
plenvdb.github.io












Figure 6. Training Speed. Blue: NeRF [17]. Yellow: Plenox-
els [5]. Green: DVGO [30]. Red: Our PlenVDB. The curve
reflects the trend of training PSNR with time. The values of
the curves are averaged over the 4 scenes of the NeRF-Synthetic
dataset. Plenoxels does not use MLPs while the others do.

with the other three methods. It shows our method recon-
structs more details than the Plenoxels and PlenOctree and
has comparable quality with DVGO. To further demonstrate
the efficiency of our method, we perform SH projection
post-processing to render the result without MLPs, and the
speed also achieves around 3000 FPS. We refer the reader
to supplementary material for more details.

5.3. Model Size

Table 2 shows the model size of different methods
with similar rendered image quality. Benefiting from the
technologies of DVGO, our PlenVDB and DVGO achieve
higher quality with smaller resolution than PlenOctrees and
Plenoxels. And compared with DVGO, since our PlenVDB
is a sparse volume data structure, we can further compress
the model size for about 10x.

5.4. Data-Structure Comparison

To prove our potential against PlenOctree and Plenox-
els, we select models with four different resolutions R =
128, 320, 512, 800. For the sake of fairness, we first trained
the model with Plenoxels and then converted the model to
PlenOctrees and PlenVDB, making sure that all three data
structures are representing the same scene information. We
choose lego as the base scene, and we use ray marching to
query 800 points along a ray (diagonal) with trilinear inter-
polation. The results are listed in Table 3.

For voxel access, Plenoxels utilizes a dense grid to save
the pointer to data, so it is the fastest and almost constant
with resolution changing. PlenOctrees takes the most time,
and with the resolution increasing, it takes longer. The rea-
son is that for an octree, tree depth and scene resolution vary

logarithmically in theory. As a four-depth tree, our Plen-
VDB balances between them. The reason for growing with
the resolution is that for a smaller resolution, the next query
has a higher probability to be close to the current voxel, thus
making better use of the caching mechanism of VDB.

For storage occupation, Plenoxels costs the most as a
dense data structure and Plenoxels occupies the least as a
deep tree. Our PlenVDB balances between Plenoxels and
PlenOctrees. And when N is the power of 2, our model
size is close to PlenOctrees.

5.5. Ablation Studies

In this section, we perform ablation studies of our op-
timizations for rendering. All experiments are recorded in
Table 4. Since the compression only affects the model size
and the rewritten rendering method only affects the render-
ing speed, we only discuss experiments that make sense.

For rendering speed(FPS), if we follow the rendering
code of DVGO, the rendering is slower. With our well-
designed rendering technology, which makes use of the
sparsity of valid sampled points, we achieve a tenfold im-
provement on average. After merging two VDBs, We can
reduce duplicate searches for the same topology, and finally
achieve a five-fold boost against DVGO on average.

For efficient storage, if we follow the training stage and
store two VDBs, there will be some topology redundancy.
We find that the merge of two VDBs can save two-thirds of
memory and the compression can further reduce the model
size to half.

All three optimizations have almost zero loss on the ren-
dered image quality.

5.6. Rendering on Mobile Devices

On mobile systems, the high view-dependent effects are
usually less obvious due to the smaller screen. Therefore,
we perform the SH9 projection and store the SH coefficients
and density in NanoVDB Float16 format. To this end, the
computation cost of the rendering becomes affordable for
real-time rendering and the transmit cost is also reduced.
We exploit the definitions in NanoVDB’s portable header
(PNanoVDB.h) to implement fast indexing and fast trilinear
interpolation in VDB. The ray marching rendering is imple-
mented by using native GPU shaders and kernels (Metal for
iOS, OpenCL for Android). In our current mobile demo,
the model file is built into the app. Downloading the model
from the cloud is also OK since the model size is small. The
FPS will be dropped a bit if the rendering region has a larger
portion of the screen, such as rendering face-forward or un-
bounded scenes. On the iPhone 12, the rendering for such
cases can still achieve around 30 FPS. And the object-like
rendering has around 50∼60 FPS. In Fig. 7, we show some
real-time rendering results from our mobile demo.



Table 3. Comparison between different data structures. On the R3 lego scene, we use ray marching to query 800 points along a ray with
trilinear interpolation.

