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Abstract

Novel Class Discovery (NCD) aims to discover unknown
classes without any annotation, by exploiting the transfer-
able knowledge already learned from a base set of known
classes. Existing works hold an impractical assumption
that the novel class distribution prior is uniform, yet neglect
the imbalanced nature of real-world data. In this paper,
we relax this assumption by proposing a new challenging
task: distribution-agnostic NCD, which allows data drawn
from arbitrary unknown class distributions and thus ren-
ders existing methods useless or even harmful. We tackle
this challenge by proposing a new method, dubbed “Boot-
strapping Your Own Prior (BYOP)”, which iteratively es-
timates the class prior based on the model prediction it-
self. At each iteration, we devise a dynamic temperature
technique that better estimates the class prior by encour-
aging sharper predictions for less-confident samples. Thus,
BYOP obtains more accurate pseudo-labels for the novel
samples, which are beneficial for the next training itera-
tion. Extensive experiments show that existing methods suf-
fer from imbalanced class distributions, while BYOP' out-
performs them by clear margins, demonstrating its effec-
tiveness across various distribution scenarios.

1. Introduction

With the ever-increasing growth of massive unlabeled
data, our community is interested in mining and leveraging
the “dark” knowledge therein [2,7,28]. To this end, Novel
Class Discovery (NCD) [14] is considered as a pivotal step,
which aims to automatically recognize novel classes by par-
titioning the unlabeled data into different clusters with the
knowledge learned from a labeled base class set. Note
that the base knowledge is indispensable because clustering
without a prior is known as an ill-posed problem [20]—data
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Figure 1. Novel Class Discovery (NCD) in different scenarios. (a)
NCD with no prior on balanced unlabeled data. (b) NCD with
the uniform prior on balanced unlabeled data. (c) NCD with the
uniform prior on imbalanced unlabeled data.

can always be clustered w.rt. any feature dimension, e.g.,
color and background. Hence, the base set provides a pre-
liminary prior for defining class vs. non-class features, e.g.,
the object background feature is removed for discovering
new classes.

Yet, clustering is still ambiguous to other features not re-
moved by the base knowledge. As shown in Fig. 1(a), if we
do not specify the class distribution prior, i.e., #sample per
class, the two clusters may be considered as red vs. other
color, but not the desired moose vs. cow. Therefore,
clustering with such a specified prior is a common practice
in existing NCD methods [ 1,34,47]. However, they hold a
naive assumption that the class distribution in the unlabeled
data is balanced, i.e., the prior is uniform. This is imprac-
tical because the nature of data distribution—especially for
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Figure 2. The training pipeline of our proposed BYOP for
distribution-agnostic NCD. (a) At each iteration, BYOP clusters
the unlabeled data using the class prior coming from the previ-
ous iteration to generate pseudo-labels (Sec. 3.1). (b) BYOP is
trained to predict the novel class distributions using the generated
pseudo-labels, where we devise a dynamic temperature technique
to encourage more confident predictions (Sec. 3.2). (c¢) The class
prior is estimated by calculating the proportion of each class as-
signment, which is ready to use for the next iteration (Sec. 3.3).

large-scale data—is imbalanced [23, 31, 33]. As shown in
the comparison between Figs. 1(b) and (c), if the data is
imbalanced, the uniform prior is misleading.

In this paper, we relax such an impractical assump-
tion by allowing novel data drawn from an arbitrary un-
known class distribution. We term this new challenging task
distribution-agnostic NCD, which renders existing meth-
ods useless or even harmful when the novel data is highly-
imbalanced. The crux of the problem is the prior itself—on
one hand, it is a critical ingredient against cluster ambigui-
ties; on the other hand, it becomes misleading when it mis-
matches with the true class distribution. This gives rise to
a chicken-egg problem in distribution-agnostic NCD, as the
class distribution is no longer known as a priori. We pro-
pose to address this dilemma by “Bootstrapping Your Own
Prior” (BYOP /bar'np/)—iteratively estimating the class
distribution based on the model prediction itself, which can
be used as a prior to obtain more accurate pseudo-labels that
help the next training iteration.

The BYOP pipeline is summarized in Fig. 2. Given a
batch of unlabeled data with an arbitrary unknown class
distribution, we deploy a clustering method [!] that parti-
tions the data subject to the current class prior. At each
iteration, the current class prior estimation is not yet ac-
curate (e.g., we initialize by the uniform prior), and thus
may result in ambiguous clusters for the minority classes if
the true class distribution is highly-imbalanced (Fig. 2(a)).

