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Abstract

Despite the recent visually-pleasing results achieved, the
massive computational cost has been a long-standing flaw
for diffusion probabilistic models (DPMs), which, in turn,
greatly limits their applications on resource-limited plat-
forms. Prior methods towards efficient DPM, however, have
largely focused on accelerating the testing yet overlooked
their huge complexity and sizes. In this paper, we make
a dedicated attempt to lighten DPM while striving to pre-
serve its favourable performance. We start by training a
small-sized latent diffusion model (LDM) from scratch, but
observe a significant fidelity drop in the synthetic images.
Through a thorough assessment, we find that DPM is in-
trinsically biased against high-frequency generation, and
learns to recover different frequency components at differ-
ent time-steps. These properties make compact networks
unable to represent frequency dynamics with accurate high-
frequency estimation. Towards this end, we introduce a
customized design for slim DPM, which we term as Spec-
tral Diffusion (SD), for light-weight image synthesis. SD
incorporates wavelet gating in its architecture to enable
frequency dynamic feature extraction at every reverse step,
and conducts spectrum-aware distillation to promote high-
frequency recovery by inverse weighting the objective based
on spectrum magnitude. Experimental results demonstrate
that, SD achieves 8-18x computational complexity reduc-
tion as compared to the latent diffusion models on a series of
conditional and unconditional image generation tasks while
retaining competitive image fidelity.

1. Introduction

Diffusion Probabilistic Models (DPMs) [18,57,59] have
recently emerged as a powerful tool for generative mod-
eling, and have demonstrated impressive results in image
synthesis [8, 45, 48], video generation [17, 20, 77] and 3D
editing [43]. Nevertheless, the gratifying results come with
a price: DPMs suffer from massive model sizes. In fact,
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Figure 1. (1) Visualization of the frequency gap among generated
images with the DPM [48], Lite DPM and our SD on FFHQ [27]
dataset. Lite-DPM is unable to recover fine-grained textures, while
SD can produce realistic patterns. (2) Model size, Multiply-Add
cumulation (MACs) and FID score on ImageNet [7]. Our model
achieves compelling visual quality with minimal computational
cost. * indicates our re-implemented version.

state-of-the-art DPMs requires billions of parameters, with
hundreds or even thousands of inference steps per image.
For example, DALL- E 2 [45], which is composed of 4 sep-
arate diffusion models, requires 5.5B parameters and 356
sampling steps in total. such an enormous model size, in
turn, makes DPMs extremely cumbersome to be employed
in resource-limited platforms.

However, existing efforts towards efficient DPMs have
focused on model acceleration, but largely overlooked light-
ening of the model. For example, the approaches of [,

,37,38,40,52,56] strive for faster sampling, while those
of [13,19,48,62] rely on reducing the input size. Admit-
tedly, all of these methods give rise to shortened training or
inference time, yet still, the large sizes prevent them from
many real-world application scenarios.

In this paper, we make a dedicated efforts towards build-
ing compact DPMs. To start with, we train a lite version
of the popular latent diffusion model (LDM) [48] by re-
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ducing the channel size. We show the image generated by
the original and and lite DPM in Figure 1. While the lite
LDM sketches the overall structure of the faces, the high-
frequency components, such as the skin and hair textures,
are unfortunately poorly recovered. This phenomenon can
be in fact revealed by the Discrete Fourier Transform (DFT)
coefficient shown on the right column, indicating that the
conventional design for DPMs leads to high-frequency de-
ficiency when the model is made slim.

We then take an in-depth analysis on the DPMs through
the lens of frequency, which results in two key obser-
vations. (1) Frequency Evolution. Under mild assump-
tions, we mathematically prove that DPMs learn different
functionalities at different stages of the denoising process.
Specifically, we show that the optimal denoiser in fact boils
down to a cascade of wiener filters [66] with growing band-
widths. After recovering the low-frequency components,
high-frequency features are added gradually in the later de-
noising stages. This evolution property, as a consequence,
small DPMs fails to learn dynamic bandwidths with limited
parameters. (2) Frequency Bias. DPM is biased towards
dominant frequency components of the data distribution. It
is most obvious when the noise amplitude is small, lead-
ing to inaccurate noise prediction at the end of the reverse
process. As such, small DPMs struggle to recover the high-
frequency band and image details.

