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Figure 1. (a) To produce 3D bounding boxes out of a monocular image, state-of-the-art methods firstly predict the per-pixel depth either
explicitly or implicitly to determine the 3D location of foreground objects with the background. However, when we plot the per-pixel
depth on the image, we notice that the differences between points on the car roof and surrounding ground quickly shrink when the car
moves away from the camera, making it sub-optimal to optimize especially for far objects. (b) On the contrary, we plot the per-pixel
height to the ground and observe that such difference remains agnostic regardless of the distance, and visually is superior for the network
to detect objects. However, one cannot directly regress the 3D location by solely predicting the height. (c) To this end, we propose a novel
framework, BEVHeight to address this issue. Empirical results reveal that our method surpasses the best method by a margin of 4.85% on
clean settings and over 26.88% on noisy settings.

Abstract

While most recent autonomous driving system focuses
on developing perception methods on ego-vehicle sensors,
people tend to overlook an alternative approach to lever-
age intelligent roadside cameras to extend the perception
ability beyond the visual range. We discover that the state-
of-the-art vision-centric bird’s eye view detection methods
have inferior performances on roadside cameras. This is
because these methods mainly focus on recovering the depth
regarding the camera center, where the depth difference be-

*Work done during an internship at DAMO Academy, Alibaba Group.
†Corresponding Author.

tween the car and the ground quickly shrinks while the dis-
tance increases. In this paper, we propose a simple yet
effective approach, dubbed BEVHeight, to address this is-
sue. In essence, instead of predicting the pixel-wise depth,
we regress the height to the ground to achieve a distance-
agnostic formulation to ease the optimization process of
camera-only perception methods. On popular 3D detection
benchmarks of roadside cameras, our method surpasses
all previous vision-centric methods by a significant mar-
gin. The code is available at https://github.com/
ADLab-AutoDrive/BEVHeight.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

21611



1. Introduction
The rising tide of autonomous driving vehicles draws

vast research attention to many 3D perception tasks, of
which 3D object detection plays a critical role. While most
recent works tend to only rely on ego-vehicle sensors, there
are certain downsides of this line of work that hinders the
perception capability under given scenarios. For example,
as the mounting position of cameras is relatively close to
the ground, obstacles can be easily occluded by other vehi-
cles to cause severe crash damage. To this end, people have
started to develop perception systems that leverage intelli-
gent units on the roadside, such as cameras, to address such
occlusion issue and enlarge perception range so to increase
the response time in case of danger [5,11,28,34,36,37]. To
facilitate future research, there are two large-scale bench-
mark datasets [36,37] of various roadside cameras and pro-
vide an evaluation of certain baseline methods.

Recently, people discover that, in contrast to directly pro-
jecting the 2D images into a 3D space, leveraging a bird’s
eye view (BEV) feature space can significantly improve the
perception performance of vision centric system. One line
of the recent approach, which constitutes the state-of-the-art
camera-only method, is to generate implicitly or explicitly
the depth for each pixel to ease the optimization process of
bounding box regression. However, as shown in Fig. 1, we
visualize the per-pixel depth of a roadside image and notice
a phenomenon. Consider two points, one on the roof of a
car and another on the nearest ground. If we measure the
depth of these points to the camera center, namely d and d′,
the difference between these depth d− d′ would drastically
decrease when the car moves away from the camera. We
conjecture this leads to two potential downsides: i) unlike
the autonomous vehicle that has a consistent camera pose,
roadside ones usually have different camera poses across
the datasets, which makes regressing depth hard; ii) depth
prediction is very sensitive to the change of extrinsic param-
eter, where it happens quite often in the real world.

On the contrary, we notice that the height to the ground is
consistent regardless of the distance between car and cam-
era center. To this end, we propose a novel framework
to predict the per-pixel height instead of depth, dubbed
BEVHeight. Specifically, our method firstly predicts cat-
egorical height distribution for each pixel to project rich
contextual feature information to the appropriate height in-
terval in wedgy voxel space. Followed by a voxel pooling
operation and a detection head to get the final output de-
tections. Besides, we propose a hyperparameter-adjustable
height sampling strategy. Note that our framework does not
depend on explicit supervision like point clouds.