The cluster assignments are used as pseudo-labels to train
a classifier to discover novel classes. However, due to the
imperfections in pseudo-labels, the predicted class distribu-
tions are inevitably ambiguous, especially for those minor-
ity classes. To this end, we propose a dynamic tempera-
ture technique that can be integrated into the classifier to
output more confident distribution predictions (Fig. 2(b)).
The main idea is to encourage sharper predicted distribu-
tions for less-confident data by a per-sample temperature
adjustment. In particular, we call it “adaptive” because it
won’t hurt the prediction for the samples which are already
confident, while significantly disambiguating those who are
less confident, as later discussed in Fig. 3.

To estimate the class prior, we gather the predicted novel
class distributions as the class assignments for the training
samples, and calculate the proportion of each class assign-
ment (Fig. 2(c)), so that we can derive a new class prior
that is beneficial for the next training iteration. Note that
the higher prediction accuracy for majority classes guar-
antees to estimate a preliminary prior that helps generate
more accurate pseudo-labels, which in turn promotes the
reliability of the prior estimation for other classes via more
accurate model predictions. We benchmark our proposed
BYOP and the current state-of-the-art methods in the chal-
lenging distribution-agnostic NCD task on several standard
datasets. While current methods suffer from imbalanced
class distributions, BYOP outperforms them by large mar-
gins, demonstrating its effectiveness across different class
distributions, including the conventionally balanced one.

To sum up, our contributions are three-fold:

* A new challenging distribution-agnostic NCD task that
relaxes the impractical uniform class distribution as-
sumption in current NCD works.

* A novel training paradigm dubbed BYOP to handle ar-
bitrary unknown class distributions in NCD by itera-
tively estimating and utilizing the class prior.

» Extensive experiments that benchmark the current
state-of-the-art methods as well as the superiority of
the proposed BYOP in distribution-agnostic NCD.

2. Related Work

Similar to typical transfer learning tasks [44-49], the
goal of Novel Class Discovery (NCD) [14] is to cluster
novel samples using the transferable knowledge learned
from the known base classes. To this end, early at-
tempts [18, 19] resort to exploiting pairwise similarities as
the supervision for novel samples. Later works further
improve NCD with more sophisticated similarity measure-
ments [12,13,43,53] or with carefully-designed losses [25,

, 56, 57]. Another line of works [11,47] use a unified
training objective for both base and novel classes, resulting
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in a compact network architecture, and in this paper we also
follow them to adopt this formula. Recently, NCD has been
extended to various practical scenarios [8, 10,22,41,54,55],
such as semi-supervised learning [3, 34, 35], multi-domain
learning [50,59], and class-incremental learning [24,30,36].

However, most existing works assume a uniform
novel class distribution or require the ground-truth class
prior [35]. In this paper, we introduce a new challeng-
ing task, namely distribution-agnostic NCD, to relax this
impractical assumption. We propose to estimate the class
distribution prior based on the model prediction itself, and
effectively leverage the estimated prior by deploying an
optimal transport-based clustering method [I] using the
Sinkhorn-Knopp algorithm [9] that has been shown effec-
tive in various applications [6, | [,35,38,42].

3. Approach

We detail our proposed BYOP to address the challenging
distribution-agnostic NCD task. We begin with the problem
definition and overall framework, and then the implementa-
tion breakdown.

Problem Definition. The goal of NCD is to discover un-
known classes using the learned transferable knowledge. In
training, we have a base set D = {(z?, y?) ij\fl contain-
ing labeled samples x? associated with one-hot labels y?
from C? classes, and a novel set D" = {z"'}}} containing
unlabeled samples 7 from C™ novel classes, in which C"*
is known a priori. The classes in base and novel sets are
non-overlapped. To discover unknown classes, a model is
required to partition D™ into C™ clusters using the knowl-
edge learned from Db. A common practice [ 1, 12,56] is
to assume a uniform class distribution in D™. In contrast,
in this paper we focus on the more challenging distribution-
agnostic NCD, where samples in D" can be drawn from

arbitrary unknown distributions.

Overall Framework. To handle novel data without know-
ing the class distribution prior in advance, as shown in
Fig. 2, our proposed BYOP estimates the prior based on the
model prediction itself during each training iteration, which
can be used to generate more accurate pseudo-labels and
in turn helps the next iteration. The key procedures can be
summarized as (1) clustering with class prior, (2) class dis-
tribution prediction, and (3) class prior estimation, which
will be respectively introduced below.

