
FreeNeRF: Improving Few-shot Neural Rendering with Free Frequency
Regularization

Jiawei Yang
UC, Los Angeles

jiawei118@ucla.edu

Marco Pavone
Nvidia Research, Stanford University

pavone@stanford.edu

Yue Wang
Nvidia Research

yuewang@nvidia.com

NeRF Our base Free-NeRF

Turning the left to the right by adding one line of code: pos enc[int(t/T*L)+3:]=0
Figure 1. Example novel view synthesis results from sparse inputs. The only difference between NeRF (left) and FreeNeRF (right)
is the use of our frequency regularization, which can be implemented as few as, approximately, one line of code (bottom, where t and T
denote the current training iteration and regularization duration, respectively; L is the length of the input positional encoding).

Abstract

Novel view synthesis with sparse inputs is a challeng-

ing problem for neural radiance fields (NeRF). Recent ef-

forts alleviate this challenge by introducing external super-

vision, such as pre-trained models and extra depth signals,

or by using non-trivial patch-based rendering. In this pa-

per, we present Frequency regularized NeRF (FreeNeRF),

a surprisingly simple baseline that outperforms previous

methods with minimal modifications to plain NeRF. We an-

alyze the key challenges in few-shot neural rendering and

find that frequency plays an important role in NeRF’s train-

ing. Based on this analysis, we propose two regularization

terms: one to regularize the frequency range of NeRF’s

inputs, and the other to penalize the near-camera density

fields. Both techniques are “free lunches” that come at no

additional computational cost. We demonstrate that even

with just one line of code change, the original NeRF can

achieve similar performance to other complicated methods

in the few-shot setting. FreeNeRF achieves state-of-the-

art performance across diverse datasets, including Blender,

DTU, and LLFF. We hope that this simple baseline will mo-

tivate a rethinking of the fundamental role of frequency in

NeRF’s training, under both the low-data regime and be-

yond. This project is released at FreeNeRF.

1. Introduction

Neural Radiance Field (NeRF) [21] has gained tremen-
dous attention in 3D computer vision and computer graph-
ics due to its ability to render high-fidelity novel views.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

8254

However, NeRF is prone to overfitting to training views and
struggles with novel view synthesis when only a few inputs
are available. We term this view synthesis from sparse in-
puts problem as a few-shot neural rendering problem.

Existing methods address this challenge using different
strategies. Transfer learning methods, e.g., PixelNerf [37]
and MVSNeRF [4], pre-train on large-scale curated multi-
view datasets and further incorporate per-scene optimiza-
tion at test time. Depth-supervised methods [6, 29] in-
troduce estimated depth as an external supervisory signal,
leading to a complex training pipeline. Patch-based reg-
ularization methods impose regularization from different
sources on rendered patches, e.g., semantic consistency reg-
ularization [11], geometry regularization [8, 22], and ap-
pearance regularization [22], all at the cost of computation
overhead since an additional, non-trivial number of patches
must be rendered during training [8, 11, 22].

In this work, we find that a plain NeRF can work sur-
prisingly well with none of the above strategies in the few-
shot setting by adding (approximately) as few as one line
of code (see Fig. 1). Concretely, we analyze the common
failure modes in training NeRF under a low-data regime.
Drawing on this analysis, we propose two regularization
terms. One is frequency regularization, which directly reg-
ularizes the visible frequency bands of NeRF’s inputs to
stabilize the learning process and avoid catastrophic over-
fitting at the start of training. The other is occlusion reg-
ularization, which penalizes the near-camera density fields
that cause “floaters,” another failure mode in the few-shot
neural rendering problem. Combined, we call our method
Frequency regularized NeRF (FreeNeRF), which is “free”
in two ways. First, it is dependency-free because it requires
neither costly pre-training [4, 11, 22, 37] nor extra supervi-
sory signals [6,29]. Second, it is overhead-free as it requires
no additional training-time rendering for patch-based regu-
larization [8, 11, 22].

We consider FreeNeRF a simple baseline (with mini-
mal modifications to a plain NeRF) in the few-shot neural
rendering problem, although it already outperforms exist-
ing state-of-the-art methods on multiple datasets, including
Blender, DTU, and LLFF, at almost no additional computa-
tion cost. Our contributions can be summarized as follows:
• We reveal the link between the failure of few-shot neu-

ral rendering and the frequency of positional encoding,
which is further verified by an empirical study and ad-
dressed by our proposed method. To our knowledge, our
method is the first attempt to address few-shot neural ren-
dering from a frequency perspective.

• We identify another common failure pattern in learning
NeRF from sparse inputs and alleviate it with a new oc-
clusion regularizer. This regularizer effectively improves
performance and generalizes across datasets.

• Combined, we introduce a simple baseline, FreeNeRF,

that can be implemented with a few lines of code mod-
ification while outperforming previous state-of-the-art
methods. Our method is dependency-free and overhead-
free, making it a practical and efficient solution to this
problem.

We hope the observations and discussions in this paper
will motivate people to rethink the fundamental role of fre-
quency in NeRF’s positional encoding.

