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Abstract

Although many recent works have investigated general-
izable NeRF-based novel view synthesis for unseen scenes,
they seldom consider the synthetic-to-real generalization,
which is desired in many practical applications. In this
work, we first investigate the effects of synthetic data in
synthetic-to-real novel view synthesis and surprisingly ob-
serve that models trained with synthetic data tend to pro-
duce sharper but less accurate volume densities. For pix-
els where the volume densities are correct, fine-grained de-
tails will be obtained. Otherwise, severe artifacts will be
produced. To maintain the advantages of using synthetic
data while avoiding its negative effects, we propose to intro-
duce geometry-aware contrastive learning to learn multi-
view consistent features with geometric constraints. Mean-
while, we adopt cross-view attention to further enhance
the geometry perception of features by querying features
across input views. Experiments demonstrate that under
the synthetic-to-real setting, our method can render images
with higher quality and better fine-grained details, outper-
forming existing generalizable novel view synthesis meth-
ods in terms of PSNR, SSIM, and LPIPS. When trained on
real data, our method also achieves state-of-the-art results.
https://haoy945.github.io/contranerf/

1. Introduction

Novel view synthesis is a classical problem in computer
vision, which aims to produce photo-realistic images for un-
seen viewpoints [2,5,10,36,40]. Recently, Neural Radiance
Fields (NeRF) [25] proposes to achieve novel view synthe-
sis through continuous scene modeling through a neural net-

*Joint last authorship.

work, which quickly attracts widespread attention due to
its surprising results. However, the vanilla NeRF is actu-
ally designed to fit the continuous 5D radiance field of a
given scene, which often fails to generalize to new scenes
and datasets. How to improve the generalization ability of
neural scene representation is a challenging problem.

Recent works, such as pixelNeRF [46], IBRNet [37],
MVSNeRF [4] and GeoNeRF [19], investigate how to
achieve generalizable novel view synthesis based on neu-
ral radiance fields. However, these works mainly focus on
the generalization of NeRF to unseen scenes and seldom
consider the synthetic-to-real generalization, i.e., training
NeRF with synthetic data while testing it on real data. On
the other hand, synthetic-to-real novel view synthesis is de-
sired in many practical applications where the collection of
dense view 3D data is expensive (e.g., autonomous driv-
ing, robotics, and unmanned aerial vehicle [34]). Although
some works directly use synthetic data such as Google
Scanned Objects [14] in model training, they usually over-
look the domain gaps between the synthetic and real data
as well as possible negative effects of using synthetic data.
In 2D computer vision, it is common sense that synthetic
training data usually hurts the model’s generalization abil-
ity to real-world applications [1, 8, 44]. Will synthetic data
be effective in novel view synthesis?

In this work, we first investigate the effectiveness of syn-
thetic data in NeRF’s training via extensive experiments.
Specifically, we train generalizable NeRF models using a
synthetic dataset of indoor scenes called 3D-FRONT [15],
and test the models on a real indoor dataset called Scan-
Net [9]. Surprisingly, we observe that the use of synthetic
data tends to result in more artifacts on one hand but bet-
ter fine-grained details on the other hand (see Fig.1 and
Sec.3.2 for more details). Moreover, we observe that mod-
els trained on synthetic data tend to predict sharper but less
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Figure 1. Fig.1a is the ground truth of the target image to be rendered. Fig.1b and Fig.1c are the rendered images when models are trained
on ScanNet [9] and 3D-FRONT [15], respectively. Compare to Fig.1b, Fig.1c is more detailed (see purple box) but has more artifacts (see
pink box). Fig.1d and Fig.1e further show the volume density (the redder the color, the higher the density) along the epipolar line projected
from the orange points in Fig.4a to the source view. The model trained on 3D-FRONT prefers to predict the volume density with a sharper
distribution, but sometimes the predicted volume density is not accurate (see line 1 in Fig.1e), resulting in severe artifacts.

(a) Deviation. (b) Error.