To begin with, we follow existing works [11,47] to use
a shared image encoder ¢(-) to obtain image features for
both base and novel samples, i.e., z = ¢(x). The features
z are then fed into two independent heads h(-) and g(-) to
get the outputs for base and novel samples, respectively. In
particular, the base head h(-) is a linear classifier with C?
output neurons, while the novel head g(-) is an MLP that
first projects z into a lower-dimensional 2’, followed by a

linear classifier with C™ output neurons. Following [6, 1 1],
the feature representation z, 2z’ and the linear classifiers are
all £5-normalized for better training stability. Note that from
now on we slightly abuse x to denote the image features z
or z’ for brevity. We pack the shared image encoder ¢(-)
and the two individual heads Ah(-), g(-) into a neural network
fo(+) that can be trained to compute class predictions for
both base and novel samples.

3.1. Clustering with Class Prior

Clustering is a pivotal step to discover unknown classes
in the novel set D™. To effectively incorporate the class
prior into the clustering process, we deploy an optimal
transport-based clustering method [ 1, 6] that can explicitly
impose the cluster-wise regularization. The main idea is to
treat the linear classifier’s weight parameters in the novel
head g(-) as cluster centers, such that we can assign novel
samples to each of them subject to certain constraints.

Formally, given a batch of novel samples with feature
vectors X = [x], ..., x’}], our goal is to assign them to the
cluster centers W = [wq,...,wen] that are actually the
linear classifier weights. We denote the assignment for each
sample by Y = [y7,...,y%], which can be optimized by
maximizing the similarity between the sample features and
the cluster centers:

tr(Y W' X) + eH(Y 1
max tr( ) + el (Y), M

where H(-) is the entropy function, € is a hyperparameter
controlling the smoothness of Y, and 7 is the transportation
polytope defined as

n 1
T:{YERE “BlY1lg=p, Y 1cn = 313}7 ()

in which 1 is a B-dimensional vector of all ones, and p is
a C"-dimensional vector that controls the assignment pro-
portion of different cluster centers.

A common choice is to uniformly assign a batch of
samples to each cluster center, i.e., letting p = %lcn,
which has been proven useful in preventing degenerate solu-
tions [1,6]. However, as we discussed in Sec. 1, the uniform
partition can be useless or even harmful in distribution-
agnostic NCD. To this end, instead of fixing the uniform
values for p, we propose to use an estimated class prior
(Sec. 3.3) that better reflects the true class distribution.

The solution to Eq. (1) can be obtained by a small num-
ber of matrix multiplications using the Sinkhorn-Knopp al-
gorithm [9], and we defer the details to Appendix. It is
worth noting that the resulting assignments in Y are soft
probabilities instead of discrete one-hot codes, which are
reported to better suit training with small batches [6], and
we use them as pseudo-labels for the novel samples.
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3.2. Class Distribution Prediction

Training Objective. With the generated soft pseudo-labels
Y at hand, we can use them to train the model fy(-) by min-
imizing a standard cross-entropy loss. Before that, we fol-
low [1 1] to concatenate the output logits from the base and
novel heads, i.e.,q = [q°,q"] € RE"+C" where gb = h(x)
and ¢" = g(x). This enables a unified training objective
for both base and novel samples, which has been shown
beneficial in traditional NCD task [11,47]. Specifically, the
cross-entropy loss is written as

C
Lx,y)=—> velog(fe), 4=0(g/r), O

where C = C + C™, Y 18 the c-th element of the la-
bel y, and o(-) is a shared softmax function with tempera-
ture 7 that outputs a posterior distribution ¢ over the whole
(C® + C™)-dimensional label space. Accordingly, the la-
bel y for the base sample is constructed by zero-padding
its one-hot label y°, i.e., y = [y’ 0cn] where Ocn is a
C™-dimensional vector of all zeros; likewise, for each novel
sample, y is constructed by zero-padding its generated soft
pseudo-label, i.e., y = [0gs, Yy"].

By minimizing Eq. (3) for both base and novel samples,
we are training the model to compute the posterior distri-
butions that explicitly map the base samples to each known
class, while assigning the novel samples to the on-the-fly
cluster centers with different probabilities. Since we re-
gard the position of the maximum element in the predicted
class distribution as the final novel class assignment for each
novel sample, the prediction confidence plays a critical role
that determines the reliability of the assignment.