We conduct extensive experiments on two popular
roadside perception benchmarks, DAIR-V2X [37] and
Rope3D [36]. On traditional settings where there is no
disruption to the cameras, our BEVHeight achieves state-

of-the-art performance and surpasses all previous methods,
regardless of monocular 3D detectors or recent bird’s eye
view methods by a margin of 5%. In realistic scenarios, the
extrinsic parameters of these roadside units can be subject
to changes due to various reasons, such as maintenance and
wind blows. We simulate these scenarios following [38] and
observe a severe performance drop of the BEVDepth, from
41.97% to 5.49%. Compared to these methods, we show-
case the benefit of predicting the height instead of depth
and achieve 26.88% improvement over the BEVDepth [15],
which further evidences the robustness of our method.

2. Related Work

Roadside Perception. Concurrent perception efforts for
autonomous driving are mainly limited to the ego vehi-
cle [3, 29]. While the roadside perception, which compara-
tively has a longer perceptual range and more robustness to
occlusion and long-time event prediction, is mainly under-
explored. Recently, some pioneers have present roadside
datasets [36,37], hoping to facilitate the 3D perception tasks
in roadside scenarios. Compared with the vehicle percep-
tual system, which only observes surroundings in a short
distance, the roadside cameras, mounted on poles a few me-
ters above the ground, can provide long-range perception.
However, the cameras mounted on roadside units have am-
biguous mounting positions and variable extrinsic param-
eters, which bring critical challenges to current perception
models. In this paper, we take the advances and challenges
of roadside cameras into account, and design an efficient
and robust roadside perception framework, BEVHeight.

Vision Centric BEV Perception. Recent vision-centric
works predict objects in 3D space, which is very suitable
for applying multi-view feature aggregation under BEV
for autonomous driving. Popular methods can be divided
into transformer-based and depth-based schema. Follow-
ing DETR3D [32], transformer-based detectors design a set
of object queries [4, 12, 17, 18, 25, 31] or BEV grid queries
[16], then perform the view transformation through cross-
attention between queries and image features. Following
LSS [22], depth-based methods [9, 10, 23] explicitly pre-
dict the depth distribution and use it to construct the 3D
volumetric feature. Followup works introduce depth super-
vision from the LiDAR sensors [15] or multi-view stereo
techniques [14, 21, 33] to improve the depth estimation ac-
curacy and achieve state-of-the-art performance. However,
when applying these methods to roadside perception, the
bonus of accurate depth information fades. As the complex
mounting positions and variable extrinsic parameters of the
roadside cameras, predicting depth from them is difficult. In
this work, our BEVHeight utilizes the height estimation to
achieve state-of-the-art performance and the best robustness
of roadside 3D object detection.
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3. Method
3.1. Problem Definition

In this work, we would like to detect a three-dimensional
bounding box of given foreground objects of interest. For-
mally, we are given the image I ∈ RH×W×3 from the road-
side cameras, whose extrinsic matrix E ∈ R3×4 and intrin-
sic matrix K ∈ R3×3 can be obtained via camera calibra-
tion. We seek to precisely detect the 3D bounding boxes of
objects on the image. We denote all bounding boxes of this
image as B = {B1, B2, . . . , Bn}, and the output of detec-
tor as B̂. Each 3D bounding box Bi can be formulated as a
vector with 7 degrees of freedom:

B̂i = (x, y, z, l, w, h, θ) (1)

where (x, y, z) is the location of each 3D bounding box .
(l, w, h) denotes the cuboid’s length, width, and height re-
spectively. θ represents the yaw angle of each instance with
respect to one specific axis. Specifically, a camera-only 3D
object detector FDet can be defined as follows:

B̂ego = FDet (Icam) (2)

As a common assumption in autonomous driving, we as-
sume the camera pose parameters E and K are known after
the initial installation. In the roadside perception domain,
people usually rely on multiple cameras installed at differ-
ent locations to enlarge the perception range. This naturally
encourages adopting those multi-view perception methods
though the feature maps are not aligned geologically. Note
that, although there are certain roadside units are equipped
with other sensors, we focus on camera-only settings in this
work for generalization purposes.

