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Abstract
Relighting an outdoor scene is challenging due to the

diverse illuminations and salient cast shadows. Intrinsic
image decomposition on outdoor photo collections could
partly solve this problem by weakly supervised labels with
albedo and normal consistency from multi-view stereo. With
neural radiance fields (NeRF), editing the appearance code
could produce more realistic results without interpreting
the outdoor scene image formation explicitly. This paper
proposes to complement the intrinsic estimation from vol-
ume rendering using NeRF and from inversing the photo-
metric image formation model using convolutional neural
networks (CNNs). The former produces richer and more
reliable pseudo labels (cast shadows and sky appearances
in addition to albedo and normal) for training the latter to
predict interpretable and editable lighting parameters via a
single-image prediction pipeline. We demonstrate the ad-
vantages of our method for both intrinsic image decompo-
sition and relighting for various real outdoor scenes.

1. Introduction
The same landmark may appear with drastically vary-

ing appearances in different photos, even if they are taken
from the same viewpoint with the same camera parameters,
e.g., the Taj Mahal may look golden or white at sunset or
in the afternoon1. For a set of photos containing the same
landmark captured in different seasons and times, their “dy-
namic” lighting changes (compared with the relatively “sta-
ble” geometry and reflectance) play a vital role in explain-
ing such great appearance variations. If we can indepen-
dently manipulate lighting in these photos, the relighted
outdoor scenes could substantially improve experiences for
taking digital photographs.

Outdoor scene relighting could be realized by learning a
style transfer procedure [1,5]. Such a process only requires
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1Changing colours of Taj Mahal: agratajcitytour.com

a single reference image for editing a target image, but it ap-
parently retouches the image to “look like” each other, with-
out explicitly modeling the lighting changes. Intrinsic im-
age decomposition, which inversely decomposes the photo-
metric image formation model, has been extended to work
with outdoor photo collections [32–34]. The common ge-
ometry/reflectance (for the whole collection) and distinctive
lighting components (for each image) are estimated using
deep convolutional neural networks (CNNs), so that relight-
ing could be achieved by keeping the former while editing
the latter in a physics-aware manner. These methods ex-
plicitly conduct computationally expensive multi-view re-
construction of the scene at the training stage. The weakly
supervised constraints built upon albedo and normal con-
sistency via multi-view correspondence cannot support the
handling of cast shadows [33] or still struggle with strong
cast shadows [32].

Recently, the emerging of neural radiance fields
(NeRF) [23] has not only boosted the performance of novel
view synthesis with significantly better quality for outdoor
scene photo collections [22], but has also been demon-
strated to be capable of transferring the lighting appearance
across the image set using hallucination [4] or a parametric
lighting model [28]. However, these existing NeRF meth-
ods in the outdoor scene either miss the explanation to some
important intrinsics for relighting such as cast shadows (ex-
cept for [28]) or ignore distinctive characteristics between
the non-sky and sky regions, in a physically interpretable
manner.

In this paper, we hope to conduct outdoor scene re-
lighting by mutually complementing intrinsics estimated
from NeRF and CNN and taking advantages of the com-
prehensive representation power of NeRF and physics in-
terpretability of CNN-based single-image decomposition,
in a single-image inference pipeline as shown in Figure 1.
We formulate the color formation of a pixel as a combina-
tion of objects and the sky by tracing rays from camera ori-
gins to the furthest plane and accumulating the voxel intrin-
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Figure 1. Illustration of our overall pipeline. For each image, the corresponding camera rays and sampled 3D points are positionally-
encoded for MLPs (gray block). Our IntrinsicCNN and LightingCNN modules derive lighting-(in)dependent intrinsic components and
second-order spherical harmonics (SH) lighting coefficients (green block), while Our NeRF module provides the pseudo labels of intrinsics
and sky mask by volumetric rendering through MLPs (blue block). Our SkyMLP module renders the sky with viewing direction and
extracted lighting (orange block). Given lighting extracted from the input/reference image, the reconstructed/relighted image is rendered
by photometric image formation along with the rendered sky (yellow block).