Dynamic Temperature. A possible workaround to im-
prove the prediction confidence is to generate sharper or
even one-hot pseudo-labels for the novel data, which, how-
ever, can be problematic when clusters themselves are am-
biguous, especially when data is imbalanced. In contrast,
we devise a dynamic temperature technique that acts in a
per-sample fashion, supporting a more fine-grained training
adjustment to improve the prediction confidence. Specif-
ically, we scale the temperature parameter 7 in Eq. (3) as

' =71/p, p=max(o(q/T)), “)

and use it in replace of the original temperature 7 when min-
imizing Eq. (3). The per-sample scaling factor p is calcu-
lated by taking the maximum element of the posterior dis-
tribution g for each training sample, which naturally has a
bound of [, 1].

This temperature readjustment dynamically controls the
learning behaviour of each sample based on the model pre-
diction confidence. Simply put, for data with a high pre-
diction confidence, model tends to output a low-entropy
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Figure 3. Confusion matrices of the five novel classes on CIFAR10
with imbalance ratio 10. (a) BYOP trained with the default tem-
perature 7. (b) BYOP trained with the dynamic temperature 7’

distribution such that p approaches 1, which has a negli-
gible effect on the original temperature; for data with lower
confidence, p becomes much smaller, resulting in the larger
temperature 7. It is known that the temperature parameter
controls the smoothness of the softmax output [ 7], which
subsequently affects the magnitude of the calculated cross-
entropy loss. Specifically, the c-th element of the new pos-
terior distribution Q/ in Eq. (3) can be written as

i = ola/7). = <2/ T)

SO explge /)

For data with an already high confidence, the dynamic tem-
perature 7’ induces slight variations in ¢, resulting in neg-
ligible changes in the calculated cross-entropy loss. While
for less-confident data, the larger temperature 7’ will ren-
der ¢/’ flatter, i.e., with the higher entropy, which leads to a
larger loss that in turn encourages a more confident predic-
tion. As shown in the comparison between Figs. 3(a) and
(b), the dynamic temperature technique significantly dis-
ambiguates the less-confident predictions, leading to better
performance in distribution-agnostic NCD.

Note that the dynamic temperature technique may have
inconspicuous effect on base samples since most predic-
tions are highly-confident thanks to their one-hot labels, but
it plays an indispensable role for novel samples given the
ambiguous nature of the soft pseudo-labels, helping a more
accurate class prior estimation.

®)

3.3. Class Prior Estimation

We estimate the class distribution prior based on the
model predictions for training samples. A possible means
is to repeatedly run a forward pass for all training data af-
ter one or a few training epochs. Except for requiring extra
computations, it lacks the flexibility in prior estimation—
a same fixed prior may be used for one or more training
epochs—which can cause cumulative bias when the esti-
mated prior is less accurate. Instead, we propose a flexible
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Algorithm 1: BYOP for distribution-agnostic NCD

Input: Training data {D°, D™}, temperature parameter 7
Output: Optimal fy(-) with base/novel head h(-), g(-)

1 Initialize: fy(-), uniform class prior p, empty queue X

2 while not converged do

3 Sample a batch from D and D™ as training data:
{(@!, y?) 2, and {2}
4 for samples in the batch do
5 Calculate model output logit: ¢° = h(z),
q" = g(x), and push ¢" of " into K;
6 Adjust temperature: 7' = 7/p using Eq. (4);
7 end
/* Clustering with Class Prior */
8 Generate pseudo-labels {y7 } ;—3:1 for novel samples
using {q;‘}f:nl and p by solving Eq. (1);
/* Class Distribution Prediction */
9 Calculate CE loss £ in Eq. (3) with per-sample 7';
10 Update network parameters 6 using V.Z;
/* Class Prior Estimation */

11 Update class prior p with X using Egs. (6) and (7);
12 end

online prior estimation method that requires little computa-
tion overhead.