3.2. Comparing the depth and height

As discussed before, state-of-the-art BEV camera-only
methods first project the features into the bird’s eye view
space, then let the network learn implicitly [16–18] or ex-
plicitly [10, 14, 15] about the 3D location information. Mo-
tivated by previous approaches in RGB-D recognition, one
naive approach is to leverage the per-pixel depth as a lo-
cation encoding. In Fig. 2 (a), current methods firstly use
an encoder to transform the original image into 2D feature
maps. After predicting the per-pixel depth, each pixel fea-
ture can be lifted into 3D space and zipped in the BEV fea-
ture space by voxel pooling techniques.

However, we discover that using depth may be sub-
optimal under the face-forwarding camera settings in au-
tonomous driving scenarios. Specifically, we leverage the
LiDAR point clouds of the DAIR-V2X-I [37] dataset, where
we first project these points to the images, to plot the his-
togram of per-pixel depth in Fig. 2 (b). We can observe a
large range from 0 to 200 meters. By contrast, we plot the

histogram of the per-pixel height to the ground and clearly
observe the height ranges from -1 to 2m respectively, which
is easier for the network to predict. But in practice, the pre-
dicted height can’t be employed directly to the pinhole cam-
era model like depth. How to achieve the projection from
2D to 3D effectively through height has not been explored.
Analysis when extrinsic parameter changes. In Fig. 3 (a),
we provide an visual example of extrinsic disturbance. To
show that predicting height is superior to depth, we plot the
scatter graph to show the correlation between the object’s
row coordinates on the image and its depth and height. Each
plot represents an instance. As shown in Fig. 3 (b). we
observe that objects with smaller depths have a smaller v
value. However, suppose the extrinsic parameter changes;
we plot the same metric in blue and observe that these val-
ues are drastically different from the clean setting. In that
case, i.e., there is only a small overlap between the clean
and noisy settings. We believe this is why the depth-based
methods perform poorly when external parameters change.
On the contrary, as observed in Fig. 3 (c), the distribution re-
mains similar regardless of the external parameter changes,
i.e. the overlap between orange and blue dots is large.
This motivates us to consider using height instead of depth.
However, unlike depth that can be directly lifted to the 3D
space via camera model, directly predicting height will not
work to recover the 3D coordinate. Later, we present a
novel height-based projection module to address this issue.

3.3. BEVHeight

Overall Architecture. As shown in Fig.4, our proposed
BEVHeight framework consists of five main stages. The
image-view encoder that is composed of a 2D backbone and
an FPN module aims to extract the 2D high-dimensional
multi-scale image features F 2d ∈ RCF× H

16×
W
16 given an

image I ∈ R3×H×W in roadside view, where CF denotes
the channel number. H and W represent the input image’s
height and width, respectively. The HeightNet is responsi-
ble for predicting the bins-like distribution of height from
the ground Hpred ∈ RCH× H

16×
W
16 and the context features

F context ∈ RCc× H
16×

W
16 based on the image fractures F 2d,

where CH stands for the number of height bins, Cc denotes
the channels of the context features. The fused features
F fused that combines image context and height distribution
is generated using Eq. 3. The height-based 2D → 3D pro-
jector pushes the fused features F fused into the 3D wedge-
shaped features Fwedge ∈ RX×Y×Z×Cc based on the pre-
dicted bins-like height distribution Hpred. See Algorithm
Algorithm 1 for more details. Voxel Pooling transforms
the 3D wedge-shaped features into the BEV features F bev

along the height direction. 3D detection head firstly encodes
the BEV features with convolution layers, And then pre-
dicts the 3D bounding box consisting of location (x, y, z),
dimension(l, w, h), and orientation θ.
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(a) An overview of BEV Camera Only Methods (b) Histogram of per-pixel depth and height
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Figure 2. The comparison of predicting height and depth. (a) We present the overview of previous depth based monocular 3D detection
methods and our proposed BEVHeight. Note that we propose a novel 2D to 3D projection module. (b) We plot the histogram of per-pixel
depth (top) and ground-height (bottom). We can clearly observe that the range of depth is over 200 meters while the height is within 5
meters, which makes height much easier to learn.