Motivated by these observations, we propose a novel
Spectral Diffusion (SD) model, tailored for light-weight im-
age synthesis. Our core idea is to introduce the frequency
dynamics and priors into the architecture design and train-
ing objective of the small DPM, so as to explicitly preserve
the high-frequency details. The proposed solution consists
of two parts, each accounting for one aforementioned obser-
vations. For the frequency evolution, we propose a wavelet
gating operation, which enables the network to dynamically
adapt to the spectrum response at different time-steps. In
the upsample and downsample stage, the input feature is
first decomposed through wavelet transforms and the coef-
ficients are re-weighted through a learnable gating function.
It significantly lowers the parameter requirements to repre-
sent the frequency evolution in the reverse process.

To compensate for the frequency bias for small DPMs,
we distill high-frequency knowledge from a teacher DPM
to a compact network. This is achieved by inversely weight-
ing the distillation loss based on the magnitudes of the fre-
quency spectrum. In particular, we give more weight to the
frequency bands with small magnitudes, which strength-
ens the recovery of high-frequency details for the student
model. By integrating both designs seamlessly, we build a
slim latent diffusion model, called SD, which largely pre-
serves the performance of LDM. Notably, SD inherits the
advantages of DPMs, including superior sample diversity,
training stability, and tractable parameterization. As shown

in Figure 1, our model is 8 ~ 18x times smaller and runs
2 ~ 5x times faster than the original LDM, while achieving
competitive image fidelity.

The contributions of this study are threefold:

1. This study investigates the task of diffusion model
slimming, which remains largely unexplored before.

2. We identify that the key challenge lies in its unrealistic
recovery for the high-frequency components. By prob-
ing DPMs from a frequency perspective, we show that
there exists a spectrum evolution over different denois-
ing steps, and the rare frequencies cannot be accurately
estimated by small models.

3. We propose SD, a slim DPM that effectively restores
imagery textures by enhancing high-frequency genera-
tion performance. SD achieves gratifying performance
on image generation tasks at a low cost.

2. Related Work
Diffusion Probabilistic Models. DPMs [18, 55] are lead-
ing score-based generative models [58, 59, 65] with supe-

rior sample quality [8]. They use annealed noise schedul-
ing [57] and are usually implemented as time-conditioned
UNet [8,50,59] with attention mechanism [22,48,64]. Re-
cent improvements in parameter moving average [42], ob-
jective [18], and scheduling [42] have greatly improved
their visual quality. In this work, we focus on designing
small-sized diffusion, which has rarely been studied before.
Efficient Diffusion. Efficient diffusion models for low-
resource inferences is a trending topic. One approach is
through reducing the sampling steps, which is either done
by distilling multiple steps into a single step [38, 40, 52],
or shortening the reverse steps while maintaining the image
fidelity [1,32,37,56]. Another possible solution is to dif-
fuse in a lower dimensional space and then scale it up with
a cascade structure [19] or in the latent space [48, 62]. In
distinction from them, we build an efficient diffusion model
using light-weight architecture and knowledge distillation.
Knowledge Transfer and Distillation. Knowledge Trans-
fer (KT) [16,71,72,74] refers to the process to transfer the
knowledge from teacher models [25, 70, 73] to the student
for model compression [14,29, 60] and enhancing perfor-
mance [9,46,47,76]. Dataset distillation, on the other hand,
focuses on learning compressed dataset [33, 34]. We make
the first attempt to build slim DPM through distillation.
Frequency Analysis for Generative Model. In deep neu-
ral networks, the frequency principle is commonly ob-
served, where low-frequency signals are fitted first before
moving on to high-frequency components [2, 67, 68]. the
frequency bias, is also evident in training deep generative
models such as GANs [5, 11,28, 54], where generators of-
ten struggle to produce natural high-frequency details.

In this paper, we examine the frequency behavior of
DPMs. Taking advantage of its frequency properties, our
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SD achieves realistic image generation at a low cost.

