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Figure 1. We propose PlenVDB, a sparse volume data structure for accelerating NeRF training and rendering. Given a set of training
views, our method directly optimizes a VDB model. Then a novel view can be rendered with the model. Two advantages, i.e., fast voxel
access for faster speed, and efficient storage for smaller model size, enable efficient NeRF rendering on mobile devices.

Abstract

In this paper, we present a new representation for neural
radiance fields that accelerates both the training and the
inference processes with VDB, a hierarchical data struc-
ture for sparse volumes. VDB takes both the advantages
of sparse and dense volumes for compact data representa-
tion and efficient data access, being a promising data struc-
ture for NeRF data interpolation and ray marching. Our
method, Plenoptic VDB (PlenVDB), directly learns the VDB
data structure from a set of posed images by means of a
novel training strategy and then uses it for real-time ren-
dering. Experimental results demonstrate the effectiveness
and the efficiency of our method over previous arts: First, it
converges faster in the training process. Second, it delivers
a more compact data format for NeRF data presentation.
Finally, it renders more efficiently on commodity graphics
hardware. Our mobile PlenVDB demo achieves 30+ FPS,
1280×720 resolution on an iPhone12 mobile phone. Check
plenvdb.github.io for details.

* Work done while the author was an intern at ByteDance.
† Corresponding authors.

1. Introduction

With the recent advancement of Neural Radiance Fields
(NeRF) [17], high-quality Novel View Synthesis from a
sparse set of input images can be achieved. It has many ap-
plications in multimedia, AR/VR, gaming, etc. On the other
hand, new content creation paradigms have been proposed
based on NeRF, such as Dreamfusion [25], which enable
the possibility of general text-to-3D synthesis.

Despite the promising results, one shortage of NeRF is
the expensive computation of training and rendering, which
prohibits real-time applications and effective scene creation.
There have been many efforts to accelerate NeRF rendering
by pre-computing and storing the results or intermediate re-
sults into a 3D grid. Thus, the computation cost for ren-
dering will be reduced by several orders of magnitude. Al-
though the methods that exploit 3D dense grid [7,27,30] can
achieve real-time rendering and fast training, they usually
introduce more storage overhead, which limits the applica-
tion on mobile devices. On the other hand, for the methods
that utilize 3D sparsity [4, 5, 9, 10, 33], real-time rendering
and small storage overhead can be achieved, but the training
time is usually getting worse since many of them will first
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train a Vanilla NeRF or a dense grid, and then convert it to
the sparse representation.

In this paper, we propose an efficient sparse neural vol-
ume representation, which we call Plenoptic VDB (Plen-
VDB). The VDB [19] is an industry-proven efficient hierar-
chical data structure being used in high-performance anima-
tion and simulation for years. We adopt its design principle
and use VDB to represent NeRF. VDB takes both advan-
tages of sparse and dense volumes for compact data repre-
sentation and efficient data access, being a promising data
structure for NeRF data interpolation and ray casting. In
addition, we propose a novel training approach to directly
learn the VDB data without additional conversion steps, so
that our model is neat and compact. We show that our model
represents high-resolution details of a scene with a lower
volume size for fast training and rendering over the state
of the arts. Moreover, the trained VDB model can be ex-
ported into the NanoVDB [20] format and be used in graph-
ics shaders, such as the GLSL fragment shader, that enables
rendering a NeRF model on mobile devices in real-time.
In our experiment, the mobile PlenVDB achieves 30+ FPS,
1280×720 resolution on an iPhone12 mobile phone.

In summary, our approach has two main contributions:

• We first use VDB as the sparse volume data structure
for NeRF acceleration, and achieve fast rendering even
on mobile devices.

• We propose a strategy that learns the VDB directly and
achieves fast training and occupies small storage.