Original

Noisy
v-coordinate

u-coordinate

v-coordinate

(a) A visual example of extrinsic disturbance (c) Height distribution(b) Depth distribution

small overlap large overlap

Figure 3. The correlation between the object’s row coordinates on the image with its depth and height. The position of the object in
the image, which can be defined as (u, v), and v-coordinate denotes its row coordinate of the image. (a) A visual example of the noisy
setting, adding a rotation offset along roll and pitch directions in the normal distribution. (b) is the scatter diagram of the depth distribution.
(c) is for the height from the ground. We can find, compared with depth, the noisy setting of height has larger overlap with its original
distribution, which demonstrates height estimation is more robust.

F fused = F context ⊗Hpred,

F fused ∈ RCc×CH× H
16×

W
16

(3)

HeightNet. Motivated by the DepthNet in BEVDepth [15],
we leverage a Squeeze-and-Excitation layer to generate the
context features F context from the 2D image features F 2d.
Concretely, we stack multiple residual blocks [8] to increase
the representation power and then use a deformable convo-
lution layer [41] to predict the per-pixel height. We denote
this height module as Hpred. To facilitate the optimization
process, we translate the regression task to use one-hot en-
coding, i.e. discretizing the height into various height bins.
The output of this module is h ∈ RCH×1×1. Moreover,
previous depth discretization strategies [6,30] are generally
fixed and thus not suitable for roadside height predictions.
To this end, we present an dynamic discretization as follow:

hi = ⌊N × α

√
h− hmin

hmax − hmin
⌋, (4)

where h represents the continuous height value from the
ground, hmin and hmax represent the start and end of the
height range. N is the number of height bins, and hi de-
notes the value of i − th height bin. H is the height of the
roadside camera from the ground. α is the hype parameter
to control the concentration of height bins. See the supple-
mentary material for more details.

Height-based 2D-3D projection module. Unlike the “lift”
step in previous depth-based methods, one cannot recover
the 3D location with only height information. To this end,
we design a novel 2D to 3D projection module to push the
fused features F fused ∈ RCH×Cc× H

16×
W
16 into the wedge-

shaped volume feature Fwedge ∈ RX×Y×Z×Cc in the ego
coordinate system. As illustrated in Fig. 4 and Algorithm 1,
we design a virtual coordinate system, with the origin co-
inciding with that of the camera coordinate system and the
Y-axis perpendicular to the ground, and a special reference
plane parallel to the image plane with a fixed distance 1.

For each point pimage = (u, v) in the image plane, we
first choose the associated point pref in the reference plane
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Figure 4. The overall framework of BEVHeight. First, the image-view encoder extracts high-dimensional image features. Then, image
features are fed to the HeightNet to generate height distribution and context features, these two are further combined as fused features
through an outer product operation. The height-based 2d to 3D projector push the fused features into wedge-shaped 3D volume features.
See Algorithm 1 for more details. Voxel Pooling splattes the wedge-shaped features into unified Bird’s-Eye-View features, which are fed
into the detection head to produce the final predictions. ‘OXY Z’ denotes the coordinate system.

planeref , whose depth is naturally 1, i.e, dref = 1. Thus
we can project pref from the uvd space to the camera coor-
dinate through the camera’s intrinsic matrix:

P cam
ref = K−1dref [u, v, 1]

T = K−1[u, v, 1]T . (5)

Further, it can be transformed to the virtual coordinate to
get P virt.

ref with the transformation matrix T virt.
cam :

P virt.
ref = T virt.

cam P cam
ref . (6)

Now we can know the point pref in our virtual coordinate is
P virt.
ref . Suppose the i−th value in height bins relative to the

ground for point pimage is hi and the height from the origin
of the virtual coordinate system to the ground is H . Based
on similar triangle theory, we can have the i− th projected
3D point in height virtual coordinate for pimage:

P virt.
i =

H − hi

yvirt.ref

P virt.
ref . (7)

Finally, we transform the P virt.
i to the ego-car space:

P ego
i = T ego

virt.P
virt.
i . (8)

In summary, the contribution of our module is in two-
fold: i) we design a virtual coordinate system that lever-
ages the height from the HeightNet; ii) we adopt a refer-
ence plane to simplify the computation. We formulate the
height-based 2D-3D projection as follows:

P ego
i = T ego

virt.