Figure 2. Deviation and error of predicted depth when trained
with synthetic and real data, respectively. We count the devi-
ation and error of the predicted depth for each pixel in the test
dataset and plot them as the histogram. The depth is calculated by
aggregating depth of the sampled points along the rendering ray,
similar to the process of color rendering. Compared to the model
trained with the real data, the model trained with the synthetic data
tends to predict depths with small deviations but large errors, i.e.,
density distributions that are sharper but less geometrically accu-
rate.

accurate volume densities (see Fig.2). In this case, better
fine-grained details can be obtained once the prediction of
geometry (i.e., volume density) is correct, while severe arti-
facts will be produced otherwise. This motivates us to con-
sider one effective way to generalize from synthetic data to
real data in a geometry-aware manner.

To improve the synthetic-to-real generalization ability of
NeRF, we propose ContraNeRF, a novel approach that gen-
eralizes well from synthetic data to real data via contrastive
learning with geometry consistency. In many 2D vision
tasks, contrastive learning has been shown to improve the
generalization ability of models [20, 42, 43] by enhancing
the consistency of positive pairs. In 3D scenes, geometry is
related to multi-view appearance consistency [24, 37], and
contrastive learning may help models predict accurate ge-
ometry by enhancing multi-view consistency. In this paper,
we propose geometry-aware contrastive learning to learn
a multi-view consistent features representation by compar-
ing the similarities of local features for each pair of source

views (see Fig.3). Specifically, for pixels of each source
view, we first aggregate information along the ray projected
to other source views to get the geometry-enhanced fea-
tures. Then, we sample a batch of target pixels from each
source view as the training batch for contrastive learning
and project them to other views to get positive and neg-
ative samples. The InfoNCE loss [35] is calculated in a
weighted manner. Finally, we render the ray by learning
a general view interpolation function following [37]. Ex-
periments show that when trained on the synthetic data,
our method outperforms the recent concurrent generalizable
NeRF works [4, 19, 24, 37, 46] and can render high-quality
novel view while preserving fine-grained details for unseen
scenes. Moreover, under the real-to-real setting, our method
also performs better than existing neural radiance field gen-
eralization methods. In summary, our contributions are:

1. Investigate the effects of synthetic data in NeRF-based
novel view synthesis and observe that models trained
on synthetic data tend to predict sharper but less accu-
rate volume densities when tested on real data;

2. Propose geometry-aware contrastive learning to learn
multi-view consistent features with geometric con-
straints, which significantly improves the model’s
synthetic-to-real generalization ability;

3. Our method achieves state-of-the-art results for gener-
alizable novel view synthesis under both synthetic-to-
real and real-to-real settings.

2. Related work
NeRF generalization. Recently, we have witnessed a ma-
jor breakthrough in novel view synthesis by NeRF [27] and
the following works [23, 25, 30, 45]. However, these meth-
ods can only be applied to a single scene and cannot be gen-
eralized to unseen scenes. Therefore, generalization NeRF
[4, 19, 24, 31, 37, 46, 47] has subsequently become a hot re-
search direction which aims to construct a neural radiance
field on-the-fly using only a few images as input. IBRNet
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Figure 3. Pipeline of our ContraNeRF. 1) We first use a shared CNN to extract features for input source views. Then for each source
view, we query features from other source views and aggregate them to get the geometrically enhanced feature maps (Sec.4.1). 2) For
each pair of source views, we compute the contrastive loss using our GeoContrast (Sec.4.2). Specifically, for the pixel in the i-th source
view, we project it to the j-th source view and sample a collection of projections to get positive and negative samples. Then the weighted
contrastive loss is calculated by considering the distance between the positive sample and the negative samples. 3) Finally, for each ray in
the target view, we compute colors and densities for a set of samples along the ray by aggregating local features from source views, and
accumulate colors and densities to render images (Sec.4.3).