2. Related Work

Neural fields. Neural fields [36] use deep neural networks
to represent 2D images or 3D scenes as continuous func-
tions. The seminal work, Neural Radiance Fields (NeRF)
[21], has been widely studied and advanced in a variety
of applications [2, 3, 13, 19, 23, 25, 32], including novel
view synthesis [18, 21], 3D generation [10, 25], deforma-
tion [23,26,28], video [7,14,15,24,35]. Despite tremendous
progress, NeRF still requires hundreds of input images to
learn high-quality scene representations; it fails to synthe-
size novel views with a few input views, e.g., 3, 6, and 9
views, limiting its potential applications in the real world.
Few-shot Neural Rendering. Many works have attempted
to address the challenging few-shot neural rendering prob-
lem by leveraging extra information. For instance, external
models can be used to acquire normalization-flow regular-
ization [22], perceptual regularization [38], depth supervi-
sion [6, 29, 34], and cross-view semantic consistency [11].
Another thread of works [4, 5, 37] attempts to learn trans-
ferable models by training on a large, curated dataset in-
stead of using an external model. Recent works argue that
geometry is the most important factor in few-shot neural
rendering and propose geometry regularization [1,8,22] for
better performance. However, these methods require expen-
sive pre-training on tailored multi-view datasets [4,5,37] or
costly training-time patch rendering [1, 8, 11, 22], introduc-
ing significant overhead in methodology, engineering im-
plementation, and training budgets. In this work, we show
that a plain NeRF can work surprisingly well with minimal
modifications (a few lines of code) by incorporating our fre-
quency regularization and occlusion regularization. Unlike
most previous methods, our approach maintains the same
computational efficiency as the original NeRF.
Frequency in neural representations. Positional encoding
lies at the heart of NeRF’s success [21, 31]. Previous stud-
ies [30, 31] have shown that neural networks often struggle
to learn high-frequency functions from low-dimensional in-
puts. Encoding inputs with sinusoidal functions of differ-
ent frequencies can alleviate this issue. Recent works show
the benefits of gradually increasing the input frequency in
different applications, such as non-rigid scene deformation
[23], bundle adjustment [16], surface reconstruction [33],
and fitting functions with a wider frequency band [9]. Our

8255

work leverages frequency curriculum to tackle the few-shot
neural rendering problem. Notably, our approach not only
demonstrates the surprising effectiveness of frequency reg-
ularization in learning from sparse inputs, but also reveals
the failure modes behind this problem and why frequency
regularization helps.

3. Method
3.1. Preliminaries

Neural radiance fields. A neural radiance field (NeRF)
[21] uses a multi-layer perceptron (MLP) to represent a
scene as a volumetric density field � and associated RGB
values c at each point in the scene. It takes as input a 3D
coordinate x 2 R3 and a viewing directional unit vector
d 2 S2, and outputs the corresponding density and color.
In its most basic form, NeRF learns a continuous function
f✓(x,d) = (�, c) where ✓ denotes MLP parameters.
Positional encoding. Directly optimizing NeRF over raw
inputs (x,d) often leads to difficulties in synthesizing high-
frequency details [21,31]. To address this issue, recent work
has used sinusoidal functions with different frequencies to
map the inputs into a higher-dimensional space [21]:

�L(x) =
⇥
sin(x), cos(x), ..., sin(2L�1x), cos(2L�1x)

⇤
,

(1)
where L is a hyperparameter that controls the maximum en-
coded frequency and may differ for coordinates x and direc-
tional vectors d. A common practice is to concatenate the
raw inputs with the frequency-encoded inputs as follows:

x0 = [x, �L(x)] (2)

This concatenation is applied to both coordinate inputs and
view direction inputs.
Rendering. To render a pixel in NeRF, a ray r(t) = o+ td
is cast from the camera’s origin o along the direction d to
pass through the pixel, where t is the distance to the origin.
Within the near and far bounds [tnear, tfar] of the cast ray,
NeRF computes the color of that ray using the quadrature
of K sampled points tK = {t1, . . . , tK}:

ĉ(r; ✓, tK) =
X

K

Tk(1� exp(��k(tk+1 � tk)))ck,

with Tk = exp

�
X

k0<k

�0
k (tk0+1 � tk0)

!
, (3)

where ĉ(r; ✓, tK) is the final integrated color. Note that the
sampled points tK are in a near-to-far order, i.e., a point
with a smaller index k is closer to the camera’s origin.

3.2. Frequency Regularization
The most common failure mode of few-shot neural ren-

dering is overfitting. NeRF learns 3D scene representations

O
bj

ec
t P

SN
R

8
10
12
14
16
18

Visible positional encoding ratio x
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

9.018.938.799.309.839.138.908.74

10.80

17.62
Ground Truthx=10% x=100%

Figure 2. Masking high-frequency inputs helps few-shot neu-
ral rendering. We investigate how NeRF performs with positional
encodings under different masking ratios on the DTU dataset us-
ing 3 input views. Despite its over-smoothness, the plain NeRF
succeeds in the few-shot setting when only low-frequency inputs
are visible.

from a set of 2D images without explicit 3D geometry. 3D
geometry is implicitly learned by optimizing appearance in
its 2D projected views. However, given only a few input
views, NeRF is prone to overfitting to these 2D images with
small loss while not explaining 3D geometry in a multi-
view consistent way. Synthesizing novel views from such
models leads to systematic failure. As shown on the left
of Figure 1, no NeRF model can successfully recover the
scene geometry when synthesizing novel views.