H − hi

yvirt.ref

T virt.
cam K−1[u, v, 1]T . (9)

4. Experiments

4.1. Datasets

DAIR-V2X. Yu et al. [37] introduces a large-scale, multi-
modality dataset. As the original dataset contains images
from vehicles and roadside units, this benchmark consists of
three tracks to simulate different scenarios. Here, we focus
on the DAIR-V2X-I, which only contains the images from
mounted cameras to study roadside perception. Specifi-
cally, DAIR-V2X-I contains around ten thousand images,
where 50%, 20% and 30% images are split into train, val-
idation and testing respectively. However, up to now, the
testing examples are not yet published, we evaluate the re-
sults on the validation set. We follow the benchmark to use
the average perception of the bounding box as in KITTI [7].

Rope3D [36]. There is another large-scale benchmark
named Rope3D. It contains over 500k images with three-
dimensional bounding boxes from seventeen intersections.
Here, we follow the proposed homologous setting to use
70% of the images as training, and the remaining as testing.
For validation metrics, we leverage the AP3D|R40 [26] and
the Ropescore that is a consolidated metric of the 3D AP and
other similarities metrics, such as average area similarity.

4.2. Experimental Settings

For architecture details, we use ResNet-101 [8] as the
image-view encoder in results compared with state-of-the-
art and ResNet-50 for other ablation studies. The input res-
olution is in (864, 1536). For data augmentation, we fol-
low [15] to use random scaling and rotation in the 2D space
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Algorithm 1 Height-based 2D to 3D projector
Parameters Definition:
O,X, Y, Z: coordinate system, where Ovirt. has the same
origin as Ocam with Y-axis prependicular to the ground.
TB
A : transformation matrix from coordinate A to B.

K: the camera’s intrinsic matrix.
H: the distance from the origin of the virtual coordinate
system to the ground.
hi: the height from the ground of i-th height bin.
PB
ref : the pixel (u, v) projected from reference plane A in

coordinate B
PA
i : the pixel (u, v) projection point on i-th height bin in

the coordinate system A.

Input:
F fused =

{
ffused
1 , ..., ffused

H
16×

W
16

}
, ffused

m ∈ RCH×Cc

H; K; T virt.
cam ; T ego

cam

Output:
Fwedge is the 3D wedge-shaped volume features.
Begin:

1: Fwedge = {}
2: for ffused

m in F fused do
3: u, v ← m
4: P cam

ref = K−1[u, v, 1]T

5: P virt.
ref =

{
xvirt.
ref , yvirt.ref , zvirt.ref

}
= T virt.

cam P cam
ref

6: for i← 0 to CH do
7: P virt.

i = H−hi

yvirt.
ref

P virt.
ref

8: P ego
i = T ego

virt.P
virt.
i

9: Fwedge ← Fwedge ∪ associate(P ego
i , ffused

m [i])
10: end for
11: end for
12: return Fwedge

End

only. All methods are trained for 150 epochs with AdamW
optimzer [19], where the initial learning rate is set to 2e−4.

4.3. Comparing with state-of-the-art

Results on the original benchmark. On DAIR-V2X-I
setting, we compare our BEVHeight with other methods
like ImvoxelNet [24], BEVFormer [16], BEVDepth [15].
Some results of LiDAR-based and multimodal methods re-
produced by the original DAIR-V2X [37] benchmark are
also displayed. As can be seen from Tab. 1, the proposed
BEVHeight surpasses state-of-the-art methods by a signifi-
cant margin of 2.19%, 5.87% and 4.61% in vehicle, pedes-
trian and cyclist categories respectively.