[37] uses a similar network but it synthesizes novel views by
blending pixels from nearby views with weights and vol-
ume densities inferred by a network comprising an MLP
and ray transformer. Neuray [24] further considers the visi-
bility of each nearby view when constructing radiance fields
and achieves good performance. MVSNeRF [4] and GeoN-
eRF [19] leverage deep MVS techniques to achieve across-
scene neural radiance field estimation for high-quality view
synthesis. However, these works overlook the possible neg-
ative effects of using synthetic data and have difficulty in
generalizing from synthetic data to real data.
NeRF with Geometry. Some recent work attempts to in-
troduce geometry information into NeRF’s training. Nerf-
ingMVS [39] uses the depth priors to guide the optimization
process of NeRF [27]. DS-NeRF [11] explores depth as ad-
ditional supervision to guide the geometry learned by NeRF.
RegNeRF [29] regularizes the geometry and appearance of
patches rendered from unobserved viewpoints in sparse in-
put scenarios. However, all these methods are designed for
single-scene reconstruction without generalization ability.
Contrastive learning. Contrastive learning is a prevail-
ing self-supervised learning technique [7,16,28,33], which
proposes to construct supervision information by treating
each image as a class, training a model by pulling posi-
tive sample pairs closer while pushing negative sample pairs
away with InfoNCE loss [35]. Compared with traditional
supervised learning, contrastive learning has been shown

to have better generalization ability for various 2D vision
tasks [20, 42, 43]. Previous works [6, 7, 16] usually take
contrastive learning in an instance-level manner. Some re-
cent works [17, 38, 41] try to apply contrastive learning at
the pixel level for learning dense feature representations.
Synthetic-to-real generalization is a long-standing task
that is desired in many applications, including autonomous
driving, robotics, and unmanned aerial vehicle [34]. Al-
though many works have considered Synthetic-to-real
transfer for many tasks, such as classification [22], ob-
ject detection [3], image deraining [44], and pose estima-
tion [13], these methods cannot be directly applied to novel
view synthesis. The synthetic-to-real generalization of neu-
ral radiance based novel view synthesis is seldom explored.

3. Problem Formulation

3.1. Generalizable Neural Radiance Fields

In this section, we first introduce the setting of Gener-
alizable Neural Radiance Fields [4, 19, 24, 31, 37, 46, 47].
Let Dtrain = {Ii,Ki, Ei}Ntrain

i=1 denote the training set,

where Ii = {Ij}
Ni

view
j=1 , Ki = {Kj}

Ni
view

j=1 , Ei = {Ej =

[Rj , tj ]}
Ni

view
j=1 are the images, camera intrinsic and extrin-

sic parameters of the i-th scenes respectively; Ntrain is the
number of training scenes; and N i

view is the number of cam-
era views of the i-th scenes. The test data Dtest is defined
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in a similar way. During training, the generalizable NeRF
model M(·) renders novel views by aggregating the infor-
mation of nearby source views of the same scene

Îr = M({Ii,Ki,Ei}Nnear
i=1 ,Kr,Er), (1)

where Kr and Er are the camera intrinsic and extrinsic of
rendering view respectively; and Nnear is the number of
source views. Then we can train M(·) by minimizing the
loss between rendered images and ground truth

M = argmin
θ

∥Îr − Ir∥22. (2)

After training, we can render arbitrary views for unseen
scenes by Eq.(1) without per-scene optimization.

3.2. Synthetic-to-real Generalization

In this paper, we consider the synthetic-to-real general-
ization of NeRF, which aims to train a NeRF model on syn-
thetic data only and generalize it to real data. It is practical
because synthetic data is usually easier to obtain. However,
existing works of NeRF generalization [4,19,46] mainly use
real data as the training set. A few works [37, 47] tried to
use a small portion of synthetic data together with real data
in model training, without evaluating the possible negative
effects of synthetic data. In this section, we first evaluate
the effects of synthetic data in NeRF training via extensive
experiments. Specifically, we choose 3D-FRONT [15] as
our synthetic training set, which is a large-scale repository
of synthetic indoor scenes with 18797 rooms. ScanNet [9]
is used as the test set, which is also a dataset about indoor
scenes. See Sec.5.1 for more experimental details. We
adopt IBRNet [37] as the baseline considering its ease of
use and promising performance. For comparison, we also
train the model on ScanNet.