The overfitting issue in few-shot neural rendering is pre-
sumably exacerbated by high-frequency inputs. [31] shows
that higher-frequency mappings enable faster convergence
for high-frequency components. However, the over-fast
convergence on high-frequency impedes NeRF from ex-
ploring low-frequency information and significantly biases
NeRF towards undesired high-frequency artifacts (horns
and room examples in Fig. 1). In the few-shot scenario,
NeRF is even more sensitive to susceptible noise as there are
fewer images to learn coherent geometry. Thus, we hypoth-
esize that high-frequency components are a major cause of
the failure modes observed in few-shot neural rendering.
We provide empirical evidence below.

We investigate how a plain NeRF performs when
inputs are encoded by different numbers of frequency
bands. To achieve this, we train mipNeRF [2] using
masked (integrated) positional encoding. Specifically, we
set pos enc[int(L*x%]):]=0, where L denotes the
length of frequency encoded coordinates after the positional
encoding (Eq. (1)), and x is the visible ratio. We briefly
demonstrate our observation here and defer the experiment
details to §4.1. Figure 2 shows the results for the DTU
dataset under the 3 input-view setting. As anticipated, we
observe a significant drop in mipNeRF’s performance as
higher-frequency inputs are presented to the model. When
10% of total embedding bits are used, mipNeRF achieves
a high PSNR of 17.62, while the plain mipNeRF achieves
only 9.01 PSNR on its own (at 100% visible ratio). The only

8256

difference between these two models is whether masked po-
sitional encodings are used. Although removing a signif-
icant portion of high-frequency components avoids catas-
trophic failure at the start of training, it does not result
in competitive scene representations, as the rendered im-
ages are usually oversmoothed (as seen in Fig. 2 zoom-in
patches). Nonetheless, it is noteworthy that in few-shot
scenarios, models using low-frequency inputs may produce
significantly better representations than those using high-
frequency inputs.

Building on this empirical finding, we propose a fre-
quency regularization method. Given a positional encoding
of length L + 3 (Eq. (2)), we use a linearly increasing fre-
quency mask ↵ to regulate the visible frequency spectrum
based on the training time steps, as follows:

�0
L(t, T ;x) = �L(x)�↵(t, T, L), (4)

with ↵i(t, T, L) =

8
>><

>>:

1 if i t·L
T + 3

t · L
T

� b t · L
T

c if t·L
T + 3 < i t·L

T + 6

0 if i > t·L
T + 6

(5)

where ↵i(t, T, L) denotes the i-th bit value of ↵(t, T, L);
t and T are the current training iteration and the final iter-
ation of frequency regularization, respectively. Concretely,
we start with raw inputs without positional encoding and
linearly increase the visible frequency by 3-bit each time as
training progresses. This schedule can also be simplified as
one line of code, as shown in Figure 1. Our frequency reg-
ularization circumvents the unstable and susceptible high-
frequency signals at the beginning of training and gradually
provides NeRF high-frequency information to avoid over-
smoothness.

We note that our frequency regularization shares some
similarities with the coarse-to-fine frequency schedules
used in other works [16, 23]. Different from theirs, our
work focuses on the few-shot neural rendering problem
and reveals the catastrophic failure patterns caused by high-
frequency inputs and their implication to this problem.

3.3. Occlusion Regularization
Frequency regularization does not solve all problems in

few-shot neural rendering. Due to the limited number of
training views and the ill-posed nature of the problem, cer-
tain characteristic artifacts may still exist in novel views.
These failure modes often manifest as “walls” or “floaters”
that are located extremely close to the camera, as seen in
the bottom of Figure 3. Such artifacts can still be observed
even with a sufficient number of training views [3]. To ad-
dress these issues, [3] proposed a distortion loss. However,
our experiments show that this regularization does not help
in the few-shot setting and may even exacerbate the issue.

We find most of these failure patterns originate from the
least overlapped regions in the training views. Figure 3

a

b

a

b

is likely caused by

is likely caused by b

a

Training views

Novel views

floaters

a

a

b

Before

After

Figure 3. Illustration of occlusion regularization. We show 3
training views (solid rectangles) and 2 novel views (dashed rect-
angles) rendered by a frequency-regularized NeRF. The floaters in
the novel views appear to be near-camera dense fields in the train-

ing views (dashed circles) so that we can penalize them directly
without the need for the costly novel-view rendering in [11, 22].

shows an example of 3 training views and 2 novel views
with “white walls”. We manually annotate the least over-
lapped regions in the training views for demonstration ((a)
and (b) in Fig. 3). These regions are difficult to estimate
in terms of geometry due to the extremely limited infor-
mation available (one-shot). Consequently, a NeRF model
would interpret these unexplored areas as dense volumetric
floaters located near the camera. We suspect that the floaters
observed in [3] also come from these least overlapped re-
gions.

As discussed above, the presence of floaters and walls
in novel views is caused by the imperfect training views,
and thus can be addressed directly at training time without
the need for novel-pose sampling [11, 22, 37]. To this end,
we propose a simple yet effective “occlusion” regularization
that penalizes the dense fields near the camera. We define:

Locc =
�|

K ·mK

K
=

1

K

X

K

�k ·mk, (6)

where mk is a binary mask vector that determines whether a
point will be penalized, and �K denotes the density values
of the K points sampled along the ray in the order of prox-
imity to the origin (near to far). To reduce solid floaters near
the camera, we set the values of mk up to index M , termed

8257

as regularization range, to 1 and the rest to 0. The occlusion
regularization loss is easy to implement and compute.

