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Figure 6. Training Speed. Blue: NeRF [17]. Yellow: Plenox-
els [5]. Green: DVGO [30]. Red: Our PlenVDB. The curve
reflects the trend of training PSNR with time. The values of
the curves are averaged over the 4 scenes of the NeRF-Synthetic
dataset. Plenoxels does not use MLPs while the others do.

with the other three methods. It shows our method recon-
structs more details than the Plenoxels and PlenOctree and
has comparable quality with DVGO. To further demonstrate
the efficiency of our method, we perform SH projection
post-processing to render the result without MLPs, and the
speed also achieves around 3000 FPS. We refer the reader
to supplementary material for more details.

5.3. Model Size

Table 2 shows the model size of different methods
with similar rendered image quality. Benefiting from the
technologies of DVGO, our PlenVDB and DVGO achieve
higher quality with smaller resolution than PlenOctrees and
Plenoxels. And compared with DVGO, since our PlenVDB
is a sparse volume data structure, we can further compress
the model size for about 10x.

5.4. Data-Structure Comparison

To prove our potential against PlenOctree and Plenox-
els, we select models with four different resolutions R =
128, 320, 512, 800. For the sake of fairness, we first trained
the model with Plenoxels and then converted the model to
PlenOctrees and PlenVDB, making sure that all three data
structures are representing the same scene information. We
choose lego as the base scene, and we use ray marching to
query 800 points along a ray (diagonal) with trilinear inter-
polation. The results are listed in Table 3.

For voxel access, Plenoxels utilizes a dense grid to save
the pointer to data, so it is the fastest and almost constant
with resolution changing. PlenOctrees takes the most time,
and with the resolution increasing, it takes longer. The rea-
son is that for an octree, tree depth and scene resolution vary

logarithmically in theory. As a four-depth tree, our Plen-
VDB balances between them. The reason for growing with
the resolution is that for a smaller resolution, the next query
has a higher probability to be close to the current voxel, thus
making better use of the caching mechanism of VDB.

For storage occupation, Plenoxels costs the most as a
dense data structure and Plenoxels occupies the least as a
deep tree. Our PlenVDB balances between Plenoxels and
PlenOctrees. And when NV is the power of 2, our model
size is close to PlenOctrees.

5.5. Ablation Studies

In this section, we perform ablation studies of our op-
timizations for rendering. All experiments are recorded in
Table 4. Since the compression only affects the model size
and the rewritten rendering method only affects the render-
ing speed, we only discuss experiments that make sense.

For rendering speed(FPS), if we follow the rendering
code of DVGO, the rendering is slower. With our well-
designed rendering technology, which makes use of the
sparsity of valid sampled points, we achieve a tenfold im-
provement on average. After merging two VDBs, We can
reduce duplicate searches for the same topology, and finally
achieve a five-fold boost against DVGO on average.

For efficient storage, if we follow the training stage and
store two VDBs, there will be some topology redundancy.
We find that the merge of two VDBs can save two-thirds of
memory and the compression can further reduce the model
size to half.

All three optimizations have almost zero loss on the ren-
dered image quality.

5.6. Rendering on Mobile Devices

On mobile systems, the high view-dependent effects are
usually less obvious due to the smaller screen. Therefore,
we perform the SH9 projection and store the SH coefficients
and density in NanoVDB Float16 format. To this end, the
computation cost of the rendering becomes affordable for
real-time rendering and the transmit cost is also reduced.
We exploit the definitions in NanoVDB’s portable header
(PNanoVDB.h) to implement fast indexing and fast trilinear
interpolation in VDB. The ray marching rendering is imple-
mented by using native GPU shaders and kernels (Metal for
10S, OpenCL for Android). In our current mobile demo,
the model file is built into the app. Downloading the model
from the cloud is also OK since the model size is small. The
FPS will be dropped a bit if the rendering region has a larger
portion of the screen, such as rendering face-forward or un-
bounded scenes. On the iPhone 12, the rendering for such
cases can still achieve around 30 FPS. And the object-like
rendering has around 50~60 FPS. In Fig. 7, we show some
real-time rendering results from our mobile demo.



Table 3. Comparison between different data structures. On the R® lego scene, we use ray marching to query 800 points along a ray with

trilinear interpolation.

‘ Time | Model Size |
R ‘ PlenOctrees [33] Plenoxels [5] PlenVDB ‘ PlenOctrees [33] Plenoxels [5] PlenVDB
128 5.26ms 2.73ms 3.28ms 9.2MB 18MB 9.7MB
320 5.37ms 2.81ms 3.46ms 44MB 215MB 85MB
512 5.88ms 2.96ms 3.67ms 275MB 814MB 284MB
800 6.20ms 2.80ms 3.92ms 264MB 3.0GB 999MB

Table 4. Ablation Studies. For each 160° scene. The model size excludes the configuration parameters and the MLPs (4MB). Valid refers
to the rewritten rendering method regarding the valid percentage of sampled points. Merge refers to the operation of merging Density VDB
and ColorVDB into one VDB. Cps refers to the compression operation. The unit of “Model Size” is MB.

Valid Merge Cps | Chair Drum Ficus Hotdog Lego Materials Mic  Ship
3 2 3 2 2 2 3 1
FPS 1 v 22 14 16 11 13 9 35 6
v v 30 20 25 14 18 11 42 6
v 108 96 111 133 125 171 55 104
Model Size | v v 39 21 26 76 55 62 7 51
v v v 19 10 13 37 27 30 4 25
34.06 2540 3259 36.77 34.65 29.58 33.18 29.04
PSNR + v 34.07 2540 3256 36.77  34.66 29.58 33.16  29.02
v v 34.07 2540 3256 3677 34.66 29.58 33.16  29.00
v v v' | 3407 2540 3256 3677 34.66 29.58 33.16 29.00

Figure 7. Our mobile rendering demo.

6. Conclusion and Future Work

We propose a representation of NeRF called Plenop-
tic VDB (PlenVDB), which builds upon VDB, a well-
established hierarchical data structure for sparse volumes.
The advantage of this data structure provides compact data
representation, efficient random and spatially coherent data
access, making it a promising data structure for NeRF data
interpolation and ray casting. In the experimental results,
we demonstrate our model achieves a better balance be-
tween training seed, rendering speed, and storage over-

head. Meanwhile, we propose a training strategy that di-
rectly learns the VDB data from input images, which makes
the training process fast as well. Finally, the trained VDB
model can be exported into the NanoVDB format and be
used in the traditional graphics pipeline. In our experiment
on the mobile, we found the model can still perform very
well without losing much rendering quality. In the future,
we would like to explore the possibility of modeling a dy-
namic scene with our PlenVDB representation.
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