3. Background
3.1. Denoising Diffusion Probabilistic Models

Diffusion model reverses a progressive noise process
based on latent variables. Given data xo ~ ¢(xg) sampled
from the real distribution, we consider perturbing data with
Gaussian noise of zero mean and 3; variance for T steps

Q(Xt|xt—1) = N(Xt; v1- ﬁtxt—hﬁtl) (D

where t € [1,T] and 0 < B1.7 < 1 denote the noise scale
scheduling. At the end of day, x; — A(0,I) converge to
isometric Gaussian noise. Although sampling from noise-
perturbed distribution ¢(x¢) = [ q(x1.¢|X0)dx1:4—1 re-
quires a tedious numerical integration over steps, the choice
of Gaussian provides a close-form solution to generate ar-
bitrary time-step x; through

Xt =V Xg + V 1-— O_[tE,

where oy = 1 — f8; and oy = Hizl os. A variational
Markov chain in the reverse process is parameterized as a
time-conditioned denoising neural network s(x, ¢;0) with
Po(xe-1lxe) = N(xe—15 r= (xe + Bis(xe,1;0)), B).
The denoiser is trained to minimize a re-weighted evidence
lower bound (ELBO) that fits the noise

Loppm = K¢ xg e {Hﬁ + V1 — ays(xe, t; 9)”3} 3)

X Brxye [V, log p(x0) = s(x0,:0) 3] )

e~N(OTI) ()

where

where the Vy, logp(x;) are also called the score func-
tion [57]. Thus, the denoiser equivalently learns to recover
the derivative that maximize the data log-likelihood [23,65].
With a trained s(x, ¢; 0*) ~ Vy, log p(x;), we generate the
data by reversing the Markov chain

X1 (xt + Bis(x4,1;0)) + /Brer  (5)

1
V1—=/
The reverse process could be understood as going along
V«, log p(x¢) from x7 to maximize the data likelihood.

3.2. Frequency Domain Representation of Images

Frequency domain analysis decomposes a image accord-
ing to a set of basis functions. We focus on two discrete
transformations: Fourier and Wavelet Transform.

Given a H x W input signal' x € R¥>*W  Discrete
Fourier Transform (DFT) F projects it onto a collection of
sine and cosine waves of different frequencies and phases

H W
X(u,v) = Flx] =Y > x(w,y)e 2rti ety

rz=1y=1

For simplicity, we only introduce the formulation for gray-image,
while it is extendable to multi-channel inputs.
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Figure 2. Illustration of the Frequency Evolution and Bias for
Diffusion Models. In the reverse process, the optimal filters re-
cover low-frequency components first and add on the details at the
end. The predicted score functions may be incorrect for rare pat-
terns, thus failing to recover complex and fine-grained textures.

x(x,y) is the pixel value at (z,y); X (u, v) represents com-
plex value at frequency (u,v); e and j are Euler’s number
and the imaginary unit.

On the other hand, Discrete Wavelet Transform (DWT)
projects it onto multi-resolution wavelets functions. In a
single-scale case, x is decomposed into 4 wavelet coef-
ficients X, X|H,XHL, XHH = DWT(X) by halving the
scale, where X{| | | H HL,HH} € RZ X%, x| | represents low-
frequency component and Xy L HHy are high-frequency
components that contains the textural details. The coeffi-
cients could then be inverted and up-sampled to the original
input x = |DWT(X|_|_, XL H, XHL, XHH)-

4. Frequency Perspective for Diffusion

In general signal processing, denoising is often per-
formed in frequency space. Similar to Figure 1, Ta-
ble 1 compares Low-freq and High-freq error” for different
DPMs on FFHQ dataset. Lite-LDM performs poorly due to
its lack of high-frequency generation.

Method #Param | FID| | Low-freq Error] | High-freq Error]

LDM 274.1M 5.0 0.11 0.75
Lite-LDM | 22.4M 17.3 | 0.28(+0.17) 3.35(+2.17)

Table 1. Low-freq and High-freq error for different model size.

Thus, we examine DPM’s behavior in the frequency do-
main. As illustrated in Figure 2, we make two findings:
(1) Frequency Evolution. Diffusion model learns to recover
the low-frequency components at first, and gradually adds
in photo-realistic and high-frequency details. (2) Frequency
Bias. Diffusion model makes biased recovery for the mi-
nority frequency band.

4.1. Spectrum Evolution over Time

DPM optimizes a time-conditioned network to fit the
noise at multiple scales, which gives rise to a denoising tra-
jectory over time-steps. We examine this trajectory closely

2The error computed as the E ¢ [E[|Fcai|] — E[| Fgen|]] over 300 real
and generated samples, with the low-high cut-off frequency of 28Hz.