sics. We then propose a modified NeRF system to estimate
diffuse albedo, surface normal, cast shadow, and illumina-
tion parameters. Our NeRF rendering naturally shares the
albedo and normal of one point across all images and inter-
prets the geometry from voxel density, which provides more
accurate pseudo labels for identifying shadows than purely
CNN-based approaches [32–34]. We finally predict the in-
trinsics and lighting parameters by designing two separate
CNN modules based on the NeRF-produced pseudo labels
with a clearer separation of lighting-dependent and indepen-
dent intrinsic components to achieve high-quality relighting
via single-image prediction.

Hence, our contribution becomes clear in three folds:
Based on 1) the newly proposed “object-sky” hybrid image
formation, 2) the intrinsics estimated from NeRF provide
more accurate pseudo labels to complement 3) the intrin-
sics estimated from CNNs, for conducting outdoor scene
relighting using a single image in a physically interpretable
manner and with a visually pleasing appearance, which is
demonstrated by our experimental results.

2. Related work
Style transfer is a possible way to relight an outdoor

scene, by formulating it as an image-to-image translation
problem [9,12,17,20,22]. By appropriately selecting a ref-
erence photo with desired illumination and transferring its
style to the content image, the target image may look like

being taken under the specified illumination [20, 29]. This
could be achieved by feeding illumination representation as
input conditions of conditional generative adversarial net-
works (CGANs) via an image-to-image translation frame-
work [12]. With cycle-consistent supervision, the lighting
condition can be transferred from the reference image to
the target image even in the absence of paired training ex-
amples [37]. The task of image style transfer can be also
solved using CNNs [8, 9, 12, 20]. CNN-based models are
first used to extract object features and texture features, the
relighted image is then generated with the combination of
object features from the original image and texture features
from the target image [9, 20]. Although approaches in this
category can achieve photo-realistic effects as relighting in
some certain scale, their lacks of physical representation
of lighting condition prevent them from controlling illumi-
nated appearance in an interpretable manner. This paper
pays attention to intrinsics with clear physical meaning to
deal with this issue.

Intrinsic decomposition provides another solution for
relighting an outdoor scene, by inversely analyzing the pho-
tometric image formation model [7,11,16,24] and indepen-
dently editing the lighting component, while leaving other
lighting-irrelevant components (such as albedo and normal)
unchanged [14, 15, 32–34]. Collections of outdoor pho-
tographs could be used to provide constraints for model
training [6, 19]. Due to the difficulty of obtaining ground
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truth intrinsic components in real scenes, synthetic datasets
are often used for model pre-training [2, 7, 16, 25], but the
large gap between synthetic and real datasets makes it still
difficult to achieve photo-realistic results in real scenes.
Another way is to use self-supervised or semi-supervised
learning methods based on a large number of images of the
same scene [32–34], so that auxiliary supervisions and con-
straints to improve the model performance in real scenes
can be acquired by exploring the consistent geometry and
reflectance constraints in the multiview stereo context. This
paper aims to distinguish lighting-(in)dependent intrinsics
like [32–34], but pays more attention to reliably constrain
the decomposition process with more accurate pseudo la-
bels.

Neural scene representation is applied to modify the
lighting-relevant properties of the outdoor scenes since the
booming of NeRF [23] and its variants [4,21,28,30,35,36].
Benefiting from a more comprehensive way of scene repre-
sentation, these methods can produce photo-realistic render-
ings from any viewpoint. The vanilla NeRF [23] only works
on static scenes and assumes all input images share the same
lighting condition, which makes it unsuitable for relighting.
The fixed lighting condition is relieved in NeRV [30], which
represents the scene as a continuous volumetric function of
albedo, normal, and other scene properties parameterized as
multi-layer perceptrons (MLPs). To further deal with the in-
fluence of transient parts during scene reconstruction, such
as pedestrians and cars, semantic segmentation [27] and
transient modules [4,21] are introduced. NeRF-W [21] pro-
poses a latent appearance modeling method, which adopts
the approach of generative latent optimization [3]. The la-
tent appearance code is learned for each input image to rep-
resent the appearance separately. However, the latent ap-
pearance model is not supported by a physics-based image
formation model, so it cannot generate physically meaning-
ful shadows or conduct controllable appearance editing.