As illustrated in Fig.1b and Fig.1c, we observe that the
model trained on synthetic data results in severer artifacts
while better fine-grained details compared to the one trained
on real data. We further visualize the volume density along
the ray for pixels with severe artifacts, as shown in Fig.1d
and Fig.1e. We can see that the model trained on the syn-
thetic data tends to predict volume densities with a sharper
but less accurate distribution, while the model trained on
the real data tends to be more conservative. This is further
demonstrated by Fig.2. The reason for these observations
may be that the synthetic data is less noisy (real data usu-
ally involve inaccurate camera pose, image motion blur, and
lighting changes), causing the model to be more confident
in predictions and thus generate sharper densities. However,
when generalizing to real data which are noisy, the model
may fail to accurately predict the geometry of the scene, re-
sulting in serious artifacts in rendered images. These obser-
vations inspire us to find a geometric-aware generalization
method to solve the above-mentioned problem.

4. Method
To tackle the above problem, we propose ContraNeRF,

a generalizable NeRF method that combines contrastive
learning with geometry information, enabling generaliza-
tion from synthetic data to real data. The overall framework
is presented in Fig.3, and the following sections provide de-
tails of our method.

4.1. Geometry Aware Feature Extraction

Given nearby source views {Ii,Ki,Ei}Nnear
i=1 , we first

use a shared CNN to extract features Fi from each im-
age Ii. Then we get the geometrically enhanced fea-
tures {F′

i}
Nnear
i=1 by exchanging information between source

views as described below.
Let ui = [u, v]⊤ denote the 2D coordinate of points on

the i-th source view. Firstly, we obtain the ray of point ui

as a line R in world coordinates parametrized by δ as

R(δ) = ti + δRiK
−1
i [u⊤

i , 1]
⊤, (3)

where Ki, [Ri, ti] represent the camera intrinsic and extrin-
sic parameters of the i-th source view respectively. Then,
we sample a sequence of points ps = R(δs) along the ray
R and project them to the j-th source view as follows

dsj [v
s⊤
j , 1]⊤ = KjR

−1
j (ps − tj), s = 1, ..., Ns, (4)

where vs
j is the 2D coordinates of the projection in the j-th

source view and dsj is the corresponding depth; and Ns is
the number of sample points. Now we have a collection of
projections {vs

j}
Ns
s=1 for the j-th source view.

Then we enhance the feature Fi by aggregating the fea-
tures from other source views via cross-view attention, as
illustrated in Fig.3. There are two stages in the aggregation.
The first stage tries to aggregate the features of the projec-
tion points in the j-th source view. Formally, let fi denote
the local feature of Fi at position ui and gs

j denote the local
feature of Fj at position vs

j . Then, we aggregate features
{gs

j}
Ns
s=1 through Multi-Head Attention (MHA) layers

gj = MHA(fi, {gs
j + P(s)}Ns

s=1), (5)

where fi is the query of MHA; {gs
j + P(s)}Ns

s=1 serve as
the keys and values of MHA; and P(s) is the position em-
bedding of s. Then, the second stage aims to aggregate the
features of each source view and we achieve this through
MHA too

f ′i = MHA(fi, {gj}Nnear

j=1,j ̸=i), (6)

where fi is the query and {gj}Nnear

j=1,j ̸=i are the keys and val-
ues of MHA. We apply the above process for features of
each source view and finally we get the geometrically en-
hanced features {F′

i}
Nnear
i=1 .
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Intuitively, our method tries to find the most similar fea-
tures of fi from other source views and aggregate them with
fi. As a result, similar features will become more similar,
which is loosely similar to clustering.

4.2. Geometry Aware Contrastive Learning

To better predict geometry, we enhance multi-view con-
sistency through contrastive learning while taking into ac-
count the geometric constraints between views. Here we
describe how our Geometry Aware Contrastive Learning
(GeoContrast) works in detail.