On Rope3D dataset, we also compare our BEVHeight
with other leading BEV methods, such as BEVFormer [16]
and BEVDepth [15]. Some results of the monocular 3D ob-
ject detectors are revised by adapting the ground plane. As

Table 1. Comparing with the state-of-the-art on the DAIR-
V2X-I val set. Here, we report the results of three types of ob-
jects, vehicle (veh.), pedestrian (ped.) and cyclist (cyc.). First,
recent BEVDepth surpasses the previous best by a large margin,
showing that using bird’s-eye-view indeed helps in roadside sce-
narios. Our method outperforms the BEVDepth by over 4% in
average precision and constitutes state-of-the-art.

Method M
Veh.(IoU=0.5) Ped.(IoU=0.25) Cyc.(IoU=0.25)

Easy Mid Hard Easy Mid Hard Easy Mid Hard

PointPillars [13] L 63.07 54.00 54.01 38.53 37.20 37.28 38.46 22.60 22.49
SECOND [35] L 71.47 53.99 54.00 55.16 52.49 52.52 54.68 31.05 31.19
MVXNet [27] LC 71.04 53.71 53.76 55.83 54.45 54.40 54.05 30.79 31.06

ImvoxelNet [24] C 44.78 37.58 37.55 6.81 6.746 6.73 21.06 13.57 13.17
BEVFormer [16] C 61.37 50.73 50.73 16.89 15.82 15.95 22.16 22.13 22.06
BEVDepth [15] C 75.50 63.58 63.67 34.95 33.42 33.27 55.67 55.47 55.34

BEVHeight C 77.78 65.77 65.85 41.22 39.29 39.46 60.23 60.08 60.54
M, L, C denotes modality, LiDAR, camera respectively.

Table 2. Results on the Rope3D val set. Here, we follow [36] to
report the results on vehicles. Our method on average surpasses
the state-of-the-art method over a margin of 3% in both average
precision and Ropescore metric.

Method

IoU = 0.5 IoU = 0.7

Car Big Vehicle Car Big Vehicle

AP Rope AP Rope AP Rope AP Rope

M3D-RPN [1] 54.19 62.65 33.05 44.94 16.75 32.90 6.86 24.19
Kinematic3D [2] 50.57 58.86 37.60 48.08 17.74 32.9 6.10 22.88
MonoDLE [20] 51.70 60.36 40.34 50.07 13.58 29.46 9.63 25.80
MonoFlex [39] 60.33 66.86 37.33 47.96 33.78 46.12 10.08 26.16
BEVFormer [16] 50.62 58.78 34.58 45.16 24.64 38.71 10.05 25.56
BEVDepth [15] 69.63 74.70 45.02 54.64 42.56 53.05 21.47 35.82

BEVHeight 74.60 78.72 48.93 57.70 45.73 55.62 23.07 37.04
AP and Rope denote AP3D|R40 and Ropescore respectively.

shown in Tab. 2, we can see that our method outperforms
all BEV and monocular methods listed in the table. In addi-
tion, under the same configuration, our BEVHeight outper-
forms the BEVDepth by 4.97% / 4.02%, 3.91% / 3.06% on
AP3D|R40 and Ropescore for car and big vehicle respectively.
Results on noisy extrinsic parameters. In the realistic
world, camera parameters frequently change for various
reasons. Here we evaluate the performance of our frame-
work in such noisy settings. We follow [38] to simulate
the scenarios that external parameters are changed. Specif-
ically, we introduce a random rotational offset in normal
distribution N(0, 1.67) along the roll and pitch directions
as the mounting points usually remain unchanged.