Ha-NeRF [4] proposes a CNN-based appearance en-
coder to encode the appearance of each image, which is
constrained by a dedicated loss. Although Ha-NeRF [4] can
render images in any new lighting conditions, the relighted
scenes are hallucinated and not physically interpretable, as
the name says. The physically interpretable lighting is sup-
ported by NeRF-OSR [28], which uses spherical harmonic
coefficients for lighting representation [26], but it can only
render images in lighting conditions that are observed in the
training set or extracted from given environment maps. This
paper integrates the intrinsics from both NeRF- and CNN-
based methods in a complementary manner to balance re-
lighting fidelity and controllability.

3. Method
We first introduce relevant background knowledge about

neural radiance fields (Section 3.1). Based on which, we

propose the complementary intrinsic estimations using both
NeRF (Section 3.2) and CNNs (Section 3.3) for outdoor
scene relighting, whose joint interaction enables single-
image inference. The illustration of our overall pipeline is
shown in Figure 1.

3.1. Preliminaries

We briefly review the formulation of neural radiance
fields, especially its application in outdoor scenes, to make
this paper self-contained. NeRF [23] uses volumetric func-
tions to represent the scene, which is modeled by two mul-
tilayer perceptrons (MLPs). The first MLP Fdensity models
the density function, which takes the 3D location of point x
as input and estimates the volume density σ as

(σ(x), z) = Fdensity(γx(x)), (1)

where F stands for multilayer perception2 throughout this
paper, γx is the positional encoding function for 3D loca-
tions, and z is the latent features used for color prediction.

The second MLP Fcolor models the color function, which
depends on the latent features z together with the viewing
direction d. For outdoor scenes in a landmark photo collec-
tion, the camera parameters and environment lightings are
usually different for each image. Thus, a learnable appear-
ance embedding l is assigned to each image to model these
per-image discrepancies [21]. Then, the color prediction via
NeRF for outdoor images in the wild cnw is formulated as:

cnw(x,d, l) = Fcolor(γd(d), z, l), (2)

where γd is the positional encoding function for viewing
diretions.

NeRF independently renders each ray r ∈ R casted from
the camera origin o in direction d corresponding to each
pixel. For the ray r = o+ td, N points in total are sampled
from the nearest plane to the furthest plane, and then the
accumulated color of the ray is approximated as:

Ĉnw(r) =
N∑
i=1

Ti(1− exp(−σiδi))cnw(o+ tid,d, l),

Ti = exp(−
i−1∑
j=1

σjδj),

(3)

where δi = ti+1 − ti is the distance between two adjacent
sampling points.

The optimization goal of NeRF is simply minimizing
the total squared error between the rendered images and
the ground truth [23]. However, in-the-wild images usu-
ally contain moving objects, such as tourists and vehicles.
This could be dealt with by introducing uncertainty of tran-
sient objects [21]. A recent study suggests that such an ap-
proach may lead to ghostly figures and blurry results [27],
and a pre-trained semantic segmentation model [31] could

2Later, we will use G for CNNs.
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be used to mark out these regions using a mask for moving
object Mmov and eliminate the effects of transient objects
during training:

Lnw =
∑
r∈R

(1−Mmov(r))∥Ĉnw(r)−C(r)∥22. (4)

3.2. Intrinsic estimation using NeRF

By optimizing Equation (4), relighting features could
be obtained by interpolating between appearance embed-
dings from two images via NeRF [4, 21], but the relighted
scenes in this way cannot maintain semantic meanings and
the lighting is not physically editable. In this paper, we
hope to conduct interpretable single-image relighting for
outdoor scenes, and we achieve this by estimating the intrin-
sic components of the scenes and rendering pixels that sat-
isfy the physics-based photometric image formation model.
We formulate the formation of the color of pixels as NeRF-
OSR [28], i.e., by using the combination of diffuse albedo
A, shadow S, and shading, where the shading is derived
from the surface normal N and spherical harmonics light-
ing L under the Lambertian model. Thus, we could approx-
imate the appearance color along the ray r as:

Ĉobj(r) = A(r)⊙ S(r,L)⊙ Lb(N(r)), (5)

where ⊙ is Hadamard product, L ∈ R3×9 is the second-
order spherical harmonics coefficients for each color chan-
nel, b(n) ∈ R9 is the second-order spherical harmonics
basis corresponding to normal vector n. Albedo A and sur-
face normal N are lighting-independent intrinsics and the
others are lighting-dependent.

We modify the NeRF system introduced in Section 3.1
to estimate the outdoor scene intrinsics in Equation (5), as
shown in the blue block of Figure 1. Diffuse albedo A(r),
surface normal N(r), and shadow S(r) are accumulated
from corresponding terms α(x), n(x), and s(x), in a simi-
lar way as Equation (3). The shading term is derived from
N(r) at the pixel level instead of the voxel level. To calcu-
late intrinsic components at each 3D location x, the normal
term n(x) at point x can be directly derived from the den-
sity function σ(x), by calculating the normalized negative
derivative of σ with respect to x:

n(x) = −∂σ(x)

∂x
/∥∂σ(x)

∂x
∥2. (6)

Diffuse albedo is very similar to the color function of NeRF,
except that the albedo is a direction-irrelevant term and it
does not depend on the viewing direction d of each ray.
Thus, we use a new MLP Falbedo which takes only the la-
tent features z as input to calculate the diffuse albedo term
α(x) at point x as:

α(x) = Falbedo(z). (7)

Predicting the cast shadow accurately is important for real-
istically relighting an outdoor scene. This could be achieved

by using another MLP Fshadow. The cast shadow term s(x)
at each point x depends on the direction of lighting and the
geometry of outdoor scenes, so we calculate it as

s(x) = Fshadow(γx(x),L). (8)

We use fewer fully-connected layers and neurons in Fshadow
than other MLPs, to ensure the continuity and low fre-
quency of estimated shadow.

The image formation in Equation (5) is only valid for
opaque objects, which means it does not apply to the sky –
an indispensable factor for modeling the outdoor scene ap-
pearance. To overcome this issue, a separate sky modeling
is proposed to render the color of sky pixels, as shown in
the orange block of Figure 1.

For the sky region, we formulate the color of the ray r =
o + td as a function Fsky that only depends on its viewing
direction d and the global lighting representation L. We
then design a new MLP module to represent Fsky, denoted
as SkyMLP:

Ĉsky(d,L) = Fsky(γd(d),L). (9)

It is vital that these two variables are represented in the same
coordinate system, no matter whether it is the camera or
the world coordinate system. The shared coordinate sys-
tem enables us to render the sky region during single-image
inference, as the directions of rays cast in the camera co-
ordinate system are computable. Moreover, the proposed
SkyMLP module together with CNN modules (which will
be introduced in Section 3.3) provides us a way to render
the outdoor sky from a given reference image.

By merging the terms for objects Ĉobj and for the sky
Ĉsky(r) together, we can predict color of ray r with our
NeRF module as:

Ĉ(r) = Mobj(r)Ĉobj(r) +Msky(r)Ĉsky(r). (10)

To bridge these two terms seamlessly, we need something
like the semantic segmentation mask for the sky region. Ac-
tually, TN = exp(−

∑N
j=1 σjδj) (recall that N is the total

number of sampling points in a ray) denotes the accumu-
lated transmittance along the ray from the nearest plane to
the furthest plane, which is the probability that the ray hit-
ting nothing but the sky which is infinitely far away. Then
the masks for the object and sky terms can be calculated as:

Mobj = 1− TN and Msky = TN . (11)

