FreeNeRF: Improving Few-shot Neural Rendering with Free Frequency Regularization

Jiawei Yang
UC, Los Angeles
jiawei118@ucla.edu

Marco Pavone
Nvidia Research, Stanford University
pavone@stanford.edu

Yue Wang
Nvidia Research
yuewang@nvidia.com

Abstract

Novel view synthesis with sparse inputs is a challenging problem for neural radiance fields (NeRF). Recent efforts alleviate this challenge by introducing external supervision, such as pre-trained models and extra depth signals, or by using non-trivial patch-based rendering. In this paper, we present Frequency regularized NeRF (FreeNeRF), a surprisingly simple baseline that outperforms previous methods with minimal modifications to plain NeRF. We analyze the key challenges in few-shot neural rendering and find that frequency plays an important role in NeRF's training. Based on this analysis, we propose two regularization terms: one to regularize the frequency range of NeRF's inputs, and the other to penalize the near-camera density fields. Both techniques are “free lunches” that come at no additional computational cost. We demonstrate that even with just one line of code change, the original NeRF can achieve similar performance to other complicated methods in the few-shot setting. FreeNeRF achieves state-of-the-art performance across diverse datasets, including Blender, DTU, and LLFF. We hope that this simple baseline will motivate a rethinking of the fundamental role of frequency in NeRF's training, under both the low-data regime and beyond. This project is released at FreeNeRF.

1. Introduction

Neural Radiance Field (NeRF) [21] has gained tremendous attention in 3D computer vision and computer graphics due to its ability to render high-fidelity novel views.
However, NeRF is prone to overfitting to training views and struggles with novel view synthesis when only a few inputs are available. We term this view synthesis from sparse inputs problem as a few-shot neural rendering problem.

Existing methods address this challenge using different strategies. Transfer learning methods, e.g., PixelNerf [37] and MVSNeRF [4], pre-train on large-scale curated multi-view datasets and further incorporate per-scene optimization at test time. Depth-supervised methods [6, 29] introduce estimated depth as an external supervisory signal, leading to a complex training pipeline. Patch-based regularization methods impose regularization from different sources on rendered patches, e.g., semantic consistency regularization [11], geometry regularization [8, 22], and appearance regularization [22], all at the cost of computation overhead since an additional, non-trivial number of patches must be rendered during training [8, 11, 22].

In this work, we find that a plain NeRF can work surprisingly well with none of the above strategies in the few-shot setting by adding (approximately) as few as one line of code (see Fig. 1). Concretely, we analyze the common failure modes in training NeRF under a low-data regime. Drawing on this analysis, we propose two regularization terms. One is frequency regularization, which directly regularizes the visible frequency bands of NeRF’s inputs to stabilize the learning process and avoid catastrophic overfitting at the start of training. The other is occlusion regularization, which penalizes the near-camera density fields that cause “floaters,” another failure mode in the few-shot neural rendering problem. Combined, we call our method Frequency regularized NeRF (FreeNeRF), which is “free” in two ways. First, it is dependency-free because it requires neither costly pre-training [4, 11, 22, 37] nor extra supervisory signals [6, 29]. Second, it is overhead-free as it requires no additional training-time rendering for patch-based regularization [8, 11, 22].

We consider FreeNeRF a simple baseline (with minimal modifications to a plain NeRF) in the few-shot neural rendering problem, although it already outperforms existing state-of-the-art methods on multiple datasets, including Blender, DTU, and LLFF, at almost no additional computational cost. Our contributions can be summarized as follows:

- We reveal the link between the failure of few-shot neural rendering and the frequency of positional encoding, which is further verified by an empirical study and addressed by our proposed method. To our knowledge, our method is the first attempt to address few-shot neural rendering from a frequency perspective.
- We identify another common failure pattern in learning NeRF from sparse inputs and alleviate it with a new occlusion regularizer. This regularizer effectively improves performance and generalizes across datasets.
- Combined, we introduce a simple baseline, FreeNeRF, that can be implemented with a few lines of code modification while outperforming previous state-of-the-art methods. Our method is dependency-free and overhead-free, making it a practical and efficient solution to this problem.

We hope the observations and discussions in this paper will motivate people to rethink the fundamental role of frequency in NeRF’s positional encoding.

2. Related Work

Neural fields. Neural fields [36] use deep neural networks to represent 2D images or 3D scenes as continuous functions. The seminal work, Neural Radiance Fields (NeRF) [21], has been widely studied and advanced in a variety of applications [2, 3, 13, 19, 23, 25, 32], including novel view synthesis [18, 21], 3D generation [10, 25], deformation [23, 26, 28], video [7, 14, 15, 24, 35]. Despite tremendous progress, NeRF still requires hundreds of input images to learn high-quality scene representations; it fails to synthesize novel views with a few input views, e.g., 3, 6, and 9 views, limiting its potential applications in the real world.