4. Experiments
4.1. Setups

Datasets & metrics. We evaluate our method on three
datasets under few-shot settings: the NeRF Blender Syn-
thetic dataset (Blender) [21], the DTU dataset [12], and the
LLFF dataset [20]. For Blender, we follow DietNeRF [11]
to train on 8 views and test on 25 test images. For DTU and
LLFF, we adhere to RegNeRF’s [22] protocol. On DTU,
we use objects’ masks to remove the background when
computing metrics, as full-image evaluation is biased to-
wards the background, as reported by [22, 37]. We report
PSNR, SSIM, and LPIPS scores as quantitative results. We
also report the geometric mean of MSE = 10�PSNR/10,p
1� SSIM, and LPIPS, following [22]. More details on

the experimental setup can be found in the appendix.

Implementations. Our FreeNeRF can directly improve
NeRF [21] and mipNeRF [2]. To demonstrate this, we use
DietNeRF’s codebase1 for NeRF on the Blender dataset and
RegNeRF’s codebase2 for mipNeRF on the DTU dataset
and the LLFF dataset. We disable the proposed compo-
nents in those papers and implement our two regularization
terms on top of their baselines. We make one modification
to mipNeRF [2], which is to concatenate positional encod-
ings with the original Euclidean coordinates (Eq. (2)). This
is a default step in NeRF but not in mipNeRF, and it helps
unify our experiments’ initial visible frequency range. We
follow their training schedules for optimization. Please re-
fer to the Appendix for full training recipes.

Hyper-parameters. We set the end iteration of frequency
regularization as T = b90% ⇤ total itersc for the 3-view
setting and 70% for the 6-view setting and 20% for the 9-
view setting. We regularize both coordinates x and view
directions d. For Locc, we use a weight of 0.01 in all exper-
iments and set the regularization range M = 20 for LLFF
and Blender and M = 10 for DTU. For DTU in particular,
we find that the “walls” are mostly caused by the white desk
and black background, so we use this information to penal-
ize more points in a slightly wider range (M = 15) if their
colors are black or white.

Comparing methods. Unless otherwise specified, we di-
rectly use the results reported in DietNeRF [11] and Reg-
NeRF [22] for comparisons, as our method is implemented
using their codebases. We also include our reproduced re-
sults for reference.

1https://github.com/ajayjain/DietNeRF
2https : / / github . com / google - research / google -

research/tree/master/regnerf

Method PSNR " SSIM " LPIPS #
NeRF [21] 14.934 0.687 0.318
NV [17] 17.859 0.741 0.245
Simplified NeRF [11] 20.092 0.822 0.179
DietNeRF [11] 23.147 0.866 0.109
DietNeRF + LMSE ft 50k 23.591 0.874 0.097
NeRF (repro.) 13.931 0.689 0.320
DietNeRF (repro.) 22.503 0.823 0.124
Our FreeNeRF 24.259 0.883 0.098

Table 1. Quantitative comparison on Blender. “LMSE ft 50k”:
fine-tune for another 50k iterations with LMSE. The top row
section includes results from [11], while the bottom row section
shows our reproduced results (repro.). Gray: our baseline. Red,
orange, and yellow: the best, second-best, and third-best.

Imagined

Ketchup

Imagined

track pads &

driver seat

DietNeRF Ours Ground Truth

Figure 4. Novel view synthesis examples on Blender. Our re-
sults are qualitatively better than DietNeRF’s. DietNeRF renders
“imaginary” components that do not exist in the original images.

4.2. Comparison

We compare with state-of-the-art methods in terms of
novel view synthesis quality and computation overhead. We
show that FreeNeRF outperforms others in synthesis quality
while maintaining a much lower cost.

Blender dataset. Table 1 shows the image synthesis met-
rics on the Blender dataset [21]. Our approach outperforms
all other methods in the PSNR and SSIM scores, with a
comparable LPIPS score to the best one. The improved
DietNeRF with fine-tuning still underperforms ours. Note
that our direct baseline is “NeRF (repro.)” as we do not use
any techniques from DietNeRF [11]. Figure 4 shows two
examples for qualitative comparison (see Fig. 1 for plain
NeRF’s results). Interestingly, we observe that DietNeRF
implicitly distills semantic information from a pre-trained
CLIP model [27] into NeRF, which leads to unrealistic and
“imaginary” patches that do not exist in the original scenes,
such as “ketchup” in the hotdog and rubber-like track-pads

8258

Setting Object PSNR " Object SSIM " Full-image PSNR " Full-image SSIM "
3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view