Ideally, both Ĉobj and Ĉsky can be simply supervised by
the total squared error between rendered images and ground
truth, which can be formulated as:

Lnerf =
∑
r∈R

(1−Mmov(r))∥Ĉ(r)−C(r)∥22. (12)

However, without additional constraints, NeRF sometimes
bakes Ĉobj into Ĉsky, and TN falls to 0 for all rays at
the early stage of training, which leads to the collapse for
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SkyMLP. To overcome this issue, we randomly add gaus-
sian noise to TN and append the total squared error between
rendered sky and image to the optimization objectives:

Lsky = λsky∥Ĉsky(r)−C(r)∥22. (13)

This won’t bake the color of the foreground objects into
SkyMLP because SkyMLP is shared by multiple scenes in
our dataset and the number of layers and neurons is es-
pecially limited. Similarly as conducted by Rematas et
al. [27], we apply an additional loss at the early stage of
training to decrease the density of sky region:

Lseg = λseg

∑
r∈Rsky

N∑
i=1

σ(o+ tid), (14)

where Rsky stands for rays of the sky region and the sky
mask is generated by pre-trained semantic segmentation
model.

While using the rendering procedure described above is
sufficient to reconstruct the outdoor scenes, combining it
with the one described in Equation (3) and sharing the den-
sity function σ across them leads to more precise geometry
reconstruction and better intrinsics estimation. Thus, the
overall loss function for NeRF training state is:

L = Lnw + Lnerf + Lsky + Lseg. (15)

3.3. Intrinsic estimation using CNN

Using the estimated intrinsics from NeRF in Section 3.2,
we can perform outdoor scene relighting using the pre-
trained model of the specific scene, i.e., replace the light-
ing L with another one L′ and leave other terms unchanged
in Equation (5) and Equation (9). However, single-image
relighting at inference time is still impossible because the
lighting and camera extrinsic parameters are unknown. And
the recovered noisy geometry will lead to unpleasant ren-
dering results. Therefore, we further introduce two CNN
modules to address these problems, as shown in the green
block of Figure 1.

We use the first CNN Gintrinsic to extract key intrinsic
components corresponding to Equation (5), including dif-
fuse albedo, surface normal, and cast shadow, and we call
it IntrinsicCNN. It adopts a U-Net-like architecture, which
consists of 9 residual blocks and 30 convolution layers in to-
tal, and takes the images as input and predicts each intrinsic
components at the pixel level:

(Ã, S̃, Ñ) = Gintrinsic(I). (16)

Here, we use ·̃ to distinguish these components from the
previous ones estimated by NeRF.

We design the second CNN Glighting to estimate the light-
ing from a single image, which is called LightingCNN. It
consists of 4 convolution layers and takes an image as input
and predicts its lighting represented by second-order spher-
ical harmonics, whose coefficients are L̃ ∈ R3×9:

L̃ = Glighting(I). (17)

As shown in the green and orange blocks of Figure 1,
to re-render the image, L̃ is fed back to the SkyMLP for
reconstructing the sky background, and then the foreground
color is composed with the sky using the predicted sky mask
Msky:

Ĩ = (1−Msky)(ÃS̃⊙ L̃b(Ñ))

+MskyĈsky(γd(d), L̃).
(18)

IntrinsicCNN obtains pseudo-supervision from pre-
trained NeRF, as shown by the blue double arrows between
the green and blue blocks of Figure 1. We train the CNN by
minimizing the total squared error between albedo, normal,
and shadow maps, together with the reconstruction loss:

Lcnn = (1−Mmov)∥Ã− Â∥22
+ (1−Mmov)∥S̃− Ŝ∥22
+ (1−Mmov)∥Ñ− N̂∥22
+ λrecon∥Ĩ− I∥22.

(19)

Once the intrinsic components are known, we can per-
form lighting editing by replacing L̃ of the target image with
new lighting parameters to produce the re-rendered result.