At each training iteration, we gather the novel samples’
output logits g" in the current training batch into a first-in-
first-out queue [15], i.e., K = {q7,...,q%}. With a mod-
erate queue size K, we can estimate the class prior using
the most recent model predictions that easily adapt across
iterations. Formally, the class prior r € RC" is estimated
by calculating the proportions of the one-hot assignments in
KC for each novel class:

Te KZH cfargmaquc), (6)

where S = {1,...,C™} is the label set for novel classes,
qy o is the ¢’-th element of g}, and 1(+) is an indicator func-
tion. To further guarantee the stability of the prior estima-
tion, we update the estimated prior with a moving-average
fashion in each iteration, i.e.,

pepp+(1—pr, )
where i € [0, 1] controls the smoothness of the moving-
average behaviour, and we initialize p = [%v ce %] as

a uniform class prior since we hold no assumption of the
true class distribution. Accordingly, we can now integrate
p into Eq. (2) for calculating new pseudo-labels for the next
training iteration. As the training goes by, the model be-
comes more accurate, which helps a more reliable prior es-
timation. The whole training procedure is summarized in
Algorithm 1.

Subset — Base Novel

Dataset Images Classes Images Classes
CIFARI10 25K 5 25K 5
CIFAR100-20 40K 80 10K 20
CIFAR100-50 25K 50 25K 50
Tiny-ImageNet 50K 100 50K 100

Table 1. Datasets statistics with respect to base/novel subsets.

4. Experiments

In this section, we benchmark the current state-of-the-art
methods in the challenging distribution-agnostic NCD task,
and evaluate the effectiveness of our proposed BYOP.

4.1. Experimental Setup

Datasets. We evaluate our propose BYOP on three stan-
dard NCD benchmark datasets following prior works [11,

,14,47,56], i.e., CIFARI10 [26], CIFAR100 [26], and Im-
ageNet [37]. However, since the original ImageNet split
used in NCD [18, 19] contains only 30 novel classes and
is known to be saturated in performance (e.g., 90%+ ac-
curacy), we switch to a more challenging substitution that
contains much more novel classes, i.e., Tiny-ImageNet [29].
The dataset statistics are summarize in Tab. 1, in which we
follow [11,47] to use two different splits of CIFAR100.
To be specific, each dataset is divided into two subsets,
i.e., (1) the base set, containing the labeled data of known
base classes, and (2) the novel set, containing the unlabeled
data of novel classes. We follow former works to assume
the number of novel classes (C™) to be known a priori;
Appendix also provides the experiment with an unknown
C™. To create training data (both base and novel samples)
with different class distributions, we use the imbalance ra-
tio [4,58] (i.e., "““‘ , where NV is the number of samples
in each class) to control the marginal class prior. In experi-
ments we report the evaluations with two representative im-
balance ratios, i.e., 100 and 10, where the many-, medium-,
and few-shot classes are equally divided according to the
descend order of sample numbers. Note that we also in-
volve evaluations with more imbalance ratios in Appendix.

Evaluation Protocol. We evaluate our model on recogniz-
ing novel classes in the training split, which is a traditional
NCD protocol [12, 14, 56], but is much more challenging
when training data is highly-imbalanced. For comprehen-
sive evaluations, we also follow [11,47] to test our model
on recognizing base and novel classes in the test split using
task-aware and task-agnostic protocols. In the task-aware
protocol, each test sample comes with the task informa-
tion, i.e., which subset (base/novel) it is from, such that the
model only needs to consider the base head output for base
samples, and vice versa. In contrast, the task-agnostic pro-
tocol is a more generalized setting that excludes this task
information. Note that we follow long-tailed learning lit-
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Subset (split) — Novel (training) Base (test) Novel (test)

Method | Many Med. Few All Many Med. Few All Many Med. Few All
Uniform p 246 339 161 257 785 419 141 448 238 247 154 213
Oracle p 321 281 120 3038 714 434 151 453 272 283 129 228
Estimated p 297 31.0 146 294 76.1 434 152 449 287 234 156 226
Uniform p + dynamic 7 268 336 157 275 76.5 4377 154 452 27.0 278 125 224
Oracle p + dynamic 7 391 287 11.0 36.5 76.6 436 16.6 45.6 36.0 227 11.0 232
Estimated p + dynamic 7 377  28.6 139 355 76.6 442 154 454 336 241 124 234

Table 2. Ablation study on CIFAR100-50 with imbalance ratio 100. Results are reported in averaged top-1 classification/clustering accuracy
(%). The task-aware protocol is used for the test split. “Med.” is short for “Medium”. Best results are highlighted in each column.