2. Related Work
Our work builds upon the prior work of NeRF rendering

acceleration and sparse volumetric representation for NeRF.
NeRF Applications. NeRF [17] made great contributions
to Novel View Synthesis, and there are some follow-up
works to extend the capability of NeRF. [6, 15, 24, 26] ex-
tended NeRF to model dynamic objects and scenes by ex-
plicitly introducing a displacement network that predicts ge-
ometric deformation or implicitly conditioning on an em-
bedding that represents the time. [1,8,11,12] used additional
parameters to make the NeRF controllable. GRAF [28] and
GIRAFFE [23] incorporated NeRF with GAN to generate
3D-aware images with various styles. Blcok-NeRF [31] al-
lowed the NeRF to city-scale scenes. However, due to the
time-consuming cost of NeRF, their practical application is
limited. With the efficient performance and powerful ecol-
ogy of VDB, our PlenVDB is expected to advance the prac-
tical application of NeRF.
Fast Rendering. While fitting the scene into MLPs re-
solves the problem of resolution and storage, it brings
out expensive time overhead during rendering, which lim-
its its practical application. The light field learning ap-
proaches [2, 16, 29] usually achieve faster rendering than

NeRF due to the less computation. However, light fields
predict the color of a ray, it will have to assume the color
is constant along a ray and cannot handle scenes has self-
occlusion. DIVeR [32] and SNeRG [9] used the voxel-
based representation to accelerate rendering, but still suf-
fered from expensive training. DONeRF [21] utilized a
depth oracle network to locate the surface region and reduce
the number of samples, but relied on depth ground truth for
training. Plenoctrees [33] utilized sphere harmonic coeffi-
cients to eliminate perspective dimensions and fit the scene
into a sparse octree, which achieves real-time rendering and
has a smaller storage overhead. EfficientNeRF [10] pro-
posed NerfTree, a 2-depth tree, and accelerate both training
and rendering. However, Plenoctrees and EfficientNeRF
do not support trilinear interpolation. Although the above
works increased the rendering speed by several orders of
magnitude, real-time rendering on mobile devices is still
unresolved. MobileNeRF [4] represented the NeRF as a set
of texture polygons, making it possible to adapt the tradi-
tional polygon rasterization pipeline. But it is slow to train
and fails at transparent objects. Our PlenVDB is friendly to
graphics shaders and is designed to perform fast trilinear in-
terpolation as well, thus contributing to real-time rendering
with higher quality, even on mobile devices.

Fast Training. Training NeRF usually takes one or two
days. To accelerate the training stage, Instant-ngp [18] used
the multiresolution hash table to accelerate the NeRF train-
ing to minutes, but it required large memory to support the
operations. TensoRF [3] introduced a tri-plane to achieve
faster convergence speed and smaller model size, but the
rendering was still computationally heavy. Plenoxels [5]
proposed to use a dense index array with pointers to a sep-
arate data array for the geometry model. DVGO [30] op-
timized NeRF model directly on a dense grid. Despite a
dense grid, DVGO introduced the post-activation interpola-
tion and imposed priors that help the model achieve NeRF-
comparable quality with a smaller resolution. However,
these works need to transfer a NeRF or DenseGrid to other
data structures (like Plenoctrees) for fast rendering. Simi-
lar to EfficientNeRF, our PlenVDB trains NeRF on a sparse
volume data structure and unifies the data structure both in
the training and rendering stage, thus being free from the
conversion step.

VDB. VDB [19] is an efficient sparse volume data struc-
ture that has been validated and polished by the film and
television industry for many years. And OpenVDB is an
open-source C++ library for the efficient storage and ma-
nipulation of VDB. NanoVDB [20] further supported GPU,
resulting in faster read access performance. However, it is
not as memory efficient for level set applications as DT-
Grid [22]. Recently, NeuralVDB [13] leveraged machine
learning to reduce the memory footprints of VDB with
slight compression errors. VBA [19] combined the VDB
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scene representation and the volumetric bundle adjustment
optimizer to build a system for online photorealistic recon-
struction. But they did not focus on real-time rendering
and relied on a guiding depth image for initialization. Our
PlenVDB first applies VDB to accelerate NeRF, both in the
training and rendering stage.

3. Preliminaries
In this section, we will recap the Neural Radiance

Fields(NeRF) and briefly introduce the structure of VDB.