SRF [5]
Trained on DTU

15.32 17.54 18.35 0.671 0.730 0.752 15.84 17.77 18.56 0.532 0.616 0.652
PixelNeRF [37] 16.82 19.11 20.40 0.695 0.745 0.768 18.74 21.02 22.23 0.618 0.684 0.714
MVSNeRF [4] 18.63 20.70 22.40 0.769 0.823 0.853 16.33 18.26 20.32 0.602 0.695 0.735
SRF ft [5] Trained on DTU

and
Optimized per Scene

15.68 18.87 20.75 0.698 0.757 0.785 16.06 18.69 19.97 0.550 0.657 0.678
PixelNeRF ft [37] 18.95 20.56 21.83 0.710 0.753 0.781 17.38 21.52 21.67 0.548 0.670 9.680
MVSNeRF ft [4] 18.54 20.49 22.22 0.769 0.822 0.853 16.26 18.22 20.32 0.601 0.694 0.736
mip-NeRF [2]

Optimized per Scene
8.68 16.54 23.58 0.571 0.741 0.879 7.64 14.33 20.71 0.227 0.568 0.799

DietNeRF [11] 11.85 20.63 23.83 0.633 0.778 0.823 10.01 18.70 22.16 0.354 0.668 0.740
RegNeRF [22] 18.89 22.20 24.93 0.745 0.841 0.884 15.33 19.10 22.30 0.621 0.757 0.823
mip-NeRF concat. (repro.)

Optimized per Scene
9.10 16.84 23.56 0.578 0.754 0.877 7.94 14.15 20.97 0.235 0.560 0.794

†RegNeRF concat. (repro.) 18.50 22.18 24.88 0.744 0.844 0.890 15.00 19.12 22.41 0.606 0.754 0.826
Our FreeNeRF 19.92 23.25 25.38 0.787 0.844 0.888 18.02 22.39 24.2 0.680 0.779 0.833

Table 2. Quantitative comparison on DTU. We present the PSNR and SSIM scores of foreground objects and full images. Our FreeNeRF
synthesizes better foreground objects and full images than most of the others. Our direct baseline is mipNeRF [2] (marked in gray). Results
in the bottom row section are our reproductions, and others come from [22]. “concat.”: inputs concatenation (Eq. (2)). †ReNeRF: w/o.
appearance regularization. The best, second-best, and third-best entries are marked in red, orange, and yellow, respectively.

Ours Ground TruthRegNeRFOurs Ground TruthRegNeRF

(a) 3 Input Views

(b) 6 Input Views

Figure 5. Qualitative comparison on DTU. We show novel views rendered by RegNeRF and ours in 3 and 6 input-view settings. For
the Buddha example, the piece-wise geometry regularization used by RegNeRF [22] hurts the fine-grained geometry, erasing the details of
eyes, fingers and wrinkles. RegNeRF’s results are rendered by our reproduced †RegNeRF concat. (c.f. Tab. 2).

in the bulldozer. This behavior is highly correlated to fea-
ture distillation [13] and recent developments in 3D ob-
ject generation that combine NeRF with large pre-trained
vision-language models [10, 25]. Although this potentially
could be an interesting application, such behavior is unde-
sired in our task and will hamper outputs’ fidelity. In con-
trast, our method does not require semantics regularization
while achieving better performance.

DTU dataset. Table 2 shows the quantitative results on
the DTU dataset. Transfer learning-based methods that re-
quire expensive pre-training (SRF [5], PixelNeRF [37], and
MVSNeRF [4]) underperform ours in almost all settings,
except the full-image PSNR score under 3-view setting.

This may be due to the bias introduced by the white ta-
ble and black background present in many scenes in the
DTU dataset, which can be learned as a prior through
pre-training. Compared to per-scene optimization methods
(mipNeRF [2], DietNeRF [11], and RegNeRF [22]), our ap-
proach achieves the best results. Figure 5 shows example
novel views rendered by RegNeRF and ours. In the Bud-
dha scene, for instance, piece-wise smoothness imposed by
RegNeRF’s geometry regularization [22] leads to the loss of
fine-grained details, such as eyes, fingers, and wrinkles. In
contrast, our frequency regularization, which can be seen as
an implicit geometry regularization, forces smooth geome-
try at the beginning (due to the limited frequency spectrum)

8259

Setting PSNR " SSIM " LPIPS # Average #
3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view

SRF [5]
Trained on DTU

12.34 13.10 13.00 0.250 0.293 0.297 0.591 0.594 0.605 0.313 0.293 0.296
PixelNeRF [37] 7.93 8.74 8.61 0.272 0.280 0.274 0.682 0.676 0.665 0.461 0.433 0.432
MVSNeRF [4] 17.25 19.79 20.47 0.557 0.656 0.689 0.356 0.269 0.242 0.171 0.125 0.111
SRF ft [5] Trained on DTU

and
Optimized per Scene

17.07 16.75 17.39 0.436 0.438 0.465 0.529 0.521 0.503 0.203 0.207 0.193
PixelNeRF ft [37] 16.17 17.03 18.92 0.438 0.473 0.535 0.512 0.477 0.430 0.217 0.196 0.163
MVSNeRF ft [4] 17.88 19.99 20.47 0.584 0.660 0.695 0.327 0.264 0.244 0.157 0.122 0.111
mip-NeRF [2]

Optimized per Scene
14.62 20.87 24.26 0.351 0.692 0.805 0.495 0.255 0.172 0.246 0.114 0.073

DietNeRF [11] 14.94 21.75 24.28 0.370 0.717 0.801 0.496 0.248 0.183 0.240 0.105 0.073
RegNeRF [22] 19.08 23.10 24.86 0.587 0.760 0.820 0.336 0.206 0.161 0.149 0.086 0.067
mip-NeRF concat. (repro.)