4. Experiment
We use landmark image collections from the Photo-

tourism dataset [13] and MegaDepth dataset [18] to evaluate
the performance of our method. Since there is no ground
truth for each estimated intrinsic component in real data,
we mainly evaluate these tasks qualitatively. For quantita-
tive evaluation, we follow [32] to measure the consistency
between the input image and the reconstructed counterpart
from intrinsic components. We demonstrate the benefits of
our design in the ablation study.

4.1. Data preparation

Unlike NeRF-W [21] and Ha-NeRF [4], our method re-
quires an existing semantic segmentation algorithm to ex-
clude the transient objects from training. Because handling
the dynamic occlusion is not the main task of this paper, we
experimentally find that using segmentation masks makes
the training procedure of our NeRF module much more
stable, also as suggested in [27]. We use SegFormer [31]
to generate high-quality semantic labels of images. All
tourists and vehicles are excluded from training and qual-
itative evaluation. We further clean our dataset by manually
discarding photos with obviously bad quality, such as the
ones with strong over-exposure, shaking, etc. Finally, we
randomly pick up 1000 images from about 1300 images of
each scene to form the training set and leave the others as
the test set. Our dataset contains 12 landmark scenes in to-
tal, among which 2 scenes are used for evaluation only.
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Figure 2. Estimated intrinsics (albedo, normal, shading, and shadow) and reconstruction results without and with shadow (R. w/o S. and R.
w/ S.) from our CNN (Section 3.3) module, our NeRF (Section 3.2) module, RelightingNet (RLN) [32], and InverseRenderNet (IRN) [34].

4.2. Implementation details

Our training procedure can be divided into two stages,
corresponding to our NeRF and CNN module. Light-
ingCNN is jointly trained with our NeRF and SkyMLP
modules at the first stage. To accelerate this training pro-
cedure, we use the learnable lighting code L assigned to
each image, together with L̃ estimated by LightingCNN, to
complete the subsequent pipeline. The duplicate results are
both supervised in the same way as Equation (15). The in-
volvement of L contributes to the converging of geometry.

To relight an outdoor scene using a single image, we
need to first decompose the input image into intrinsic com-
ponents using Equation (16), re-render the foreground ob-
jects by Equation (5), generate an appropriate sky image as
the background by Equation (9), and finally combine these
together according to Equation (10). The direction d of
each ray and the lighting representation L are both aligned
to the camera coordinate system, and are generated by cam-
era intrinsic parameters and our LightingCNN respectively.

As for the hyperparameters, we select λsky = 0.1 and
λrecon = 0.5 during training, and gradually decrease λseg
from 0.2 to 0.001. Please refer to our supplementary mate-
rial for more implementation details.

4.3. Performance evaluation

Intrinsic decomposition. We qualitatively evaluate the
intrinsic components estimated by our NeRF and CNN,
and compare them with RelightingNet [32] and InverseRen-
derNet [34]. As shown in Figure 2, though the geom-
etry directly derived from the density function σ has a
rough surface, our IntrinsicCNN complements it by sup-
pressing artifacts and providing smooth predictions. Our
method shows stronger capability in distinguishing shape-
independent shadow and shape-dependent shading than
purely CNN-based methods [32,34], while they suffer from
the ambiguity of shading as well as cast shadow and bake
all these factors into shadow maps due to the distinctive
pseudo-supervision labels provided by our NeRF. As the
ground truth of intrinsics in the wild is not available, we
only evaluate the reconstruction results, as shown in Ta-
ble 1.

Relighting. We evaluate the single-image relighting per-
formance3 of our CNN (trained with labels from our NeRF)
in Figure 3 by comparing with RelighitngNet [32] in
both shadow-aware (left of the target image) domain and

3We cannot compare with NeRF-based methods like [21] for this task,
since they only relight with known lighting from multi-view images set.
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Lighting
Condition

Relighting w/ shadow Relighting w/o shadow
Our CNN RLN Our CNN RLN

Figure 3. Relighting results (the target image in the middle rendered with lighting condition of the reference image in the leftmost and
rightmost column) with cast shadows from our CNN and RelightingNet (RLN) [32].