3.1. Introduction to NeRF

NeRF models a scene as a MLP Φ that predicts the color
c and density σ of a given position from a given direction
p = (x, y, z):

Φ(p,d) = (σ ∈ R, c ∈ R3) (1)

Volume Rendering. To render a pixel, NeRF samples N
points {pi}Ni=1 along the ray r. Then the corresponding den-
sity {σi}Ni=1 and color feature {ci}Ni=1 are predicted from
NeRF. After that, the color of the pixel Ĉ(r) is calculated
by accumulating all samples:

Ĉ(r) =
N∑
i=1

Ti(1− exp(−δiσi))ci (2)

Ti = exp(−
i−1∑
j=1

σjδj) (3)

where δi is the distance between adjacent sampled points.

Training Objective. In the training, the loss function is
defined by the mean squared error between ground truth
C(r) and predicted color Ĉ(r):

L =
1

|R|
∑
r∈R

||(C(r − Ĉ(r)||22 (4)

where R is the set of sampled rays in a batch.

3.2. Introduction to VDB

VDB [19] is a four-layer B+ tree that consists of LeafN-
odes, InternalNodes, and RootNodes. The data are stored
in voxels and tiles, where a tile is a larger region contain-
ing multiple voxels but only has one value. Each voxel or
tile has one state and can be active or inactive, indicating
whether the corresponding value is interesting or not. In our
task, if a voxel is inactive, this coordinate will be regarded
as empty space. Since VDB has a fixed depth of 4, ran-
dom access can be very fast(on average constant time [19]).
Additionally, VDB uses an accessor as caching mechanism
for high-performance sequential access which enables fast
neighboring nodes queries.
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Figure 2. The comparison of different data structures: DenseG-
rid [30], Plenoxels [5], our PlenVDB and octree [33]. The brown
dashes trace the search path to two adjacent voxels numbered “1”
and “2”, successively.

Comparison with Other Data Structure. There are four
sketches of different data structures drawn in Figure 2. Spa-
tially: to represent a scene, the Octree is capable of us-
ing the smallest memory, as it can prune all empty voxels.
Conversely, the DenseGrid costs the largest. And Plenoxels
and PlenVDB are compromises between them. Temporally:
DenseGrid and Plenoxels can access to leafNodes within
O(1). For Octree, the time complexity becomes O(log n).
And for PlenVDB, it is on average O(1) [19]. When it
comes to frequent access to neighbor nodes (e.g. trilinear
interpolation), the accessor further amortizes the overhead
of slow lookup from the RootNode.

4. Proposed Method
This section details how to exploit VDB as the data struc-

ture for NeRF effectively and efficiently. For effective-
ness, we design a strategy to train NeRF directly on VDB
(Sec. 4.1). For efficiency, we propose a ray-marching-twice
algorithm to accelerate rendering and a merging operation
for further improvement (Sec. 4.2).

Motivated by DVGO [30] that trains NeRF directly on a
dense grid within minutes to reach NeRF-comparable qual-
ity, we replace the dense grid with VDB to prove the ef-
fectiveness and efficiency of our method. We are driven
by two reasons: (1) VDB consumes only as much memory
as is required to represent active voxels while maintaining
the flexibility and performance characteristics of a typical
dense volumetric data structure. (2) VDB executes fast ran-
dom access and spatially coherent sequential access. The
first reason interprets the close relationship between a dense
grid and VDB, while VDB saves more space than a dense
grid. The second reason implies that VDB is suitable for
trilinear interpolation and ray marching.

Therefore VDB can be used for fast NeRF training and
rendering, while maintaining the basic configurations and
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Figure 3. Overview of the training stage of PlenVDB. Left: Similar to DVGO, we use coarse-to-fine training to produce the final model.
The only difference is that we use PlenVDB to represent the scene, rather than DenseGrid. Right: Some basic functions are implemented
to adapt the Pytorch-based training process. Forward: given a coordinate, PlenVDB outputs a trilinear interpolated value. Backward:
back-propagate the gradient to PlenVDB. Step(outside of PlenVDB): utilize gradients to update data. And there are three types of VDBs:
DataVDB stores the values that represent the scene, GradVDB stores the gradients, and OptVDB stores the parameters of Adam optimizer.

methods in DVGO.