Optimized per Scene
16.11 22.91 24.88 0.401 0.756 0.826 0.460 0.213 0.160 0.215 0.090 0.066

†RegNeRF concat. (repro.) 18.84 23.22 24.88 0.573 0.770 0.826 0.345 0.203 0.159 0.150 0.085 0.065
Our FreeNeRF 19.63 23.73 25.13 0.612 0.779 0.827 0.308 0.195 0.160 0.134 0.075 0.064

Table 3. Quantitative comparison on LLFF. Our FreeNeRF achieves the best results in most metrics under different input-view settings.
Our direct baseline is mipNeRF [2] (marked in gray). Results in the bottom row section are our reproductions, and others come from [22].
“concat.”: inputs concatenation (Eq. (2)). †ReNeRF: w/o. appearance regularization. The best, second-best, and third-best entries are
marked in red, orange, and yellow, respectively.

OursGround Truth RegNeRF

(a) 3 Input Views

(b) 6 Input Views

Figure 6. Qualitative comparison on LLFFF. RegNeRF [22] fails to estimate the accurate depth though it renders visually satisfactory
RGB images (a). It also suffers from near-camera floaters (b). In contrast, our method reconstructs less noisy occupancy fields with fewer
floaters. RegNeRF’s results are rendered by our reproduced †RegNeRF concat. (c.f. Tab. 3).

and gradually relaxes the constraint to facilitate the de-
tails. In the more challenging scenes (e.g., buildings/bronze
statue in Fig. 5), FreeNeRF produces higher-quality results.

LLFF dataset. Table 3 and Figure 6 show quantitative and
qualitative results, respectively, on the LLFF dataset. We re-
produce mipNeRF [2] and obtain better results. Our FreeN-
eRF is generally the best. Transfer learning-based meth-
ods [4, 5, 37] perform much worse than ours on the LLFF
dataset due to the non-trivial domain gap between DTU and
LLFF. Compared to RegNeRF [22], our approach predicts
more precise geometry and exhibits fewer artifacts. For in-
stance, RegNeRF’s rendered “horns” example (Fig. 6-a) is
perceptually acceptable but has poor depth map quality, in-
dicating its incorrect geometry estimation. FreeNeRF, in
contrast, renders a less noisy and smoother occupancy field.
Also, our approach suffers less from “floaters” than ReN-
eRF (Fig. 6-b), further demonstrating the efficacy of our
occlusion regularization.

Training overhead. In Table 4, we include the training time
of different methods under the same setting. Our method
only introduces negligible training overhead (1.02�1.04⇥)
compared to the other approaches (1.62�2.8⇥). Both Diet-
NeRF [11] and RegNeRF [22] render unobserved patches
from novel poses for regularization, which significantly sets
back the training efficiency. DietNeRF requires additional
forward evaluation of a large model (CLIP ViT B/32, 2242,
[27]), and RegNeRF also experiences increased computa-
tion due to the use of a normalizing flow model (this part is
not open-sourced and therefore not available for our exper-
iments). In contrast, FreeNeRF does not require such addi-
tional steps, making it a lightweight and efficient solution
for addressing few-shot neural rendering problems.

4.3. Ablation Study

In this section, we ablate our design choices on the DTU
dataset and the LLFF dataset under the 3-view setting. We

8260

Dataset # views Training time multiplier w.r.t. baseline
NeRF [21] +Ours DietNeRF [11]

Blender 8 1.0⇥ 1.02⇥ 2.8⇥

Dataset # views mipNeRF [2] +Ours †RegNeRF [22]
DTU 3 1.0⇥ 1.04⇥ 1.69⇥
LLFF 3 1.0⇥ 1.04⇥ 1.98⇥

Table 4. Training time comparison. We run experiments under a
fair setting and report the training time multipliers relative to the
baselines. Our FreeNeRF has negligible training overhead com-
pared to baselines (gray), while DietNeRF and RegNeRF do not.
†: w/o. appearance regularization. Note that using appearance
regularization will further increase training budgets.

use a batch size of 1024 for faster training instead of 4096
for the main experiments in Tables 2 and 3.

Frequency curriculum. We investigate the impact of fre-
quency regularization duration T in Figure 7. Our FreeN-
eRF benefits more from a longer curriculum in terms of
PSNR score across two datasets, with the 90%-schedule
being the best. We thus adopt it as our default schedule.
However, we notice a trade-off between PSNR and LPIPS
where a longer frequency regularization duration can result
in higher PSNR but lower LPIPS scores. Fine-tuning the
trained model can address this issue and yield better LPIPS
scores. More discussions are provided in the Appendix.

Occlusion regularization. Table 5-(a) studies the effect of
occlusion regularization. We observe consistent improve-
ments in both datasets when occlusion regularization is in-
cluded, confirming its efficacy. In contrast, the distortion
loss Ldistort in [3] worsens the results. Additionally, we
find the performance of DTU-3 drops significantly if a large
M is chosen since a large portion of real radiance fields
falls in those ranges. The hyper-parameter M can be set per
dataset empirically according to the scene statistics. Fur-
ther, in Table 5-(b), we show that the way our regularization
penalizes points near the camera differs from simply adjust-
ing the near bound. The latter changes the absolute location
of the ray starting point, while the occlusion effect remains

in the starting area regardless of changes to the near bound.