During the evaluation, we add the rotational offset along
roll and pitch directions to the original extrinsic matrix. The
image is then applied with rotation and translation opera-
tions to ensure the calibration relationship between the new
external reference and the new image. Examples are given
in Sec. 4.3. As shown in Tab. 3, the performance of the ex-
isting methods degrades significantly when the camera’s ex-
trinsic matrix is changed. Take Vehicle for example, the ac-
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Table 3. Results on robustness settings. Here, we simulate the
robustness scenarios where the external parameters of the camera
changes. Consider specifically, we consider two degrees of free-
dom mutation, roll and pitch of the camera center. In both dimen-
sions, we randomly sample angles from a normal distribution of
N (0, 1.67). Surprisingly, given such minor changes, traditional
depth-based methods decrease to under 15% even for those vehi-
cles under easy settings. On the contrary, our methods achieve
around 577% improvement compared to those baselines, evidenc-
ing the robustness of BEVHeight.

M
od

el Disturbed Veh.(IoU=0.5) Ped.(IoU=0.25) Cyc.(IoU=0.25)

roll pitch Easy Mid Hard Easy Mid Hard Easy Mid Hard

B
E

V
Fo

rm
er 61.37 50.73 50.73 16.89 15.82 15.95 22.16 22.13 22.0

✓ 50.65 42.9 42.95 10.16 9.41 9.47 13.62 13.71 13.08
✓ 46.40 38.26 38.37 9.12 8.44 8.55 8.99 8.43 8.42

✓ ✓ 19.24 16.35 16.47 3.93 3.43 3.52 4.93 4.98 4.98

B
E

V
D

ep
th 71.56 60.75 60.85 21.55 20.51 20.75 40.83 40.66 40.26

✓ 34.82 28.32 28.35 4.49 4.36 4.39 10.48 9.51 9.73
✓ 14.04 11.41 11.49 3.01 2.67 2.75 6.43 6.23 6.83

✓ ✓ 11.84 9.48 9.54 2.16 1.84 1.89 4.31 4.14 4.26

B
E

V
H

ei
gh

t 75.58 63.49 63.59 26.93 25.47 25.78 47.97 47.45 48.12
✓ 66.06 54.99 55.14 18.66 17.63 17.78 34.45 26.93 27.68

✓ 68.49 56.98 57.11 17.94 16.87 17.09 34.48 27.82 28.67
✓ ✓ 62.64 51.77 51.9 14.38 14.01 14.09 31.28 25.24 26.02

curacy of BEVFormer [16] drops from 50.73% to 16.35%.
The decline of BEVDepth [15] is from 60.75% to 9.48%.
Compared with the above methods, Our BEVHeight main-
tains 51.77% from the original 63.49%, which surprises the
BEVDepth by 42.29% on vehicle category.

Visualization Results. As shown in Fig. 6, we present the
results of BEVDepth [15] and our BEVHeight in the image
view and BEV space, respectively. The above two mod-
els are not applied with data augmentations in the training
phase. From the samples in (a), we can see that the pre-
dictions of BEVHeight fit more closely to the ground truth
than that of BEVDepth. As for the results in (b), under
the disturbance of roll angle, there is a remarkable offset to
the far side relative to the ground truth in BEVDepth detec-
tions. In contrast, the results of our method are still keeping
the correct position with ground truth. Moreover, referring
to the predictions in (c), BEVDepth can hardly identify far
objects, but our method can still detect the instance in the
middle and long-distance ranges and maintain a high IoU
with the ground truth.

4.4. Ablation Study

Analysis on Distance Error. To provide a qualitative anal-
ysis of depth and height estimations, we convert depth and
height to the distance between the predicted object’s center
and the camera’s coordinate origin, as is shown in Fig. 5.
Compared with the distance error triggered by depth es-
timation in BEVDepth [15], the height estimation in our
BEVHeight introduces less error, which illustrates the su-
periority of height estimation over the depth estimation in

Figure 5. Empirical analysis of the distance correlation. All
experiments are conducted on the DAIR-V2X-I val set. (a) and
(b) reveal the distance correlation between ground truth and pre-
dicted distance on the BEVDepth and our BEVHeight. We take
distances from the camera’s coordinate system origin to the an-
notated objects’ center for consideration. Each point represents
an annotated instance. The scatter diagram of BEVHeight in (b) is
closer to the diagonal than that of BEVDepth in (a), indicating that
the distance error triggered by height estimation is more minimal
than the depth candidate.
Table 4. Limitation of our method. We present the results on
the nuScenes validation dataset. We notice that our methods fall
behind the traditional BEVDepth on the ego-vehicle settings by
2%. This shows that our methods are effective on cameras with
high installation and bird’s-eye-view as in the roadside scenario,
and is not ideal on cameras mounted on ego-vehicles.