Time ↓ Model Size ↓
R PlenOctrees [33] Plenoxels [5] PlenVDB PlenOctrees [33] Plenoxels [5] PlenVDB

128 5.26ms 2.73ms 3.28ms 9.2MB 18MB 9.7MB
320 5.37ms 2.81ms 3.46ms 44MB 215MB 85MB
512 5.88ms 2.96ms 3.67ms 275MB 814MB 284MB
800 6.20ms 2.80ms 3.92ms 264MB 3.0GB 999MB

Table 4. Ablation Studies. For each 1603 scene. The model size excludes the configuration parameters and the MLPs (4MB). Valid refers
to the rewritten rendering method regarding the valid percentage of sampled points. Merge refers to the operation of merging DensityVDB
and ColorVDB into one VDB. Cps refers to the compression operation. The unit of “Model Size” is MB.

Valid Merge Cps Chair Drum Ficus Hotdog Lego Materials Mic Ship

FPS ↑
3 2 3 2 2 2 3 1

✓ 22 14 16 11 13 9 35 6
✓ ✓ 30 20 25 14 18 11 42 6

Model Size ↓
✓ 108 96 111 133 125 171 55 104
✓ ✓ 39 21 26 76 55 62 7 51
✓ ✓ ✓ 19 10 13 37 27 30 4 25

PSNR ↑

34.06 25.40 32.59 36.77 34.65 29.58 33.18 29.04
✓ 34.07 25.40 32.56 36.77 34.66 29.58 33.16 29.02
✓ ✓ 34.07 25.40 32.56 36.77 34.66 29.58 33.16 29.00
✓ ✓ ✓ 34.07 25.40 32.56 36.77 34.66 29.58 33.16 29.00

Figure 7. Our mobile rendering demo.

6. Conclusion and Future Work
We propose a representation of NeRF called Plenop-

tic VDB (PlenVDB), which builds upon VDB, a well-
established hierarchical data structure for sparse volumes.
The advantage of this data structure provides compact data
representation, efficient random and spatially coherent data
access, making it a promising data structure for NeRF data
interpolation and ray casting. In the experimental results,
we demonstrate our model achieves a better balance be-
tween training seed, rendering speed, and storage over-

head. Meanwhile, we propose a training strategy that di-
rectly learns the VDB data from input images, which makes
the training process fast as well. Finally, the trained VDB
model can be exported into the NanoVDB format and be
used in the traditional graphics pipeline. In our experiment
on the mobile, we found the model can still perform very
well without losing much rendering quality. In the future,
we would like to explore the possibility of modeling a dy-
namic scene with our PlenVDB representation.

Acknowledgements. This work is supported by
ByteDance Incorporated company, Shanghai Mu-
nicipal Science and Technology Major Project
(2021SHZDZX0102), and the Fundamental Research
Funds for the Central Universities.



References
[1] ShahRukh Athar, Zexiang Xu, Kalyan Sunkavalli, Eli

Shechtman, and Zhixin Shu. Rignerf: Fully controllable neu-
ral 3d portraits. In CVPR, 2022. 2

[2] Benjamin Attal, Jia-Bin Huang, Michael Zollhöfer, Johannes
Kopf, and Changil Kim. Learning neural light fields with
ray-space embedding networks. In CVPR, 2022. 2

[3] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In ECCV, 2022.
2

[4] Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and An-
drea Tagliasacchi. Mobilenerf: Exploiting the polygon ras-
terization pipeline for efficient neural field rendering on mo-
bile architectures. arXiv:2208.00277, 2022. 1, 2

[5] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In CVPR, 2022. 1,
2, 3, 6, 7, 8

[6] Chen Gao, Ayush Saraf, Johannes Kopf, and Jia-Bin Huang.
Dynamic view synthesis from dynamic monocular video. In
ICCV, 2021. 2

[7] Stephan J Garbin, Marek Kowalski, Matthew Johnson, Jamie
Shotton, and Julien Valentin. Fastnerf: High-fidelity neural
rendering at 200fps. arXiv:2103.10380, 2021. 1

[8] Yudong Guo, Keyu Chen, Sen Liang, Yongjin Liu, Hujun
Bao, and Juyong Zhang. Ad-nerf: Audio driven neural radi-
ance fields for talking head synthesis. In ICCV, 2021. 2

[9] Peter Hedman, Pratul P Srinivasan, Ben Mildenhall,
Jonathan T Barron, and Paul Debevec. Baking neural ra-
diance fields for real-time view synthesis. In CVPR, 2021. 1,
2

[10] Tao Hu, Shu Liu, Yilun Chen, Tiancheng Shen, and Jiaya Jia.
Efficientnerf efficient neural radiance fields. In CVPR, 2022.
1, 2