Limitations. Our FreeNeRF has two limitations. First, a
longer frequency curriculum can make the scene smoother
but may decrease LPIPS scores despite achieving compet-
itive PSNR scores. Second, occlusion regularization can
cause over-regularization and incomplete representations of
near-camera objects in the DTU dataset. Per-scene tuning
regularization range can alleviate this issue but we opt not to
use it in this paper. Further discussion on these limitations
can be found in the Appendix. Addressing these limitations
can significantly improve FreeNeRF and we leave them as
future work. Still, we consider FreeNeRF to be a simple yet
intriguing baseline approach that differs from the current
trend of constructing more intricate pipelines.

Figure 7. Effect of frequency regularization duration. We set
the end of frequency regularization as T = btotal iters ⇤ x%c.
FreeNeRF achieves reasonably well performance across a wide
range of curriculum choices. All entries use the occlusion regular-
ization, including “w/o. frequency regularization”.

Settings (bs=1024) DTU-3 LLFF-3
Ours v.s. occlusion regularization range M
w/t. Ldistort [3] 15.14 19.08
w/o. Locc 17.40 19.16
w/o. B&W prior 19.03 –
B&W prior only 19.19 –
M = 5 19.78 19.24
M = 10 19.81 19.43
M = 15 18.57 19.58
M = 20 13.76 19.70
M = 25 11.02 19.54
Ours default (bs=1024) 19.81 19.70
Ours default (bs=4096) 20.20 19.73

(a) Ablation Study on Locc.

Near w/o. Locc w/t. Locc

Ours v.s. tuning near bounds

0.0 17.40 19.09
0.2 17.34 19.39
0.4 17.43 19.61
0.5 17.40 19.81
0.6 17.35 19.11
0.7 16.73 19.11
0.8 15.08 16.77

(b) Locc v.s. near bounds.

Table 5. Effect of occlusion regularization range. (a) We re-
port PSNR scores on the DTU-3 object and LLFF-3 datasets. En-
tries except the last row use a batch size of 1024. “B&W” means
using the predicted black & white color as additional prior (see
“Hyper-parameters” in the “Setup” section). All entries use a
90%-schedule frequency regularization. (b) In the 3-view DTU
ablation setting, we disable/enable Locc and vary the near bound
to study the impact of our occlusion regularization. Our results
show consistent improvement while adjusting the near bound has
little impact. Our default settings are marked in gray.

5. Conclusion
We have presented FreeNeRF, a streamlined approach to

few-shot neural rendering. Our study unfolds the deep rela-
tion between the input frequency and the failure of few-shot
neural rendering. A simple frequency regularizer can dras-
tically address this challenge. FreeNeRF outperforms the
existing state-of-the-art methods on multiple datasets with
minimal overhead. Our results suggest several venues for
future investigation. For example, it is intriguing to apply
FreeNeRF to other problems suffering from high-frequency
noise, such as NeRF in the wild [18], in the dark [20],
and even more challenging images in the wild, such as
those from autonomous driving scenes. In addition, in the
Appendix, we show that the frequency-regularized NeRF
produces smoother normal estimation, which can facilitate
applications that deal with glossy surfaces, as in RefN-
eRF [32]. We hope our work will inspire further research
in few-shot neural rendering and the use of frequency regu-
larization in neural rendering more generally.

8261

References
[1] Anonymous. Neural radiance fields with geometric consis-

tency for few-shot novel view synthesis. In Submitted to The

Eleventh International Conference on Learning Representa-

tions, 2023. under review.
[2] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter

Hedman, Ricardo Martin-Brualla, and Pratul P Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-
ral radiance fields. In Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision, pages 5855–5864,
2021.

[3] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P
Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 5470–5479, 2022.
[4] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang,

Fanbo Xiang, Jingyi Yu, and Hao Su. Mvsnerf: Fast general-
izable radiance field reconstruction from multi-view stereo.
In Proceedings of the IEEE/CVF International Conference

on Computer Vision, pages 14124–14133, 2021.
[5] Julian Chibane, Aayush Bansal, Verica Lazova, and Gerard

Pons-Moll. Stereo radiance fields (srf): Learning view syn-
thesis for sparse views of novel scenes. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 7911–7920, 2021.
[6] Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ra-

manan. Depth-supervised nerf: Fewer views and faster train-
ing for free. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 12882–
12891, 2022.

[7] Yilun Du, Yinan Zhang, Hong-Xing Yu, Joshua B. Tenen-
baum, and Jiajun Wu. Neural radiance flow for 4D
view synthesis and video processing. arXiv preprint

arXiv:2012.09790, 2020.
[8] Thibaud Ehret, Roger Marı́, and Gabriele Facciolo.

Nerf, meet differential geometry! arXiv preprint

arXiv:2206.14938, 2022.
[9] Amir Hertz, Or Perel, Raja Giryes, Olga Sorkine-Hornung,

and Daniel Cohen-Or. Sape: Spatially-adaptive progressive
encoding for neural optimization. Advances in Neural Infor-

mation Processing Systems, 34:8820–8832, 2021.
[10] Ajay Jain, Ben Mildenhall, Jonathan T Barron, Pieter

Abbeel, and Ben Poole. Zero-shot text-guided object genera-
tion with dream fields. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages
867–876, 2022.