4.1. Training on PlenVDB

We utilize a coarse-to-fine training strategy. Before the
coarse stage, two grids are created to store density and color
information. Each grid has a large enough bounding box
[Bc

min, Bc
max]. Where Bc

min, B
c
max are extracted from the

training dataset. During the coarse stage, a tighter bounding
box [Bf

min, Bf
max] will be extracted. In the fine stage, we

will optimize the model in this extracted bounding box.
In each training stage, during one epoch, we cast rays

from the camera and sample points on the ray. Then we use
the following training strategy to optimize our VDB data:

Initialization. DensityVDB and ColorVDB are created to
store the density σ ∈ R and color feature c ∈ R3×n, respec-
tively. In addition, a GradVDB is created with the same size
to store the gradient which is used in the back-propagation
calculation. To demonstrate the feasibility of directly op-
timizing the VDBs, we let all VDBs dense initially. Then
more and more voxels will become inactivated during the
fine training, thus making the volume sparse gradually.

Forward. Given a batch of coordinate {(xi, yi, zi)}Ni=1,
we will query the value from ColorVDB and DensityVDB
to get {σi}Ni=1 and {ci}Ni=1. For each queried coordinate,
trilinear interpolation is used. Thanks to the fast neigh-
boring querying, we can efficiently get the eight neighbor
values. For coordinates out of the bounding box, the cor-
responding value will be the background value which is set
to zero in this paper. From {σi}Ni=1 and {ci}Ni=1, the vol-
ume rendering is performed to get the renderer colors and
by calculating the loss function, we can get the GradVDB.

Backward. After we get the GradVDB, we can pass it to
the OptVDB, which is another sparse volume to store the
optimizer’s parameters. Then the OptVDB will guide the
updating for ColorVDB and DensityVDB.

4.2. Rendering on PlenVDB

In the rendering of DVGO, it samples dense points along
the ray, which will cost a lot of unnecessary computation.
Our method will exploit the scene’s sparsity via the VDB
structure. In PlenVDB, we first sample all Nposb possible
points and query DensityVDB to get density values. After
alpha thresholding, there are only Nvalid points left, which
will be queried by ColorVDB. Normally, this process will
drop around 90% points to reduce the run time largely. Ta-
ble 1 shows some statistics about the scene sparsity.

To make full use of the sparsity of the scenes, we im-
plemented a fast ray-marching algorithm in CUDA. The
pipeline is drawn in Figure 4.

For each ray r = o + td, we estimate tmin and tmax ac-
cording to the bounding box. Then for the first time of ray
marching, we sample points from tmin along the ray with
a step size ∆t, and query DensityVDB to get the density
values. Meanwhile, we drop sample points that are out of
the bounding box or below the density threshold τ . When t
reaches tmax or the accumulated weight is larger than the
threshold, we terminate the ray marching and record the
number of valid samples together with tfirst to skip non-
valid points for the second time. For the second time of ray
marching, we create a Nvalid×3n buffer and write the color
features in ColorVDB to it. At the same time, we record the
weight value of each point, i.e. a Nvalid × 1 buffer. Then
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Figure 4. Overview of the rendering stage of PlenVDB. During training, we allocate one CUDA block for every sampled point and employ
trilinear interpolation. During rendering, we allocate one CUDA block for every ray, and perform the ray-marching algorithm twice. The
first ray-marching traverses points p = o+td from tmin and queries DensityVDB to get the density values. All possible points are grouped
into three: filtered: points that are out of the bounding box or below the density threshold, valid: points that will contribute to the pixel
color, unvisited: points that are not reached due to the accumulated weight threshold. Then, the second ray-marching queries ColorVDB
to get the color features of those valid points. And we get the final pixel color through a lightweight MLP mapping.

Table 1. Percentage of valid samples. Each scene has 200 test images, and to render each image, we need to sample Nposb points while
only Nvalid points are finally used for color. So we calculate the mean value of Nvalid/Nposb over 200 images for each scene. The unit
M refers to a million.