Few-shot Neural Rendering. Many works have attempted to address the challenging few-shot neural rendering problem by leveraging extra information. For instance, external models can be used to acquire normalization-flow regularization [22], perceptual regularization [38], depth supervision [6, 29, 34], and cross-view semantic consistency [11]. Another thread of works [4, 5, 37] attempts to learn transferable models by training on a large, curated dataset instead of using an external model. Recent works argue that geometry is the most important factor in few-shot neural rendering and propose geometry regularization [1, 8, 22] for better performance. However, these methods require expensive pre-training on tailored multi-view datasets [4, 5, 37] or costly training-time patch rendering [1, 8, 11, 22], introducing significant overhead in methodology, engineering implementation, and training budgets. In this work, we show that a plain NeRF can work surprisingly well with minimal modifications (a few lines of code) by incorporating our frequency regularization and occlusion regularization. Unlike most previous methods, our approach maintains the same computational efficiency as the original NeRF.

Frequency in neural representations. Positional encoding lies at the heart of NeRF’s success [21, 31]. Previous studies [30, 31] have shown that neural networks often struggle to learn high-frequency functions from low-dimensional inputs. Encoding inputs with sinusoidal functions of different frequencies can alleviate this issue. Recent works show the benefits of gradually increasing the input frequency in different applications, such as non-rigid scene deformation [23], bundle adjustment [16], surface reconstruction [33], and fitting functions with a wider frequency band [9]. Our
Neural radiance fields. A neural radiance field (NeRF) [21] uses a multi-layer perceptron (MLP) to represent a scene as a volumetric density field σ and associated RGB values c at each point in the scene. It takes as input a 3D coordinate $x \in \mathbb{R}^3$ and a viewing directional unit vector $d \in S^2$, and outputs the corresponding density and color. In its most basic form, NeRF learns a continuous function $\mathbf{f}_\theta(x, d) = (\sigma, c)$ where θ denotes MLP parameters.

Positional encoding. Directly optimizing NeRF over raw inputs (x, d) often leads to difficulties in synthesizing high-frequency details [21, 31]. To address this issue, recent work has used sinusoidal functions with different frequencies to map the inputs into a higher-dimensional space [21]:

$$\gamma_L(x) = [\sin(x), \cos(x), \ldots, \sin(2^{L-1}x), \cos(2^{L-1}x)],$$

where L is a hyperparameter that controls the maximum encoded frequency and may differ for coordinates x and directional vectors d. A common practice is to concatenate the raw inputs with the frequency-encoded inputs as follows:

$$x' = [x, \gamma_L(x)]$$

This concatenation is applied to both coordinate inputs and view direction inputs.

Rendering. To render a pixel in NeRF, a ray $r(t) = o + td$ is cast from the camera’s origin o along the direction d to pass through the pixel, where t is the distance to the origin. Within the near and far bounds $[t_{\text{near}}, t_{\text{far}}]$ of the cast ray, NeRF computes the color of that ray using the quadrature of K sampled points $t_K = \{t_1, \ldots, t_K\}$:

$$\hat{c}(r; \theta, t_K) = \sum_{k} T_k (1 - \exp(-\sigma_k(t_{k+1} - t_k)))c_k,$$

with

$$T_k = \exp\left(-\sum_{k'<k} \sigma'_{k'}(t_{k'+1} - t_{k'})\right),$$

where $\hat{c}(r; \theta, t_K)$ is the final integrated color. Note that the sampled points t_K are in a near-to-far order, i.e., a point with a smaller index k is closer to the camera’s origin.

3.2. Frequency Regularization

The most common failure mode of few-shot neural rendering is overfitting. NeRF learns 3D scene representations from a set of 2D images without explicit 3D geometry. 3D geometry is implicitly learned by optimizing appearance in its 2D projected views. However, given only a few input views, NeRF is prone to overfitting to these 2D images with small loss while not explaining 3D geometry in a multi-view consistent way. Synthesizing novel views from such models leads to systematic failure. As shown on the left of Figure 1, no NeRF model can successfully recover the scene geometry when synthesizing novel views.

The overfitting issue in few-shot neural rendering is presumably exacerbated by high-frequency inputs. [31] shows that higher-frequency mappings enable faster convergence for high-frequency components. However, the over-fast convergence on high-frequency impedes NeRF from exploring low-frequency information and significantly biases NeRF towards undesired high-frequency artifacts (horns and room examples in Fig. 1). In the few-shot scenario, NeRF is even more sensitive to susceptible noise as there are fewer images to learn coherent geometry. Thus, we hypothesize that high-frequency components are a major cause of the failure modes observed in few-shot neural rendering. We provide empirical evidence below.