Dataset — CIFARI10 (imbalance ratio: 100) CIFARI10 (imbalance ratio: 10)

Protocol — Trad. Task-aware Task-agnostic Trad. Task-aware Task-agnostic
Method | Nov. Base Nov. All Base Nov. All Nov. Base Nov. All Base Nov. All
RS[12] 463 71.8 432 575 - - - 69.7 874 63.6 755 - - -
RS+ [12] 453 644 50.1 573 644 555 60.0 665 773 633 703 773 623 69.8
NCL [56] 472 71.6 4311 574 - - - 626 869 569 719 - - -
UNO [11] 439 696 522 609 560 556 558 596 88.1 59.1 736 782 588 68.5
UNO + BYOP 593 70.1 533 617 566 56.6 56.6 632 885 61.7 751 784 61.0 69.7
ComEx [47] 446 700 538 619 57.8 551 565 68.1 879 635 757 813 633 723
ComEx + BYOP 57.0 714 545 630 593 56.0 57.7 721 887 655 771 822 654 738

Table 3. Performance on CIFAR10 with different imbalance ratios. Results are reported in averaged top-1 classification/clustering accuracy

(%). “Trad.” is short for “Traditional”, and “Nov.” is short for “Novel”. Best and second-best results are highlighted in each column.

erature [4, 39, 58] to use uniformly-distributed test data to
evaluate the generalization ability. We report the results av-
eraged over five runs for each dataset with different imbal-
ance ratios. Specifically, we use the accuracy metric for
base samples, and the average clustering accuracy for novel
samples, which is defined as

1 N R

ClusterAcc = terg?é(n) N ijl L(y; =t(9;)), ®
where y; and §; are respectively ground-truth label and
cluster assignment prediction for each novel sample x”*; N
is the total number of novel samples for test; P(C™) de-
notes the set of all possible permutations of C™ elements,
and ¢ is an arbitrary permutation. The optimal permutation
t* can be obtained using the Hungarian algorithm [27].

Implementation Details. We use a ResNet-18 [16] as the
image encoder ¢(-) for fair comparisons with the exist-
ing methods [11, 12,47,56]. We also follow [I1,47] to
use a same architecture for base and novel heads h(-), g(+),
and a same training method (pretraining, multi-head clus-
tering [5,21], data augmentation, optimizer, learning rate
scheduler) to ensure an immediate comparison. In partic-
ular, we pretrain the model for 200 epochs on the base
set, and then train for another 200 epochs on both base
and novel sets to discover novel classes. Note that BYOP,
UNO [I1] and ComEx [47] share the same pretrained
weights in our experiments; for other methods with differ-
ent architectures, we rerun the pretraining using the same

base set. However, we disable the over-clustering strategy
originally used in [11,47] for relevant methods since we
found it harmful when data is imbalanced. The default tem-
perature parameter 7 is set to 0.1, and the queue size |K]|
is 6000, with the moving average factor ; = 0.99. We
delay the prior estimation after 5 training epochs in our ex-
periments for better stability. We inherit the hyperparame-
ters for the Sinkhorn-Knopp algorithm [9] from the former
work [0], i.e., ¢ = 0.05 and the iteration number is 3. Please
see Appendix for more details.

4.2. Ablation Study

We evaluate the effectiveness of the two key ingredients
of BYOP, i.e., the prior estimation and the dynamic temper-
ature technique. The results are summarized in Tab. 2.

Effect of Prior Estimation. We can observe that with the
estimated class prior (“Estimated p”) the model achieves
better overall results compared with the uniform prior
(“Uniform p”). We also report the results with the ground
truth prior (“Oracle p”) for reference, which performs com-
parably to the estimated prior, validating the effectiveness
of our class prior estimation strategy. It is worth noting
that the estimated class prior benefits more for the major-
ity novel classes (“Many”), because with the uniform prior
the model tends to spread samples of majority classes to
different clusters, and thus performs poorly in “Many”. The
estimated prior rectifies this behaviour by allowing larger
clusters for majorities classes, which may have a side effect
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Dataset — CIFAR100-20 (imbalance ratio: 100) CIFAR100-20 (imbalance ratio: 10)

Protocol — Trad. Task-aware Task-agnostic Trad. Task-aware Task-agnostic
Method | Nov. Base Nov. All Base Nov. All Nov. Base Nov. All Base Nov. All
RS [12] 36.5 400 362 392 - - - 476 588 478 56.6 - - -
RS+ [12] 353 382 329 371 382 247 355 48.8 555 452 534 555 356 515
NCL [56] 355 391 287 37.0 - - - 503 57.1 456 548 - - -
UNO[11] 352 439 325 416 40.7 299 385 469 609 46.6 58.0 579 384 540
UNO + BYOP 503 443 353 425 413 33.0 39.6 545 614 483 58.8 582 40.6 547
ComEx [47] 36.3 443 3211 419 414 311 393 46.0 613 459 582 593 429 56.0

ComEx + BYOP 51.8 45.0 33.1 42.6 42.6 333 40.7 553 622 472 592 602 455 573

Table 4. Performance on CIFAR100-20 with different imbalance ratios. Results are reported in averaged top-1 classification/clustering
accuracy (%). “Trad.” means “Traditional”, and “Nov.” means “Novel”. Best and second-best results are highlighted in each column.

