
ments used the pretrained model of the original method.

tain skeleton information from OpenPose [7], and convert
the scene of CIMI4D into sdf form to build as the inputs
for them. As shown in Tab. 4, PROX has large estimation
error on CIMI4D. Further, we fine-tune PROX on CIMI4D.
Albeit its performance improves, the algorithm should be
further improved to obtain satisfactory performance.

Fig. 6 depicts the qualitative results for PROX and
LEMO. They rely upon others to provide 2D skeleton in-
formation. For such challenging poses with self-occlusion
and color similarity among humans and scene, 2D method
(i.e., OpenPose) fails. The human joints reconstructed by
PROX and LEMO have serious deviations, and the move-
ments of the volunteers are not correctly restored.

5.2. Motion Prediction and Generation

The rich annotations of CIMI4D enable us to explore
new motion-related tasks. The two tasks explored in this
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t = 0.0s - 1.0s Unnatural Action
Self 

Penetration

HuMoR(ICCV2021)

t = 0.0s - 6.0s

cVAE

Figure 7. Predicted body pose and translation. The gesture range
predicted by cVEA is slight, but reasonable. HuMor cannot pre-
dict climbing motions. The prior dataset AMASS make HuMor’s
movements eventually become daily motions, and generate many
unnatural and self-penetrating actions.

section are motion prediction and motion generation tasks
with scene constraints.

Motion Prediction. In this task, we predict the pose and
the global trajectory of a person in the future based on one
previous frame. This task is more difficult than merely pre-
dicting poses. As it is shown in Tab. 4, LiDAR-based ap-
proaches perform better than RGB-based approaches. Thus,
we predict motions based on point clouds.

We design a straightforward baseline architecture that
utilizes LiDARCap [33] as its backbone and incorporates
a conditional variational autoencoder to capture the distri-
bution of human motion. We also input climbing body
keyframes to HuMor [45]. They predict the poses and trans-
lations of a human in the next few second. Fig. 7 shows the
prediction results, although there are translation errors and
penetration artifacts, we can observe natural and smooth
hand movements, as indicated by the green arrow in cVAE.
Since HuMor uses AMASS as a priori action, it cannot pre-
dict climbing behavior, and all climbing actions eventually
become other motions. Many unreasonable movements can
be seen in the picture. It is challenging to predict motions
using the CIMI4D dataset.

Motion Generation with Scene Constraints. Given a
scene, it is interesting to generate a physically plausible
pose for better human-scene understanding. For example,
it is important for climbers to estimate possible poses for a
specific set of rock holds thus to climb up. For this tasks, we
design a baseline which uses a conditional variational au-
toencoder model to generate physically plausible pose. To
test the baseline, we choose some rock holds that model has
not seen before and then generates poses and translations
with physical plausibility.

Fig. 8 depicts examples of generated poses and transla-
tions. For some sets of holds, it is possible to generate rea-
sonable poses. But for some other sets of holds, the baseline
fails. Overall, the diversity of the motion generation algo-
rithm is small. It is challenging to generate poses and trans-
lations with scene constraints. For more details on these two
tasks, please refer to the supplementary materials.

Generated Pose Reference Pose Failed Generated Pose

Fail: Unnatural Action

Fail: Touch Non Point

Figure 8. Generated climbing poses with unseen holds. Blue poses
are reference poses. Orange and red poses are generated by the
baseline. Professional climber consider these orange poses to be
reasonable and natural, and the red generated poses are unrealistic.

6. Limitations and Future Work
There are three major limitations of CIMI4D. Firstly,

CIMI4D does not contain detailed hand poses, it leads to
a slight penetrating with the holds. This can be addressed
in future work by using MoCap gloves with the SMPL-X
model. Secondly, CIMI4D record the poses of climbers, but
it does not contain a fine category-level annotation of the
climbing actions. A fine-grain annotation of climbing mo-
tions could enrich this community better. Thirdly, we focus
on the reconstruction of human motions whereas ignoring
the photo-realistic reconstruction of 3D scenes. Using neu-
ral rendering techniques [39] to reconstruct 3D scenes and
humans may worth exploring.

7. Conclusion
We propose CIMI4D, the first 3D climbing dataset with

complex movements and scenes. CIMI4D consists of 180K
frames of RGB videos, LiDAR point clouds, IMU mea-
surements with precise annotations, and 13 high-precision
scenes. We annotate the dataset more accurately by blend-
ing optimization. Besides human pose estimation tasks, the
rich annotations in CIMI4D enable benchmarking on scene-
aware tasks such as motion prediction and motion genera-
tion. We evaluate multiple methods for these tasks, and the
results demonstrate that CIMI4D presents new challenges
to today’s computer vision approaches.
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