22554



s
=1

s o
& &
S

=
=
1)

[~
LI T | R |

o oo o0o0o0o
O W o s O
© =

=
I~

Nomalized 1 — (1 — @)H *(f)
=1

=
S

-4 -2 0 2 4
Frequency f/Hz

Figure 3. 1 — (1 — a@)|H*(f)|? of the optimal linear denoising
filter with different &

from a frequency perspective. When assuming the network
is a linear filter, we give the optimal filter in terms of its
spectrum response at every timestep. This filter is com-
monly known as Wiener filter [66].

Proposition 1. Assume X is a wide-sense stationary signal
and € is white noise of variance 0> = 1. For x, = v/axg +
V1 — ae, the optimal linear denoising filter hy at time t that
minimize J; = ||hs * x; — €||? has a closed-form solution

1
Cal%(f)P+1-a

where | Xo(f)|? is the power spectrum of xo and Hj (f) is
the frequency response of hy.

Although the linear assumption poses a strong restriction
on the model architecture, we believe it provides valuable
insights into how the reverse process has been performed.
DPM goes from structure to details. In this study, we
make a widely accepted assumption about the power spec-
tra of natural images follows a power law [3, 10, 61, 63],
E[|Xo(f)]?] = As(0)/f*s@. Ay () is called an ampli-
tude scaling factor and «g(0) is the frequency exponent. If
we set A4(0) = 1and ag(0) = 2, the frequency response of
the signal reconstruction filter 1 — /1 — &h is in Figure 3.

In the reverse process, t goes from T" — 0, and & in-
creases from 0 — 1. Therefore, DPM displays a spectrum-
varying behavior over time. In the beginning, we have a
narrow-banded filter (&d = 0.1 and & = 0.01) that only re-
stores the low-frequency components that control the rough
structures. t goes down and & gradually increases, with
more details and high-frequency components restored in the
images, like the human hairs, wrinkles, and pores.

We plot the denoised predictions X at different steps us-
ing pre-trained LDM [48] in Figure 2, which shows that
DPM generates low-frequency first and transits into high-
frequency. The same empirical observation that DPM goes
from rough to details has been shown in [6,18,39,48], while
we are the first to give its numerical solutions.

Hi(f) (6)

4.2. Frequency Bias in Diffusion Model

Another challenge in diffusion-based model is the inac-
curate noise estimation in low-density regions [57]. It re-
sults from the expectation over p(xg) in the loss function

Loppm /p(XO)Et,e[HthP(Xt) - S(Xt:t59)||§] dxo (7

Diffusion with Small Model

\ N P ]
W"’ W m‘w//

Unable to recover

Diffusion with Large Model

A

Frequency f/Hz

Frequency f/Hz Frequency f/Hz  Frequency f/Hz

Figure 4. Toy example for 1D signal fitting. Small DPM is unable
to recover minority frequency components.

Weighting the denoising objective by p(xg) can introduce
bias in the trained diffusion model, causing it to prioritize
high-density regions while ignoring rare patterns.

One example of a long-tail pattern in image generation
tasks is the frequency bias, where high-frequency compo-
nents are rare. Consequently, training small diffusion-based
models on the biased distribution can make it challenging to
generate such high-frequency patterns, as the model tends to
overemphasize low-frequency images. This issue can sig-
nificantly impact the quality of generated images.
Example 1. We fit a toy diffusion model to 1D func-
tions f(x) = cos(a2wz), where P(aw = 3) = 0.8 and
P(a = 5) = 0.2. We adopt a two-layer feed-forward
neural network, with 1000 denoising steps and hidden units
M = {64,1024}. More details is in Supplementary.

We plot the 300 generated signals in Figure 4 (Top), their
DFT magnitudes in (Button Right), and the mean frequency
histogram in (Button Left). Small model (M = 64) faces
difficulty recovering the minority frequencies other than
a = 3, while large model (M = 1024) achieves smooth
denoised results over all freq bands, especially when o = 5.

It provides concrete evidence that small DPMs have in-
trinsic defects in recovering the high frequencies.