Method mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓

BEVDepth 0.315 0.367 0.702 0.271 0.621 1.042 0.315
BEVDepth* 0.313 0.354 0.713 0.280 0.655 1.230 0.377

BEVHeight 0.291 0.342 0.722 0.278 0.674 1.230 0.361
* denotes the results we reproduce.

the roadside scenario.

Limitations and Analysis. Though the motivation of our
work is to address the challenges in the roadside scenar-
ios, we nonetheless benchmark our methods on nuScenes
to study the effectiveness. Here, the input resolution is
set to (256, 704). We follow the setting of BEVDepth,
i.e. the training lasts for 24 epochs. Note that, we did not
use other tricks such as class-balanced grouping and sam-
pling (CBGS) strategy [40], exponential moving average or
multi-frame fusion. In Tab. 4, we observe that our method
falls behind the BEVDepth by around 0.02 in mAP met-
rics. This shows that our method has limited performance
on ego-vehicle settings.

Firstly, our method does not assume the ground-plane
is fixed, and it is not the reason why our method cannot
surpass the depth-based one on ego-vehicle settings. To
verify, we collect around 13 thousand sequences from the
camera mounted on a moving truck with a ground height of
3.14m, and annotate the 3D object box following nuScenes.
As shown in Tab. 5 We observe that our BEVHeight again
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Figure 6. Visualization Results of BEVDepth and our proposed BEVHeight under the extrinsic disturbance. We use boxes in red to
represent false positives, green boxes for truth positives, and black for the ground truth. The truth positives are defined as the predictions
with IoU>0.5 for vehicle and IoU>0.25 for pedestrian and cyclist. (a) Clean means the original image without any processing; (b)
Disturbed Roll denotes camera rotate 1 degree along roll direction; (c) Disturbed Roll and Pitch represents camera rotate 1 degree along
roll and pitch directions simultaneously. We observe that our methods outperform the baseline in all three settings.

surpasses the depth-based state-of-the-art by a large mar-
gin, evidences the performance is affected by the camera
height but not time-varying ground plane and it can work
on ego-vehicle settings. We visualize three cameras ob-
serving the same object and analyze the detection error in
Fig. 7: (a) shows when the height prediction is equal to the
ground-truth, detection is perfect for all cameras; (b) if not,
for the same height prediction error, the distance between
the predicted point and ground-truth is inversely propor-
tional to the camera ground height. This is why BEVHeight
achieves on-par performance on nuScenes but quickly sur-
passes BEVDepth [15] when the camera height only in-
creases less than 1 meter.

Table 5. Experiments on the dataset collected by higher truck.

Method
Car(IoU=0.5) Big Vehicle(IoU=0.5)

Easy Mod. Hard Easy Mod. Hard

BEVDepth [15] 50.05 36.82 36.82 30.15 24.74 24.74
BEVHeight 51.77 40.96 40.96 34.65 29.01 29.01

5. Conclusion
We notice that in the domain of roadside perception,

the depth difference between the foreground object and
background quickly shrinks as the distance to the cam-
era increases, this makes state-of-the-art methods that pre-
dict depth to facilitate vision-based 3D detection tasks sub-
optimal. On the contrary, we discover that the per-pixel
height does not change regardless of distance. To this end,

Figure 7. Distance error analysis caused by same height esti-
mation error on different platform cameras.

we propose a simple yet effective framework, BEVHeight,
to first predict the height and then project the 2D feature to
3D space to improve the detector. Through extensive ex-
periments, BEVHeight surpasses BEVDepth by a margin
of 4.85% on DAIR-V2X-I benchmark under the traditional
clean settings, and by 26.88% on robust settings where ex-
ternal camera parameters change. We hope our work can
shed light on studying more effective feature representation
on roadside perception.
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