Scenes Chair Drum Ficus Hotdog Lego Materials Mic Ship

Nposb(M) 71 128 59 71 88 56 117 134
Nvalid(M) 1.4 2.6 1.8 4.5 2.9 5.7 0.8 10.9

Nvalid/Nposb (%) 2.02 2.02 2.97 6.29 3.33 10.28 0.69 8.16

we implement the MLP mapping in CUDA, which maps a
3n vector to an RGB color.
Merging Two VDBs. To reduce the impact of topology
redundancy, we merge DensityVDB and ColorVDB into
one. Specifically, we first count the number of all active
voxels, denoted as nV oxels, and create a (nV oxels+1)×
(1 + 3n) buffer Mvdb, where 3n is the dimension of data in
ColorVDB. Then we transfer the values in DensityVDB to
the index and copy the value to Mvdb. Before merging, we
need to search the DensityVDB and ColorVDB for 1 + n
times to get the information. After merging, only one VDB
is needed. Compared with Plenoxels, it uses a dense grid to
store the index while our PlenVDB uses a sparse data struc-
ture. Note that because of trilinear interpolation, the value
of some inactive voxels may also be useful. But here, we
prune those values when merging, which may cause PSNR
to slightly drop.
Compression. Similar to Plenoctrees [33], we save the
float32 data as float16 and convert it to float32 when reading
to further compress the model packages.

5. Experimental Results
Dataset. We use NeRF-Synthetic [17] dataset, which con-
sists of 8 inward bounded scenes. Each scene has 100 im-

ages for training and 200 images for testing. Every image is
at 800× 800 resolution. We refer the reader to supplemen-
tary material for more results on the other datasets.

Implementation Details. All experiments are run on a
single Tesla V100 GPU. We use the same hyperparameters
as DVGO for training and rendering. Our color feature is
12 dimensions (n=4). The shallow MLP layer consists of
two hidden layers with 128 channels. We use a batch size
of 8,192 rays for the coarse and fine training for 5k and 20k
iterations. The base learning rates are 0.1 for all voxel grids
and 1e-3 for the shallow MLP. The density threshold τ is
set to 10−7 and 10−4 in coarse and fine training. The step
size ∆t is set as half of the voxel size to make sure that the
nearest neighbor of the next query will change. We use the
Adam optimizer [14] with β1=0.9, β2=0.99, eps=10−8.

5.1. Training Speed

In Figure 6, we qualitatively compare PlenVDB with
the other three methods to evaluate the training speed.
We found that our method has comparable training speed
with Plenoxels and DVGO, which are dense-grid-based ap-
proaches.

Table 2 quantitatively compares our PlenVDB with
Plenoxels and DVGO, while they are both works for accel-
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Figure 5. Qualitative Results on test views from the NeRF-Synthetic dataset. From left to right: ground truth, PlenOctrees [33], Plenox-
els [5], DVGO [30], and our PlenVDB. Our method reconstructs more details than Plenoxels and PlenOctrees, and has comparable quality
with DVGO.

Table 2. Experimental Results. In DVGO and PlenVDB the resolution is 1603, and in Plenoxels and PlenOctrees we choose 5123 to obtain
a similar PSNR. Model1:PlenOctrees [33], Model2:Plenoxels [5], Model3:DVGO [30]. The unit of “Model Size” is MB.

Metrics Methods Chair Drum Ficus Hotdog Lego Materials Mic Ship

Training Time↓
Model2 10:35 10:20 9:37 12:40 12:01 11:07 9:20 17:50
Model3 4:03 4:07 4:03 4:47 4:31 5:05 3:43 6:04

Ours 11:37 11:22 11:29 14:05 12:33 13:19 9:16 15:50

FPS↑

Model1 ∼5000
Model2 ∼3000
Model3 5 4 5 4 4 4 5 3

Ours 30 20 25 14 18 11 42 6

Model Size↓

Model1 147 290 240 347 417 318 138 983
Model2 703 677 622 813 814 712 595 1331
Model3 206 206 206 206 206 207 205 205

Ours 23 14 17 41 31 34 8 29

PSNR↑

Model1 32.46 24.67 29.91 31.21 35.78 29.06 32.61 28.92
Model2 33.97 25.35 31.83 36.43 34.09 29.14 33.27 29.61
Model3 34.06 25.40 32.59 36.77 34.65 29.58 33.18 29.04

Ours 34.07 25.40 32.56 36.77 34.66 29.58 33.16 29.02

erating NeRF training. Although we do not focus on opti-
mizing the training stage, we can still train a decent model
in twenty minutes.