Table 1. Comparison of reconstructed image
quality. The metrics are averaged across the test
set of our image collections. ↑ (↓) means higher
(lower) is better.

Method PSNR ↑ SSIM ↑ MSE ↓ MAE ↓ LPIPS ↓
Our CNN 24.2387 0.8558 0.0038 0.0430 0.1354

RelightingNet [32] 23.4755 0.8595 0.0051 0.0543 0.1336
InverseRenderNet [34] 17.3381 0.5999 0.0204 0.1176 0.1512

shadow-free (right of the target image) domain. Our method
generates a more realistic and appropriate sky region dur-
ing relighting, partly due to the effectiveness of hybrid im-
age formation and SkyMLP, and it also prevents the incor-
rect appearing of highlight regions in the third and fourth
row (under uniform lighting). We also correctly remove the
shadow on the ground in the first row, and the shadow under
the eave in the second row in the shadow-free domain.

We pretrain our CNN module using a large-scale dataset
of 10 landmark scenes. The high-quality pseudo labels pro-
vided by our NeRF module effectively shorten the learning
curve of CNN, hence our CNN module can relight images
from both seen and unseen landmark scenes. We demon-
strate such generalization capability of our method in Fig-
ure 4.

4.4. Ablation study

Effectiveness of hybrid formulation. Although our
NeRF design shares some similar structures with NeRF-
OSR [28], it is non-trivial to adapt their model to our for-
mulation due to that 1) we handle the sky region with a sep-

Relighting
RLNOur CNN

Image Lighting
Condition

Figure 4. Relighting results (the target image in the leftmost ren-
dered with lighting condition from the reference image in the right-
most column) from our CNN and RelightingNet (RLN) [32] on
unseen scenes for validating the generalization capability.

arate color function and 2) we combine the photometric im-
age formulation (Ĉ) together with the uninterpretable one
(Ĉnw). We use our implementation of NeRF-OSR [28] and
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Figure 5. Estimated intrinsic components and reconstruction results (recon.) of our NeRF and NeRF-OSR [28].

Image Sky from 𝐋 Sky from "𝐋 RLN

Figure 6. Comparison of the sky reconstructed by our method
and RelightingNet (RLN) [32]. L and L̃ are lighting parameters
learned by our NeRF and the LightingCNN module, respectively.
The white contour on each sky image is generated from the sky
mask to indicate the sky region (above the contour) for better vi-
sualization.

Image Sky Image Sky

Figure 7. Sky estimated and rendered from unseen outdoor scenes
in MegaDepth dataset [18].

compare with their intrinsic estimation performances. As
shown in Figure 5, our method produces better shadow and
geometry (disparity). The foundation of building is recov-
ered with Ĉnw, but infused into the ground without Ĉnw.

Effectiveness of SkyMLP. We evaluate the performance
of our sky generation (using LightingCNN together with
SkyMLP), and compare it with RelightingNet [32]. As
shown in Figure 6, Our SkyMLP can render a more realistic
sky. As shown in Figure 7, with our LightingCNN capturing
the lighting coefficients from images that are not included
in our NeRF training set, our SkyMLP can also retain the
major characteristic of the sky, i.e., the primary color and
relative brightness.

5. Conclusion
We present a novel approach for outdoor scene relighting

by complementing the intrinsics from both neural radiance
fields and convolutional neural networks. We propose a new
image formation model for NeRF volume rendering, which
handles static scenes and sky separately. Our method re-
covers accurate intrinsic components from NeRF, and then
these pseudo labels enable our CNNs to estimate intrinsics
from a single image. Outdoor scene relighting is conducted
by editing the lighting coefficients in the physics-aware ren-
dering procedure. Our method is completely driven by real-
world data and demonstrates noticeable improvements over
previous methods.