As illustrated in Fig.3, we conduct contrastive learning
between each pair of source views. Take the i-th source
view and the j-th source view as an example. We first ran-
domly sample a batch of pixels in the i-th source view, de-
noted as the {p}Nc

, where p = (p, q) is the 2D coordinate
of the sampled pixel and Nc is the number of samples. For
each sampled pixel p in the i-th source view, we specify
the corresponding positive sample q+ and negative samples
{q−}Nneg in the j-th view according to ground truth depth,
where Nneg is the number of the negative samples.
Positive pair. We take the pixels projected from the same
3D surface point in each source view as a positive pair.
Specifically, for a sample p of the i-th source view, we
obtain the 3D point p3 that p is projected from as p3 =
ti + δpRiK

−1
i p by taking Eq.(3), where p is the homoge-

neous coordinates of p and δp is the depth. Then we project
3D point p3 to the j-th source view as q+ by taking Eq.(4).
As there may be occlusions in the scene, we only consider
(p,q+) of unoccluded regions as positive pairs.
Negative pairs. We first project p to the j-th source view to
get a collection of projections {q−}Nneg by taking Eq.(3)
and Eq.(4). Then we take {(p,q−)}Nneg

as the negative
pairs. Here, each negative pair is the projection of 3D point
under different source views, so this sampling strategy can
help the model better capture geometric information.

After determining the positive and negative samples, the
contrastive loss for p is defined as

LNCE
p = − log

exp(p′ · q′
+/τ)

exp(p′ · q′
+/τ) +

∑
q−

λq− exp(p′ · q′
−/τ)

.

(7)
where p′ is the local feature of F′

i at position p; q′
+ and

q′
− are the local features of F′

j at position q+ and q− re-
spectively; F′

i is the output of cross-view attention for the
i-th source view as mentioned in Sec.4.1; τ is a learnable
scalar temperature parameter; λq− is the weight assigned to
each q−. We calculate the weight λq− by considering the
distance between q+ and q−

λq− = Nneg
exp(∥q+ − q−∥2/τ ′)∑
q−

exp(∥q+ − q−∥2/τ ′)
, (8)

where τ ′ is a scalar temperature hyper-parameter, set by de-
fault to 10000. This weight measures the similarity between

the positive sample and the negative sample. In this way, we
can down-weight the influence of the negative samples that
are similar to the positive sample. Finally, we average the
loss for all samples p of each source view pair to form the
final contrastive loss Lcontrast:

Lcontrast =
1

Nc

∑
p

LNCE
p . (9)

Another way to choose the negative samples of p is
to sample pixels from the j-th source view randomly,
which are commonly used in previous pixel-level con-
trastive learning methods [17, 38, 41]. However, this sam-
pling strategy does not consider the geometric constraints
in the 3D scenarios. Intuitively, in our method, all the
negative pairs are the projections of the non-surface 3D
points and the positive pairs are the projections of the sur-
face 3D points. It will be easier to model scene geometry
by the following network since our GeoContrast makes the
non-surface points and surface points more distinguishable,
and experiments show that our sampling strategy performs
much better (see Sec.5.4).

4.3. Rendering and Training

Following IBRNet [37], we calculate colors and densi-
ties for 3D points along the rendering ray r by checking the
consistency among the features of each source view. Dur-
ing rendering, different from the volume rendering equa-
tion that is commonly used in most previous NeRF-related
works [4, 27, 37, 46], we accumulate colors along the ray
weighted by densities after softmax.

Ĉ(r) =
1∑

i exp(σi)

∑
i

ci · exp(σi), (10)

where ci, σi are the color and density for the i-th 3D sample
point on the ray r respectively. We find that Eq.(10) works
well in our experiments and it can speed up the convergence
of network training without affecting model performance,
which is also explored in [32]. It may be because the ray
transformer in IBRNet [37] already has the ability to simu-
late light transport and occlusion in the radiance field.