5.2. Rendering Speed

To verify the efficiency of our PlenVDB, we compare it
with our baseline DVGO. Table 2 shows that with our well-
designed rendering approach, we outperform the DVGO for
5x on average. For some scenes (e.g. chair, ficus, mic),
we can achieve real-time rendering. We also evaluate the

PlenOctrees and Plenoxels which are super faster than our
PlenVDB. Here are the reasons: first, they do not use MLPs
but SH coefficient to represent the color, which is faster.
However, while the ability of the SH coefficient to model
high-frequency information is weak, we achieve better im-
age quality with smaller resolution; second, PlenOctrees
only support nearest neighbor interpolation which is fast
but low-quality; third, Plenoxels is close to a dense grid
which performs super-fast voxel access but huge space oc-
cupation. In Figure 5, we compare the qualitative results

93



NeRF
Plenoxels
DVGO
Ours

Figure 6. Training Speed. Blue: NeRF [17]. Yellow: Plenox-
els [5]. Green: DVGO [30]. Red: Our PlenVDB. The curve
reflects the trend of training PSNR with time. The values of
the curves are averaged over the 4 scenes of the NeRF-Synthetic
dataset. Plenoxels does not use MLPs while the others do.

with the other three methods. It shows our method recon-
structs more details than the Plenoxels and PlenOctree and
has comparable quality with DVGO. To further demonstrate
the efficiency of our method, we perform SH projection
post-processing to render the result without MLPs, and the
speed also achieves around 3000 FPS. We refer the reader
to supplementary material for more details.

5.3. Model Size

Table 2 shows the model size of different methods
with similar rendered image quality. Benefiting from the
technologies of DVGO, our PlenVDB and DVGO achieve
higher quality with smaller resolution than PlenOctrees and
Plenoxels. And compared with DVGO, since our PlenVDB
is a sparse volume data structure, we can further compress
the model size for about 10x.

5.4. Data-Structure Comparison

To prove our potential against PlenOctree and Plenox-
els, we select models with four different resolutions R =
128, 320, 512, 800. For the sake of fairness, we first trained
the model with Plenoxels and then converted the model to
PlenOctrees and PlenVDB, making sure that all three data
structures are representing the same scene information. We
choose lego as the base scene, and we use ray marching to
query 800 points along a ray (diagonal) with trilinear inter-
polation. The results are listed in Table 3.

For voxel access, Plenoxels utilizes a dense grid to save
the pointer to data, so it is the fastest and almost constant
with resolution changing. PlenOctrees takes the most time,
and with the resolution increasing, it takes longer. The rea-
son is that for an octree, tree depth and scene resolution vary

logarithmically in theory. As a four-depth tree, our Plen-
VDB balances between them. The reason for growing with
the resolution is that for a smaller resolution, the next query
has a higher probability to be close to the current voxel, thus
making better use of the caching mechanism of VDB.

For storage occupation, Plenoxels costs the most as a
dense data structure and Plenoxels occupies the least as a
deep tree. Our PlenVDB balances between Plenoxels and
PlenOctrees. And when N is the power of 2, our model
size is close to PlenOctrees.

5.5. Ablation Studies

In this section, we perform ablation studies of our op-
timizations for rendering. All experiments are recorded in
Table 4. Since the compression only affects the model size
and the rewritten rendering method only affects the render-
ing speed, we only discuss experiments that make sense.

For rendering speed(FPS), if we follow the rendering
code of DVGO, the rendering is slower. With our well-
designed rendering technology, which makes use of the
sparsity of valid sampled points, we achieve a tenfold im-
provement on average. After merging two VDBs, We can
reduce duplicate searches for the same topology, and finally
achieve a five-fold boost against DVGO on average.