Dataset — CIFAR100-50 (imbalance ratio: 100) CIFAR100-50 (imbalance ratio: 10)
Protocol — Trad. Task-aware Task-agnostic Trad. Task-aware Task-agnostic
Method | Nov. Base Nov. All Base Nov. All Nov. Base Nov. All Base Nov. All
RS [12] 30.7 40.8 233 321 - - - 274 484 237 36.1 - - -
RS+ [12] 29.6 355 230 293 355 225 290 26.0 385 234 310 385 219 302
NCL [56] 304 399 21.8 309 - - - 27.8 470 234 352 - - -
UNO [11] 2577 448 213 3311 369 226 29.8 337 639 325 482 536 308 422
UNO + BYOP 355 454 234 344 373 240 30.7 383 64.6 349 498 541 33.0 436
ComEx [47] 27.1 459 226 343 395 233 314 343 646 326 486 577 319 448

ComEx + BYOP 33.1 469 24.1 355 409 244 32.7 374 653 335 494 585 328 457

Table 5. Performance on CIFAR100-50 with different imbalance ratios. Results are reported in averaged top-1 classification/clustering
accuracy (%). “Trad.” means “Traditional”, and “Nov.” means “Novel”. Best and second-best results are highlighted in each column.

for minority classes (“Few”) since their clusters are signif-
icantly reduced. Still, we deem it rational as the majority
classes are more important for NCD in practice.

Effect of Dynamic Temperature. As can be seen in Tab. 2,
the dynamic temperature technique (“dynamic 77) unan-
imously improves the overall performance for any used
prior. Still, it works better with the oracle/estimated prior
since it benefits from more accurate training signals, i.e.,
the generated pseudo-labels. Also, the surprising improve-
ment on “Oracle p” suggests that the prediction confidence
is critical for distribution-agnostic NCD, which promotes
the prediction accuracy and in turn helps a more accurate
prior estimation. As discussed in Sec. 3.2, the dynamic tem-
perature should have negligible effect on base classes due
to their already high prediction confidence, but still benefits
the minority classes when data is highly-imbalanced.

4.3. Main Results

Comparison with State of the Arts. We compare our pro-
posed BYOP with five most recent state-of-the-art NCD
methods, i.e., RS [12], RS+ [12] (RS with incremental
classifier), NCL [56], UNO [11], and ComEx [47]. Since
distribution-agnostic NCD involves remarkable changes in
the experimental settings, we compare these recent meth-
ods with applicable official codes that can be adapted to

this task. Specifically, RS, RS+ and NCL exploit pair-
wise similarities to discover novel classes, without apply-
ing explicit uniform regularization on them; while UNO and
ComEx impose an explicit uniform constraint when gener-
ating pseudo-labels for novel classes. As BYOP shares the
similar training objective with UNO and ComEx, we adapt
these two methods using the BYOP training paradigm for
an immediate evaluation of BYOP’s effectiveness, denoted
by “UNO + BYOP” and “ComEx + BYOP”.

As shown in Tabs. 3 to 6, BYOP brings considerable im-
provements on top of UNO and ComEx, setting the new
state of the art in distribution-agnostic NCD. Our improve-
ments are mostly significant in the traditional NCD protocol
(“Trad.”), in which an accurate class prior is directly benefi-
cial for discovering novel classes in the training data. How-
ever, traditional methods which are trained with a uniform
class prior are actually more suitable for evaluations on the
test split whose class distribution is also uniform. Yet, we
show in results that BYOP can still improve the generaliza-
tion ability transferable to a different data distribution, even
with the most challenging “task-agnostic” protocol.