Following [24, 37], we use the coarse-to-fine sampling
strategy with 64 sample points in both stages. Then we can
get the color loss

Lcolor =
∑
r∈R

[∥∥∥Ĉc(r)− C(r)
∥∥∥2
2
+

∥∥∥Ĉf (r)− C(r)
∥∥∥2
2

]
,

(11)
where R is the set of rays in each batch; and Ĉc(r), Ĉf (r),
and C(r) are the coarse stage RGB prediction, fine stage
RGB prediction, and ground truth for ray r respectively.
Our final loss function is the sum of the contrastive loss and
color loss.

Ltotal = Lcontrast + Lcolor. (12)
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Figure 4. Qualitative comparison on ScanNet dataset [9]. For each scene, two kinds of results for each method are shown, where the
first row is the result after training on synthetic data and the second row is the result after training on real data. Our model more accurately
preserves the details while it generates fewer artifacts than other generalizable NeRF methods when training on synthetic data.

5. Experiments

5.1. Experimental Settings

Datasets. In synthetic-to-real generalization, we choose
3D-FRONT [15] and ScanNet [9] as our synthetic training
set and real test set respectively. (1) 3D-FRONT is a large-
scale, and comprehensive repository of synthetic indoor
scenes. It contains 18,797 rooms diversely furnished by 3D
objects. Following the data partition strategy in [4, 46], we
randomly sample 88 scenes from 3D-FRONT as our syn-
thetic training datasets. For each scene in 3D-FRONT, we
sample 200 camera views and render each view at 640 ×
480 resolution using BlenderProc [12]. (2) ScanNet is an
RGB-D video dataset containing more than 1500 scans with
2.5 million views. Each scene contains 1K–5K views. We
uniformly sample one-tenth of views and resize each image

to a resolution of 640 × 480 for use. In our experiments,
we randomly select 88 scenes of ScanNet as our real train-
ing datasets and 8 scenes of ScanNet as our test datasets.
On each test scene, we leave out 1/8 number of images
as test views and the rest images as source views follow-
ing [19, 24, 37].
Baselines and evaluation metrics. We compare our
method with state-of-the-art generalizable NeRF methods,
including PixelNeRF [46], IBRNet [37], MVSNeRF [4],
GeoNeRF [19] and Neuray [24]. Following IBRNet, we
evaluate all these methods using PSNR, SSIM, and LPIPS.
Implementation details. In contrastive learning, we sam-
ple a batch of 576 pixels for training and sample 512 neg-
ative pairs for each positive pair, where the parameters are
tuned. Coarse and fine models share the same feature ex-
tractor. To render a novel view, we use 10 neighboring in-
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Method PSNR ↑ SSIM ↑ LPIPS ↓
PixelNeRF [46] 20.19 (22.44) 0.736 (0.774) 0.511 (0.450)

IBRNet [37] 23.67 (25.25) 0.807 (0.840) 0.355 (0.328)
MVSNeRF [4] 22.90 (24.90) 0.793 (0.824) 0.408 (0.357)
GeoNeRF [19] 23.67 (25.18) 0.797 (0.837) 0.349 (0.327)

Neuray [24] 22.75 (25.22) 0.785 (0.838) 0.369 (0.325)
Ours 24.81 (25.58) 0.831 (0.847) 0.333 (0.320)

Table 1. Quantitative comparisons on the ScanNet dataset [9].
All methods are trained on the same scenes and tested on unseen
real scenes. We report PSNR/SSIM (higher is better) and LPIPS
(lower is better). The results of the model trained with synthetic
data are shown outside the brackets, and the results of the model
trained with real data are shown in brackets. Our method quanti-
tatively outperforms prior work on all metrics.

put views as the source views, and we randomly sample
512 pixels from the novel view as a batch during training
following [37]. We train the whole pipeline for 100k itera-
tions using Adam optimizer [21] and the base learning rate
is 10−3. To achieve fair and accurate comparisons, we run
all methods on the same experiment settings and use the
official code to run the experiments. All experiments are
conducted on the V100 GPU.