Limitations. In this paper, we either use the unchanged
cast shadow or evaluate in the shadow-free domain (Fig-
ure 3). This is because predicting highly accurate and
physics-aware cast shadow boundaries from a single image
is a rather challenging problem, as it requires a precise un-
derstanding of the entire scene geometry and sunlight direc-
tion. In our future work, we hope to resolve this issue by in-
tegrating with user-interaction or graphics techniques [10].
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[6] Sylvain Duchêne, Clement Riant, Gaurav Chaurasia, Jorge
Lopez-Moreno, Pierre-Yves Laffont, Stefan Popov, Adrien
Bousseau, and George Drettakis. Multi-view intrinsic im-
ages of outdoors scenes with an application to relighting.
ACM TOG, 2015. 2

[7] Qingnan Fan, Jiaolong Yang, Gang Hua, Baoquan Chen, and
David Wipf. Revisiting deep intrinsic image decompositions.
In CVPR, 2018. 2, 3

[8] Jacob R Gardner, Paul Upchurch, Matt J Kusner, Yixuan
Li, Kilian Q Weinberger, Kavita Bala, and John E Hopcroft.
Deep manifold traversal: Changing labels with convolutional
features. arXiv preprint arXiv:1511.06421, 2015. 2

[9] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Im-
age style transfer using convolutional neural networks. In
CVPR, 2016. 2

[10] David Griffiths, Tobias Ritschel, and Julien Philip. OutCast:
Outdoor single-image relighting with cast shadows. In Com-
puter Graphics Forum, volume 41, pages 179–193. Wiley
Online Library, 2022. 8

[11] Guangyun Han, Xiaohua Xie, Jianhuang Lai, and Wei-Shi
Zheng. Learning an intrinsic image decomposer using syn-
thesized RGB-D dataset. IEEE Sign. Process. Letters, pages
753–757, 2018. 2

[12] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In CVPR, 2017. 2

[13] Yuhe Jin, Dmytro Mishkin, Anastasiia Mishchuk, Jiri Matas,
Pascal Fua, Kwang Moo Yi, and Eduard Trulls. Image
matching across wide baselines: From paper to practice.
IJCV, 129(2):517–547, 2021. 5

[14] Pierre-Yves Laffont, Adrien Bousseau, and George Dret-
takis. Rich intrinsic image decomposition of outdoor scenes
from multiple views. IEEE transactions on visualization and
computer graphics, 19(2):210–224, 2012. 2

[15] Pierre-Yves Laffont, Adrien Bousseau, Sylvain Paris, Fred-
eric Durand, and George Drettakis. Coherent intrinsic im-
ages from photo collections. ACM TOG, 2012. 2

[16] Louis Lettry, Kenneth Vanhoey, and Luc Van Gool. DARN:
a deep adversarial residual network for intrinsic image de-
composition. 2018. 2, 3

[17] Chuan Li and Michael Wand. Combining Markov random
fields and convolutional neural networks for image synthesis.
In CVPR, 2016. 2

[18] Zhengqi Li and Noah Snavely. Megadepth: Learning single-
view depth prediction from internet photos. In CVPR, pages
2041–2050, 2018. 5, 8

[19] Andrew Liu, Shiry Ginosar, Tinghui Zhou, Alexei A Efros,
and Noah Snavely. Learning to factorize and relight a city.
In ECCV, 2020. 2

[20] Fujun Luan, Sylvain Paris, Eli Shechtman, and Kavita Bala.
Deep photo style transfer. In CVPR, 2017. 2

[21] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi,
Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duck-
worth. NeRF in the wild: Neural radiance fields for uncon-
strained photo collections. In CVPR, 2021. 3, 4, 5, 6

[22] Moustafa Meshry, Dan B Goldman, Sameh Khamis, Hugues
Hoppe, Rohit Pandey, Noah Snavely, and Ricardo Martin-
Brualla. Neural rerendering in the wild. In CVPR, 2019. 1,
2

[23] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 1, 3

[24] Takuya Narihira, Michael Maire, and Stella X Yu. Direct
intrinsics: Learning albedo-shading decomposition by con-
volutional regression. In ICCV, 2015. 2
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