[11] Ajay Jain, Matthew Tancik, and Pieter Abbeel. Putting nerf
on a diet: Semantically consistent few-shot view synthesis.
In Proceedings of the IEEE/CVF International Conference

on Computer Vision, pages 5885–5894, 2021.
[12] Rasmus Jensen, Anders Dahl, George Vogiatzis, Engin Tola,

and Henrik Aanæs. Large scale multi-view stereopsis eval-
uation. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 406–413, 2014.

[13] Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitz-
mann. Decomposing nerf for editing via feature field dis-
tillation. arXiv preprint arXiv:2205.15585, 2022.

[14] Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon
Green, Christoph Lassner, Changil Kim, Tanner Schmidt,
Steven Lovegrove, Michael Goesele, and Zhaoyang Lv. Neu-
ral 3d video synthesis, 2021.

[15] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang.
Neural scene flow fields for space-time view synthesis of dy-
namic scenes. https://arxiv.org/abs/2011.13084, 2020.

[16] Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Si-
mon Lucey. Barf: Bundle-adjusting neural radiance fields. In
IEEE International Conference on Computer Vision (ICCV),
2021.

[17] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural vol-
umes: Learning dynamic renderable volumes from images.
arXiv preprint arXiv:1906.07751, 2019.

[18] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi,
Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duck-
worth. Nerf in the wild: Neural radiance fields for uncon-
strained photo collections. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,
pages 7210–7219, 2021.

[19] Ben Mildenhall, Peter Hedman, Ricardo Martin-Brualla,
Pratul P Srinivasan, and Jonathan T Barron. Nerf in the dark:
High dynamic range view synthesis from noisy raw images.
In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 16190–16199, 2022.
[20] Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon,

Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view syn-
thesis with prescriptive sampling guidelines. ACM Transac-

tions on Graphics (TOG), 38(4):1–14, 2019.
[21] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,

Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020.

[22] Michael Niemeyer, Jonathan T Barron, Ben Mildenhall,
Mehdi SM Sajjadi, Andreas Geiger, and Noha Radwan. Reg-
nerf: Regularizing neural radiance fields for view synthesis
from sparse inputs. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages
5480–5490, 2022.

[23] Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien
Bouaziz, Dan B Goldman, Steven M. Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable neural radiance fields.
ICCV, 2021.

[24] Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang,
Qing Shuai, Hujun Bao, and Xiaowei Zhou. Neural body:
Implicit neural representations with structured latent codes
for novel view synthesis of dynamic humans. In CVPR,
2021.

[25] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Milden-
hall. Dreamfusion: Text-to-3d using 2d diffusion. arXiv

preprint arXiv:2209.14988, 2022.

8262

[26] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-NeRF: Neural radiance fields
for dynamic scenes. https://arxiv.org/abs/2011.13961, 2020.

[27] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021.

[28] Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li,
Kwang Moo Yi, and Andrea Tagliasacchi. DeRF: De-
composed radiance fields. https://arxiv.org/abs/2011.12490,
2020.

[29] Barbara Roessle, Jonathan T Barron, Ben Mildenhall,
Pratul P Srinivasan, and Matthias Nießner. Dense depth pri-
ors for neural radiance fields from sparse input views. In
Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 12892–12901, 2022.
[30] Vincent Sitzmann, Julien Martel, Alexander Bergman, David

Lindell, and Gordon Wetzstein. Implicit neural representa-
tions with periodic activation functions. Advances in Neural

Information Processing Systems, 33:7462–7473, 2020.
[31] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara

Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimen-
sional domains. Advances in Neural Information Processing

Systems, 33:7537–7547, 2020.
[32] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler,

Jonathan T Barron, and Pratul P Srinivasan. Ref-nerf: Struc-
tured view-dependent appearance for neural radiance fields.
In 2022 IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 5481–5490. IEEE, 2022.
[33] Yiqun Wang, Ivan Skorokhodov, and Peter Wonka. Hf-neus:

Improved surface reconstruction using high-frequency de-
tails. arXiv preprint arXiv:2206.07850, 2022.

[34] Yi Wei, Shaohui Liu, Yongming Rao, Wang Zhao, Jiwen Lu,
and Jie Zhou. Nerfingmvs: Guided optimization of neural
radiance fields for indoor multi-view stereo. In Proceedings

of the IEEE/CVF International Conference on Computer Vi-

sion, pages 5610–5619, 2021.
[35] Wenqi Xian, Jia-Bin Huang, Johannes Kopf, and Changil

Kim. Space-time neural irradiance fields for free-viewpoint
video. https://arxiv.org/abs/2011.12950, 2020.

[36] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany,
Shiqin Yan, Numair Khan, Federico Tombari, James Tomp-
kin, Vincent Sitzmann, and Srinath Sridhar. Neural fields in
visual computing and beyond. Computer Graphics Forum,
2022.

[37] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelnerf: Neural radiance fields from one or few images.
In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 4578–4587, 2021.
[38] Jason Zhang, Gengshan Yang, Shubham Tulsiani, and Deva

Ramanan. Ners: Neural reflectance surfaces for sparse-view
3d reconstruction in the wild. Advances in Neural Informa-

tion Processing Systems, 34:29835–29847, 2021.

8263