5. Spectral Diffusion Model

As explained above, our goal is to reduce the size of
the DPMs by incorporating frequency dynamics and pri-
ors into the architecture design and training objectives. We
start with the LDM [48] as our baseline and then design
a wavelet-gating module that enables time-dynamic infer-
ence for the light-weight model. A spectrum-aware dis-
tillation is applied to enhance the high-frequency genera-
tion performance. Both modifications allow us to achieve
photo-realistic image generation with minimal model size
and computational effort.

5.1. Dynamic Wavelet Gating

As depicted in Section 4.1, the reverse process requires a
cascade of filters with a dynamic frequency response. While
Vanilla UNet [50] is effective in reconstructing image de-
tails, it is incapable of incorporating dynamic spectrum into
a single set of parameters. As a result, the small-size DPM
cannot compensate for the changing bandwidth.
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Figure 5. WG-Down and WG-Up with wavelet gating.

To address this problem, we propose inserting the

Wavelet Gating (WG) module into the network to adapt it
to varying frequency response automatically. WG decom-
poses the feature map into wavelet bands and selectively
attends to the proper frequency at different reverse steps,
which is uniquely tailored for the diffusion model.
Gating over the Wavelet Coefficients. We replace all
down-sample and up-sample in UNet with DWT and
IDWT [12,69], and pose a soft gating operation on wavelet
coefficients to facilitate step-adaptive image denoising. We
call them WG-Down and WG-Up, as shown in Figure 5.

Similar to channel attention [21, 44, 78], information
from input feature X is aggregated to produce a soft gat-
ing

G{LL,LH,HL,HH} = Sigmoid(FFN(Avgpool(X))) (8)

where g; is the gating score of each wavelet band; FFN is
a 2 layer feed-forward network and Avgpool stands for the
average pooling. The coefficients are then gated with g; to
produce the output X'.

In the WG-Down, we apply WG after the DWT opera-
tion to fuse the sub-band coefficients with weighted sum-
mation X' = ZiE{LL7LH7HL7HH} g; ® X;, where @ is the
element-wise multiplication. In the WG-Up, the input fea-
ture is splitted into 4 chunks as the wavelet coefficients.
Then, WG is carried out to re-weight each sub-band before
X’ = IDWT (gL ©X1L; gLHOXiH, GHLOXHL, GHHOXHH)-
In this paper, we apply Haar wavelet by default.

5.2. Spectrum-Aware Knowledge Distillation

The diffusion model encounters challenges in modeling
the high-frequency components (in Section 4.2), especially
for efficient requirements. In combat with spectrum defi-
ciency in image generation, we distill the prediction of a
large pre-trained teacher model to a compact WG-Unet stu-
dent. Beyond spatial output matching, we apply Spectrum-
Aware Distillation to guide the student model in synthe-
sizing naturalistic image details.Our approach involves re-
weighting the distillation loss based on the spectrum mag-
nitude. We increase the error penalty for components with
low magnitudes, such as high-frequency bands, while re-
ducing the weight for low-frequency elements.

Given a teacher diffusion model sr(-;0r), we would
like to distill a student sr(+; @) by mimicking the outputs
and features. At time-step ¢, the perturbed image x; is fed

into both networks to produce the outputs and features. A
L2 loss [35,49] is use to quantify their spatial distance

Espa[ial = Z ngf) - Xg) Hg (9)

where Xg) and XS) stand for a pair of teacher/student’s
output features or outputs of the same scale. A single 1x1
CoONV layer is used to align the dimensions.

In addition to spatial distillation, we draw inspiration
from imbalanced learning [4, 24, 30] to design a distilla-
tion loss that promotes the recovery of minority frequencies.
The proposed method involves taking a pair of model pre-
dictions and a clean image X, interpolating X to the same
size as the feature map, and then computing their 2D DFT

a0 = Fix, xl) = FIXP], 29 = FlResize(xo)] (10)

The A is then applied to modulate the difference between
X}l) and & éj )

Lieg= Y will Xy — 2§ |3, where w = |X@|* (1)

with a scaling factor @« < 0 (&« = —1 in our experiment),
Lfreq pushes the student towards learning the minority fre-
quencies yet down-weights the majority components. To-
gether with the DDPM objective in Eq. 3, our training ob-
jective becomes £ = Lpppm + AsLspatal + AfLieq With
weighting factors Ay = 0.1 and Ay = 0.1.