RS [12] and NCL [56] also yield competitive results
on imbalanced data, owing to not using explicit uniform
regularization as early discussed, as well as the self-
supervised pretraining and stronger data augmentations
such as MixUp [52]. In contrast, BYOP can still achieve
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Dataset —

Tiny-ImageNet (imbalance ratio: 100)

Tiny-ImageNet (imbalance ratio: 10)

Protocol — Trad. Task-aware Task-agnostic Trad. Task-aware Task-agnostic
Method | Nov. Base Nov. All Base Nov. All Nov. Base Nov. All Base Nov. All
RS [12] 256 37.6 148 262 - - - 226 528 179 354 - - -
RS+ [12] 225 291 149 220 291 150 220 242 387 192 29.0 387 197 292
NCL [56] 2477 340 142 241 - - - 248 492 18.6 339 - - -
UNO[11] 20.8 359 166 263 253 162 208 253 50.6 233 370 379 224 302
UNO + BYOP 26.1 363 173 268 260 17.2 21.6 279 519 238 379 395 233 314
ComEx [47] 21.7 363 167 265 289 167 228 26.0 50.8 233 37.1 423 232 32.8
ComEx + BYOP 26.2 36.8 169 269 304 17.0 23.7 30.8 523 235 379 442 237 34.0

Table 6. Performance on Tiny-ImageNet with different imbalance ratios. Results are reported in averaged top-1 classification/clustering
accuracy (%). “Trad.” means “Traditional”, and “Nov.” means “Novel”. Best and second-best results are highlighted in each column.

Subset — Base (test) Novel (test)

Method | Many Med. Few All Many Med. Few All
UNO[11] 785 419 141 448 238 247 154 213
UNO + BYOP 76.6 442 154 454 336 241 124 234
UNO +BYOP! 763 479 189 477 286 302 129 238
Table 7. Performance of BYOP with Logit Adjustment [32]

(BYOP') on CIFAR100-50 with imbalance ratio 100. The task-
aware protocol is used. “Med.” is short for “Medium”.

better overall performance with much simpler data aug-
mentations and training procedures. However, BYOP’s im-
provements are less significant on Tiny-ImageNet due to the
large amount of novel classes, suggesting that distribution-
agnostic NCD is still an open challenge in practice.

Further Analysis. Thanks to the estimated prior p at hand,
another merit of BYOP is to leverage sophisticated long-
tailed learning techniques, e.g., Logit Adjustment [32],
to further improve the performance when data is highly-
imbalanced. Specifically, when the target class distribution
is uniform, we can combine BYOP with a post-hoc Logit
Adjustment strategy that predicts with the adjusted logit
q' = q — 7log(p). To this end, we also use the same man-
ner detailed in Sec. 3.3 to estimate the class prior for base
classes. As shown in Tab. 7, this strategy consistently im-
proves the performance in minority classes, shedding light
on new opportunities in distribution-agnostic NCD.

Visualizations. We show in Fig. 4 the visualizations of
the output spaces before and after applying our BYOP
paradigm on top of UNO [I1] for an immediate compari-
son. In particular, in Fig. 4(a) the original UNO tends to
equally partition novel samples into different clusters (es-
pecially for majority classes, e.g., dog and frog) due to
the uniform training prior, leading to sub-optimal perfor-
mance. In contrast, BYOP iteratively estimates the class
prior that better reflects the true class distribution, and thus
achieves promising results in preserving the true data struc-
ture, as shown in Fig. 4(b). Still, we can observe inferior
clusters for minority classes, which are mainly due to the
shortage of training data and high visual similarities. These

® horse  eship e truck

e frog

(a) UNO

Figure 4. t-SNE [40] visualizations of the five novel classes in
the training split of CIFAR10 with imbalance ratio 10. (a) Output
space of UNO [11]. (b) Output space of UNO + BYOP.

(b) UNO + BYOP

limitations suggest that distribution-agnostic NCD remains
an open challenge for future works.

5. Conclusions

In this paper, we presented BYOP, namely ‘“Bootstrap-
ping Your Own Prior”, to tackle the new challenging task of
distribution-agnostic Novel Class Discovery. Specifically,
for novel samples drawn from an arbitrary unknown class
distribution, BYOP iteratively estimates the class distribu-
tion prior based on the model prediction itself, which can be
used to generate more accurate pseudo-labels for the novel
samples in the next training iteration. We highlighted that
the key to a reliable class prior estimation is the prediction
confidence, for which we devised a dynamic temperature
technique that adaptively encourages sharper predictions for
less-confident samples. BYOP was evaluated on four NCD
benchmarks with various imbalance ratios, demonstrating
clear superiority over current state-of-the-art methods.
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