5.2. Results

We show the quantitative results in Tab.1 and visual com-
parisons in Fig.4. Tab.1 shows the superiority of our method
with respect to the previous generalizable NeRF models
on the synthetic-to-real setting. Note that some previous
works, such as MVSNeRF [4] and GeoNeRF [19], also at-
tempt to incorporate geometry into the model for perfor-
mance improvement, but our approach differs from them in
two ways. On the one hand, when performing multi-view
feature fusion, our method samples 3D points randomly
with an inverse depth distribution, while MVSNeRF and
GeoNeRF only sample points at preset discrete positions
to build the cost volume, which may introduce quantiza-
tion errors. Moreover, with the help of contrastive learning,
our method introduces consistency among multi-view fea-
tures in a more straightforward way, while MVSNeRF and
GeoNeRF only fuse the multi-view features without explic-
itly considering the consistency. These two points allow us
to achieve better results. As shown in Fig.4, our method can
produce images with fine-grained details in both geometry
and appearance, and it generates fewer artifacts compared
with the previous generalizable NeRF methods under both
the synthetic-to-real and real-to-real settings. Note that in
synthetic-to-real case, the interpolation-based generalizable
NeRF method [19, 24, 37] performs better on color predic-
tion than the method using the network to predict color [4].
This is because the color predicted by the interpolation-
based methods comes from the input images, so there is no
domain gap even under the synthetic-to-real setting. Mean-
while, we can see that the model trained on synthetic data

Method PSNR ↑ SSIM ↑ LPIPS ↓
PixelNeRF [46] 19.40 0.463 0.447

IBRNet [37] 25.76 0.861 0.173
MVSNeRF [4] 23.83 0.723 0.286
GeoNeRF [19] 26.49 0.883 0.153

Neuray [24] 26.47 0.875 0.158
Ours 27.69 0.904 0.129

Table 2. Quantitative comparisons on the DTU dataset [18].
Our model is able to generate better results than previous state-of-
the-art generalization NeRF models.

Method PSNR ↑ SSIM ↑ LPIPS ↓
PixelNeRF [46] 18.66 0.588 0.463

IBRNet [37] 25.17 0.813 0.200
MVSNeRF [4] 21.18 0.691 0.301
GeoNeRF [19] 25.44 0.839 0.180

Neuray [24] 25.35 0.818 0.198
Ours 25.44 0.842 0.178

Table 3. Quantitative comparisons on the LLFF dataset [26].
Our model is able to generate better results than previous state-of-
the-art generalization NeRF models.

PSNR ↑ SSIM ↑ LPIPS ↓
BaseModel 23.71 (25.27) 0.810 (0.840) 0.352 (0.327)

Random negative sampling 23.84 (25.30) 0.814 (0.840) 0.347 (0.326)
GeoContrast(w/o weight) 24.28 (25.40) 0.821 (0.843) 0.339 (0.325)

GeoContrast 24.53 (25.45) 0.825 (0.843) 0.337 (0.324)
Cross-view attention 24.25 (25.47) 0.820 (0.844) 0.342 (0.322)

Full model Ours 24.81 (25.58) 0.831 (0.847) 0.333 (0.320)

Table 4. Ablation study on the ScanNet dataset [9]. The results
of synthetic/real data are shown outside/in brackets, respectively.
Refer to Sec.5.4 for details.

can retain more detail than the model trained on real data.