Note that our method aims to learn accurate score predic-
tion at each denoising step, which is orthogonal to existing
distillation on sampling step reduction [40,52].

6. Experiments

This section verifies the efficacy of the SD on high-
resolution image synthesis in Section 6.1, and validates the
individual contributions of each module via ablation study
in Section 6.2.

Datasets and Evaluation. We evaluate our model on
4 unconditional and 2 conditional benckmarks. Spe-
cially, we train unconditional SD models on LSUN-
Churches/Bedrooms [75], FFHQ [27], and CelebA-
HQ [26]. Furthermore, the model’s performance is also as-
sessed in the context of class-conditioned ImageNet [7] and
MS-COCO [31] text-to-image generation. For the text-to-
image task, we first train on LAION-400M [53] and test on
MS-COCO directly.

Training and Evaluation Details. We build our model on
the LDM [48] frameworks®. For fair comparison®, we im-
plement a lite-version of LDM, with a channel dimension
of 64 as our baseline model. We call it Lite-LDM.

3https://github.com/CompVis/latent-diffusion
4Generative models from other families (e.g. GAN, VAE, and Flow)
are excluded intentionally for fair computation comparison.
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FFHQ 256 x 256 CelebA-HQ 256 x 256 Ours 2948

Model #Param MACs FID]  Model #Param MACs FID| —
DDPM [18][113.7M 24877G 84 Score SDE [59]]65.57M 266.4G 72 Lite.LDM 30148
P2 [6] 113.7M 248.7G 7.0 DDGAN [62] [39.73M 69.9G 7.6 I 707
LDM [48] [274.1M 96.1G 5.0 LDM [48] 274.1M 96.1G 5.1 oM 5058
Lite-LDM [22.4M(12.2x)|7.9G(12.2x)|17.3(-12.3)  Lite-LDM 22.4M(12.2x)|7.9G(12.2x)[14.3(—9.2) B 1 81) SUN-Bedroom, CelebA-HQ, FFHQ
Ours 21.1M(13.0x)|6.7G(14.3x)| 10.5( ) Ours 21.1M(13.0x)|6.7G(14.3x)| 9.3( ) 1 Thou“l{‘lm e S'/Osﬂec) 1000

LSUN-Bedroom 256 x 256 LSUN-Church 256 x 256 ours e — 3198
Model #Param MACs FID| Model #Param MACs FID| I 29
DDPM [18] [113.7M 24877G 49 DDPM [18] | 113.7M 24877G 49 Lie.LDM 2113
IDDPM [42]|113.7M 248.6G 42 IDDPM [42] | 113.7M 248.6G 43 I 5.5
ADM [8]  |552.8M 1114.2G 1.9 ADM [8] 552.8M 1114.2G 1.9 oM 21071
LDM [48] [274.1M 96.1G 3.0 LDM [48] |295.0M 18.7G 4.0 IS LSUN-Church
LiteLDM [22.4M(12.2-)|7.9G(12.2-)[10.9(—7.0) Lite-LDM | 32.8M(v.0x) | 2.1G(s.9) | 13.6(—9.6) | 0 100 1000
Ours 21.1M(15.0x)[6.7G(14.3x)| 5.2(_>.2)  Ours 33.8M(s.7x) | 2.1G(s.0%) | 8.4( 1.4) NVIDIA Tesla V100

Table 2. Unconditional generation results comparison to prior DPMs. The results are taken from
the original paper, except that DDPM is take from the [6].

mIntel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz

Figure 6. Throughput for uncondi-
tional image generation.

Our proposed SD is trained on 4 unconditional bench-
marks for a duration of 150k iterations, using a mini-batch
size of either 512 or 256. We employ the AdamW [36] op-
timizer with an initial learning rate of 1.024 x 10~2 and
linear learning rate decay. For class- and text-conditioned
generation, we set the initial learning rate to 5.12 x 10~
while keeping other parameters constant. The synthesized
image quality is evaluated based on the FID score [ | 5] using
50k generated samples at a resolution of 256. We utilize a
200-step DDIM [56] sampling by default. We compare the
model size and computational cost in terms of parameter
count and Multiply-Add cumulation (MACs), and report the
throughput for the speed comparision. All experiments are
conducted on 8x NVIDIA Tesla V100 GPUs. Additional
details can be found in the Supplementary Material.