For efficient storage, if we follow the training stage and
store two VDBs, there will be some topology redundancy.
We find that the merge of two VDBs can save two-thirds of
memory and the compression can further reduce the model
size to half.

All three optimizations have almost zero loss on the ren-
dered image quality.

5.6. Rendering on Mobile Devices

On mobile systems, the high view-dependent effects are
usually less obvious due to the smaller screen. Therefore,
we perform the SH9 projection and store the SH coefficients
and density in NanoVDB Float16 format. To this end, the
computation cost of the rendering becomes affordable for
real-time rendering and the transmit cost is also reduced.
We exploit the definitions in NanoVDB’s portable header
(PNanoVDB.h) to implement fast indexing and fast trilinear
interpolation in VDB. The ray marching rendering is imple-
mented by using native GPU shaders and kernels (Metal for
iOS, OpenCL for Android). In our current mobile demo,
the model file is built into the app. Downloading the model
from the cloud is also OK since the model size is small. The
FPS will be dropped a bit if the rendering region has a larger
portion of the screen, such as rendering face-forward or un-
bounded scenes. On the iPhone 12, the rendering for such
cases can still achieve around 30 FPS. And the object-like
rendering has around 50∼60 FPS. In Fig. 7, we show some
real-time rendering results from our mobile demo.
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Table 3. Comparison between different data structures. On the R3 lego scene, we use ray marching to query 800 points along a ray with
trilinear interpolation.

Time ↓ Model Size ↓
R PlenOctrees [33] Plenoxels [5] PlenVDB PlenOctrees [33] Plenoxels [5] PlenVDB

128 5.26ms 2.73ms 3.28ms 9.2MB 18MB 9.7MB
320 5.37ms 2.81ms 3.46ms 44MB 215MB 85MB
512 5.88ms 2.96ms 3.67ms 275MB 814MB 284MB
800 6.20ms 2.80ms 3.92ms 264MB 3.0GB 999MB

Table 4. Ablation Studies. For each 1603 scene. The model size excludes the configuration parameters and the MLPs (4MB). Valid refers
to the rewritten rendering method regarding the valid percentage of sampled points. Merge refers to the operation of merging DensityVDB
and ColorVDB into one VDB. Cps refers to the compression operation. The unit of “Model Size” is MB.

Valid Merge Cps Chair Drum Ficus Hotdog Lego Materials Mic Ship

FPS ↑
3 2 3 2 2 2 3 1

✓ 22 14 16 11 13 9 35 6
✓ ✓ 30 20 25 14 18 11 42 6

Model Size ↓
✓ 108 96 111 133 125 171 55 104
✓ ✓ 39 21 26 76 55 62 7 51
✓ ✓ ✓ 19 10 13 37 27 30 4 25

PSNR ↑

34.06 25.40 32.59 36.77 34.65 29.58 33.18 29.04
✓ 34.07 25.40 32.56 36.77 34.66 29.58 33.16 29.02
✓ ✓ 34.07 25.40 32.56 36.77 34.66 29.58 33.16 29.00
✓ ✓ ✓ 34.07 25.40 32.56 36.77 34.66 29.58 33.16 29.00

Figure 7. Our mobile rendering demo.

6. Conclusion and Future Work
We propose a representation of NeRF called Plenop-

tic VDB (PlenVDB), which builds upon VDB, a well-
established hierarchical data structure for sparse volumes.
The advantage of this data structure provides compact data
representation, efficient random and spatially coherent data
access, making it a promising data structure for NeRF data
interpolation and ray casting. In the experimental results,
we demonstrate our model achieves a better balance be-
tween training seed, rendering speed, and storage over-

head. Meanwhile, we propose a training strategy that di-
rectly learns the VDB data from input images, which makes
the training process fast as well. Finally, the trained VDB
model can be exported into the NanoVDB format and be
used in the traditional graphics pipeline. In our experiment
on the mobile, we found the model can still perform very
well without losing much rendering quality. In the future,
we would like to explore the possibility of modeling a dy-
namic scene with our PlenVDB representation.
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