5.3. Other Benchmark Datasets

To further demonstrate the effectiveness of our method,
we also conduct experiments in the settings described in the
previous generalizable NeRF methods [4, 19, 24, 37, 46].
Evaluation datasets. We consider two widely adopted
benchmarks, including the DTU dataset [18] and LLFF
dataset [26]. Following [24], we select four objects (birds,
tools, bricks, and snowman) as test objects for DTU dataset,
and the test images of DTU dataset all use black back-
grounds. On each test scene, we use 1/8 images as test
views and the evaluation resolution is 800 × 600 for the
DTU dataset, and 1008 × 756 for the LLFF dataset.
Training datasets. Following [24,37], we use both the syn-
thetic and real data for model training. For synthetic data,
we use the Google Scanned Object dataset [14]. For real
data, we use forward-facing training datasets [26, 37] and
the rest training objects from the DTU dataset.
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(a) Ground Truth (b) GeoNeRF (c) Ours

Figure 5. Qualitative comparison on DTU dataset [18] and
LLFF dataset [26]. Our method can render images with fewer
artifacts.

Results. The quantitative results of DTU dataset and LLFF
dataset are shown in Tab.2 and Tab.3 respectively. Our
method works well on both DTU dataset and LLFF dataset.
On DTU dataset, our method outperforms previous state-
of-the-art generalizable NeRF methods by a large margin.
This shows that our method can still work well even with
a mixture of synthetic and real data. Fig.5 shows some vi-
sualization results on the DTU dataset and LLFF datasets.
Similar to the results on ScanNet dataset, our model can
produce images that are perceptually more similar to the
ground truth than other methods.

5.4. Ablation study

Ablation on network design. We conduct ablation studies
in the settings introduced in Sec.5.1 to validate the effective-
ness of different design decisions. We first train a model,
called ‘BaseModel’, that does not use cross-view attention
and GeoContrast. Note that the ‘BaseModel’ still outper-
forms IBRNet [37] since we use Eq.(10) as the render-
ing equation. For ‘Random negative sampling’, we apply
vanilla contrastive learning in ‘BaseModel’, where negative
pairs are sampled from other views randomly, as mentioned
in Sec.4.2. It works, but the improvement is marginal. Then
we replace vanilla contrastive learning with our GeoCon-
trast as shown at the third and fourth rows of Tab.4, where
‘GeoContrast(w/o weight)’ means the GeoContrast without
weighted contrastive loss in Eq.(7). We can see that ‘Geo-
Contrast(w/o weight)’ can bring improvement compared to
random sampling, thanks to the introduction of geometric
constraints. When equipped with weighted contrastive loss,
GeoContrast can be further improved as shown at the 4-th
rows of Tab.4. The results of the 5-th rows show that our
cross-view attention is also helpful for the generalization.
Finally, we combine cross-view attention with GeoContrast
to form a complete model and it achieves the best results.
Ablation on proportion of real data. Although our
method makes better use of synthetic data, there is still a
performance gap between the model trained on synthetic
data and the model trained on real data. A natural ques-

0 20 40 60 80 100

The proportion of real data (%)
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24.5
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Figure 6. Curves of PSNR of our method and IBRNet [37] with
different proportions of real and synthetic data.

tion is can we use a mix of real and synthetic data to boost
model performance and how much real data do we need?
Here, we conduct experiments with different proportions of
real and synthetic data on our model and IBRNet [37]. Fig.6
shows the PSNR under varying proportions of real and syn-
thetic data. We find that as the proportion of real data grad-
ually increases, the performance of the model is improved.
However, when the proportion of real data reaches a certain
value, the performance will not continue to improve. For
example, in our method, when the proportion of real data
reaches 40%, the performance of the model saturates. This
means that we only need to use a small amount of real data
and a certain amount of synthetic data to achieve the same
effect as using real data completely, while IBRNet needs to
use more real data to achieve better results.

6. Conclusion

We present a generalizable neural radiance field method
for synthetic-to-real novel view synthesis. Unlike the real-
to-real novel view synthesis, models trained on synthetic
data tend to predict sharper but less accurate volume den-
sities on real data, which may result in severe artifacts in
rendered images. To address this problem, we introduce
geometry-aware contrastive learning to enable better mod-
eling of scene geometry, thereby improving the model’s
ability to generalize from synthetic data to real data. Exper-
iments demonstrate that our method can render high-quality
images while preserving fine details in the synthetic-to-real
setting.
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