6.1. Image Generation Results

Unconditional Image Generation. We evaluate the sam-
ple quality on LSUN-Churches/Bedrooms [75] FFHQ [27],
and CelebA-HQ [26]. The results, as presented in Table 2,
indicate that directly training small-sized diffusion models
results in significant performance deterioration, with Lite-
LDM showing an FID drop of 12.3 on FFHQ and 13.2 on
CelebA-HQ. In contrast, our SD achieves a 8 ~ 14 times
computation reduction compared to the official LDM while
maintaining comparable image fidelity. For instance, with a
21.1M Unet model and 6.7G MAC:s, our approach achieves
an FID score of 5.2, which is very close to the 4.9 FID in
DDPM, but with only % of its computation cost.

Figure 6 displays the throughput, which indicates the
number of time steps executed by the model per second.
It is measured by averaging over 30 runs with a batch-size
of 64. We see that, Lite-LDM, while being fast, has inferior
visual quality. In comparison, our SD is 4.6 x faster on CPU
and 3.6 x on GPU compared to LDM on 3 of the 4 datasets.

In Figure 7, rows 1-4, we evaluate the visual quality of
the synthesized samples. Despite having fewer parameters

Method #Param MACs FID|
IDDPM [42] 273.1M 1416.3G 12.3
ADM (8] 553.8M 1114.2G 10.9
LDM [48] 400.9M 99.8G 10.6
ADM-G [8] 553.8+54.1M | 1114.2+72.2G 4.6
LDM-CFG [48] | 400.9M 99.8G 3.6
Lite-LDM-CFG | 47.0M(8.5x) | 11.1G(9.0x) | 20.1(—16.5)
Ours-CFG 45.4M(8.8x) | 9.9G (10.1x) 10.6( )

Table 3. Comparison of class-conditional image generation meth-
ods on ImageNet [7] with recent state-of-the-art methods. “G”
stands for the classifier guidance and “CFG” refers to the classifer-
free guidance for conditional image generation.

and less computation, SD model generates realistic samples
with high-frequency details and decent sample diversity.

Class-conditional Image Generation. Our class-
conditioned image generation performance on ImageNet is
validated and presented in Table 3. With super-mini archi-
tecture and classifier-free guidance of w = 3.0, our SD
achieves an FID score of 10.6. As the comparison, the
ADM [8] only gets FID=10.9, but with 553.8M parameters
and 1114.2 MACs. Lite-LDM, though being comparably
fast, suffers from its inability for high-frequency generation,
gets a high FID score of 20.1.

Generated results are visualized in Figure 7 row 5-10.
Our SD is able to produce diverse images of different
categories, particularly good at animal generation like
corgi and bear. Nonetheless, we observe some failure
cases where faces and shapes are distorted. Additionally,
our model struggles in generating crowded instances, as
exemplified in the banana category.

Text-to-Image Generation. We trained our text-
conditioned SD using a fixed CLIP encoder on LAION-
400M, as done in prior work [48]. Then, we performed
zero-shot inference on MS-COCO using w = 2.0. Our
evaluation metric is the zero-shot FID-30K score from
GLIDE [41]. This score measures the similarity of 30K ran-
domly selected prompts from the validation set to the entire
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CelebA-HQ

LSUN-Bedroom

ImageNet

Method #Param FIDJ
GLIDE [41] 5.0B 12.24
DALLE2 [45] | 5.5B 10.39
Imagen [51] 3.0B 7.27
LDM [48] 1.45B 12.63
Ours 77.6M(18.7x) | 18.87

Table 4. Zero-Shot FID on MS-COCO text-to-image generation.

MS-COCO validation set using generated images.

Table 4 presents the evaluation results. Our 77.6M model
achieves a FID score of 18.87, which is 18.7x smaller than
LDM. We also provide qualitative analysis for text-to-image
generation with new prompts, in Figure 8. Although the im-
age quality is inferior to those large-sized diffusion models,
our model is capable of producing vivid drawings based on
descriptions, with minimal computational cost and portable

FFHQ

LSUN-Church

R

Figure 7. Randomly sampled 256 x 256 images generated by our models trained on CelebA-HQ [26], FFHQ [27], LSUN-Bedroom and
LSUN-Church [75], ImageNet [7]. All images are sampled with 200 DDIM steps.

model size. Our SD is good at abstract or carton style paint-
ings. However, it is still challenging to generate human
body and faces, as in the “basketball player” example.