[11] Wei Jiang, Kwang Moo Yi, Golnoosh Samei, Oncel Tuzel,
and Anurag Ranjan. Neuman: Neural human radiance field
from a single video. arXiv:2203.12575, 2022. 2

[12] Kacper Kania, Kwang Moo Yi, Marek Kowalski, Tomasz
Trzciński, and Andrea Tagliasacchi. CoNeRF: Controllable
Neural Radiance Fields. In CVPR, 2022. 2

[13] Doyub Kim, Minjae Lee, and Ken Museth. Neuralvdb:
High-resolution sparse volume representation using hierar-
chical neural networks. arXiv:2208.04448, 2022. 2

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv:1412.6980, 2014. 5

[15] Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon
Green, Christoph Lassner, Changil Kim, Tanner Schmidt,
Steven Lovegrove, Michael Goesele, Richard Newcombe,
et al. Neural 3d video synthesis from multi-view video. In
CVPR, 2022. 2

[16] Celong Liu, Zhong Li, Junsong Yuan, and Yi Xu. Neulf:
Efficient novel view synthesis with neural 4d light field.
arXiv:2105.07112, 2021. 2

[17] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 1, 2, 5, 7

[18] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 2022. 2

[19] Ken Museth. Vdb: High-resolution sparse volumes with dy-
namic topology. ACM Trans. Graph., 2013. 2, 3

[20] Ken Museth. Nanovdb: A gpu-friendly and portable vdb data
structure for real-time rendering and simulation. In ACM
SIGGRAPH 2021 Talks, 2021. 2

[21] Thomas Neff, Pascal Stadlbauer, Mathias Parger, Andreas
Kurz, Joerg H. Mueller, Chakravarty R. Alla Chaitanya, An-
ton S. Kaplanyan, and Markus Steinberger. DONeRF: To-
wards Real-Time Rendering of Compact Neural Radiance
Fields using Depth Oracle Networks. CGF, 2021. 2

[22] Michael B Nielsen and Ken Museth. Dynamic tubular grid:
An efficient data structure and algorithms for high resolution
level sets. In J. Sci. Comput., 2006. 2

[23] Michael Niemeyer and Andreas Geiger. Giraffe: Represent-
ing scenes as compositional generative neural feature fields.
In CVPR, 2021. 2

[24] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T.
Barron, Sofien Bouaziz, Dan B Goldman, Ricardo Martin-
Brualla, and Steven M. Seitz. Hypernerf: A higher-
dimensional representation for topologically varying neural
radiance fields. ACM Trans. Graph., 2021. 2

[25] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben
Mildenhall. Dreamfusion: Text-to-3d using 2d diffusion.
arXiv:2209.14988, 2022. 1

[26] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-nerf: Neural radiance fields for
dynamic scenes. In CVPR, 2021. 2

[27] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps. In ICCV, 2021. 1

[28] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas
Geiger. Graf: Generative radiance fields for 3d-aware image
synthesis. In NeurIPS, 2020. 2

[29] Vincent Sitzmann, Semon Rezchikov, William T. Freeman,
Joshua B. Tenenbaum, and Fredo Durand. Light field net-
works: Neural scene representations with single-evaluation
rendering. In NeurIPS, 2021. 2

[30] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. In CVPR, 2022. 1, 2, 3, 6, 7

[31] Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Prad-
han, Ben Mildenhall, Pratul P. Srinivasan, Jonathan T. Bar-
ron, and Henrik Kretzschmar. Block-nerf: Scalable large
scene neural view synthesis. In CVPR, 2022. 2

[32] Liwen Wu, Jae Yong Lee, Anand Bhattad, Yu-Xiong Wang,
and David Forsyth. Diver: Real-time and accurate neural ra-
diance fields with deterministic integration for volume ren-
dering. In CVPR, 2022. 2

[33] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and
Angjoo Kanazawa. Plenoctrees for real-time rendering of
neural radiance fields. In ICCV, 2021. 1, 2, 3, 5, 6, 8

96


	. Introduction
	. Related Work
	. Preliminaries
	. Introduction to NeRF
	. Introduction to VDB

	. Proposed Method
	. Training on PlenVDB
	. Rendering on PlenVDB

	. Experimental Results
	. Training Speed
	. Rendering Speed
	. Model Size
	. Data-Structure Comparison
	. Ablation Studies
	. Rendering on Mobile Devices

	. Conclusion and Future Work