6.2. Ablation Study and Analysis

In this section, we validate the effectiveness of wavelet
gating and spectrum-aware distillation, on whether and how
they help to improve the image fidelity.

Wavelet Gating. We validate the effectiveness of the
Wavelet Gating by replacing our WG operation with the
nearest neighbor resizer in LDM [48] and train on the FFHQ
dataset. The results, presented in Table 5, demonstrate that
removing WG significantly increases the FID from 10.5 to
12.4. Furthermore, using WG alone improves Lite-LDM’s
FID by 2.6. Both results indicate that WG promote the sam-
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A corgi wearing a red bowtie and a A high quality picture of a medieval
knight with golden armor

purple party hat

g

Sketch figure, moose with large horn
under moon at night

5 e o)
An attack helicopter is fighting
with a tank

Pop art comic style,
a panda playing guitar

basketball player jumped straight
up to grab a rebound

Figure 8. Selected samples from Spectral Diffusion using classifier-free guidance w = 5.0 for text-to-image generation.

Method FFHQ 256 x 256

+ Wavelet Gating v v v /7
+ Spatial Distill v v 7 v
+ Freq Distill v v v/
FID] 17.3 14.7 16.6 153 12.3 124 11.4 10.5

Table 5. Ablation study on FFHQ dataset.

ple quality of the small DPMs.

Furthermore, we analyzed the gating functions at dif-
ferent denoising steps for a pre-trained text-to-image SD
model, as shown in Figure 9. Each curve represents the
average gating coefficient for 100 generated images. The
trends of the downsample and upsample operations diverge,
with high-frequency details emerging in Xt towards the
end of denoising (large ¢). The WG-Down thus enhances
the high-frequency signals with increased gnL,Ln,HH} While
keeping the low-frequency part constant. On the other hand,
the WG-Up promotes g | in the late stage of denoising. Pre-
dicted noises boost its low-frequency components, resulting

in high-frequency recovery in the Xy = % V;E‘E

Spectrum-Aware Distillation. To evaluate the effective-
ness of SA-Distillation, we conducted an ablation study by
sequentially removing each loss term. Our findings, pre-
sented in Table 5, show that the spatial term contributes only
0.9 FID improvement, while the frequency term accounts
for 1.8 FID. It highlights the importance of the frequency
term in achieving high-quality image generation.

We also visualize the images generated by trained mod-
els with (W) or without (W/O) the frequency term in Fig-
ure 10, with their DFT difference. The model without L.,
makes smoother predictions, while our method recovers the
details like hair or architectural textures. Our method priori-
tizes high-frequency distillation, resulting in improvements
in high-frequency components in |F f — Fnof|.

Wavelet Gating Downsample

Wavelet Gating Upsample

035

=
=

E 0s 2 030
S IS}
in“ = in 025
o 5020 —
= 0. 2|
< <
15 =
3, / S
O (010 f———
3075100 125 150175 ZT: 25 50 75 100 125 150 175 200
DDIM Denoising Steps T G DDIM Denoising Steps T

Figure 9. Wavelet gating function values at different £. We plot the
mean+tstd for 100 generated images.

1

Figure 10. Generated images W or W/O the freq term, as well as
their DFT difference | Ft — Frof|. Zoom in for better view.

7. Conclusion

In the study, we focus on reducing the computation cost
for diffusion models. The primary obstacle to training small
DPMs is their inability to provide high-frequency realisti-
cally, which results from the frequency evolution and bias
of diffusion process. In order to resolve these problems,
we propose Spectral Diffusion (SD) for efficient image gen-
eration. It performs spectrum dynamic denoising by using
a wavelet gating operation, which automatically enhances
different frequency bands at different reverse steps. A large
pre-trained network helps to improve the performance of
high-frequency generation by knowledge distillation. By
seamlessly integrating both modifications, our model is 8-
18 x slimmer and runs 2-5x faster than the latent diffusion
model, with negligible performance drop.
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