We investigate how a plain NeRF performs when inputs are encoded by different numbers of frequency bands. To achieve this, we train mipNeRF [2] using masked (integrated) positional encoding. Specifically, we set $\text{pos_enc}[\text{int}(L \times x%)]=0$, where L denotes the length of frequency encoded coordinates after the positional encoding (Eq. (1)), and x is the visible ratio. We briefly demonstrate our observation here and defer the experiment details to §4.1. Figure 2 shows the results for the DTU dataset under the 3 input-view setting. As anticipated, we observe a significant drop in mipNeRF’s performance as higher-frequency inputs are presented to the model. When 10% of total embedding bits are used, mipNeRF achieves a high PSNR of 17.62, while the plain mipNeRF achieves only 9.01 PSNR on its own (at 100% visible ratio).
difference between these two models is whether masked positional encodings are used. Although removing a significant portion of high-frequency components avoids catastrophic failure at the start of training, it does not result in competitive scene representations, as the rendered images are usually oversmoothed (as seen in Fig. 2 zoom-in patches). Nonetheless, it is noteworthy that in few-shot scenarios, models using low-frequency inputs may produce significantly better representations than those using high-frequency inputs.

Building on this empirical finding, we propose a frequency regularization method. Given a positional encoding of length \(L + 3 \) (Eq. (2)), we use a linearly increasing frequency mask \(\alpha \) to regulate the visible frequency spectrum based on the training time steps, as follows:

\[
\gamma_L^{\prime}(t, T; x) = \gamma_L(x) \odot \alpha(t, T, L), \tag{4}
\]

with

\[
\alpha_i(t, T, L) = \begin{cases}
1 & \text{if } i \leq \frac{t}{T} + 3 \\
\frac{t \cdot L}{T} - \left[\frac{t \cdot L}{T}\right] & \text{if } \frac{t}{T} + 3 < i \leq \frac{t}{T} + 6 \\
0 & \text{if } i > \frac{t}{T} + 6
\end{cases} \tag{5}
\]

where \(\alpha_i(t, T, L) \) denotes the \(i \)-th bit value of \(\alpha(t, T, L) \); \(t \) and \(T \) are the current training iteration and the final iteration of frequency regularization, respectively. Concretely, we start with raw inputs without positional encoding and linearly increase the visible frequency by 3-bit each time as training progresses. This schedule can also be simplified as one line of code, as shown in Figure 1. Our frequency regularization circumvents the unstable and susceptible high-frequency signals at the beginning of training and gradually provides NeRF high-frequency information to avoid oversmoothness.

We note that our frequency regularization shares some similarities with the coarse-to-fine frequency schedules used in other works [16, 23]. Different from theirs, our work focuses on the few-shot neural rendering problem and reveals the catastrophic failure patterns caused by high-frequency inputs and their implication to this problem.

3.3. Occlusion Regularization

Frequency regularization does not solve all problems in few-shot neural rendering. Due to the limited number of training views and the ill-posed nature of the problem, certain characteristic artifacts may still exist in novel views. These failure modes often manifest as “walls” or “floaters” that are located extremely close to the camera, as seen in the bottom of Figure 3. Such artifacts can still be observed even with a sufficient number of training views [3]. To address these issues, [3] proposed a distortion loss. However, our experiments show that this regularization does not help in the few-shot setting and may even exacerbate the issue.

We find most of these failure patterns originate from the least overlapped regions in the training views. Figure 3 shows an example of 3 training views and 2 novel views with “white walls”. We manually annotate the least overlapped regions in the training views for demonstration (a) and (b) in Fig. 3. These regions are difficult to estimate in terms of geometry due to the extremely limited information available (one-shot). Consequently, a NeRF model would interpret these unexplored areas as dense volumetric floaters located near the camera. We suspect that the floaters observed in [3] also come from these least overlapped regions.

As discussed above, the presence of floaters and walls in novel views is caused by the imperfect training views, and thus can be addressed directly at training time without the need for the costly novel-view rendering in [11, 22].

![Figure 3. Illustration of occlusion regularization.](image)

We show 3 training views (solid rectangles) and 2 novel views (dashed rectangles) rendered by a frequency-regularized NeRF. The floaters in the novel views appear to be near-camera dense fields in the training views (dashed circles) so that we can penalize them directly without the need for the costly novel-view rendering in [11, 22].

We define:

\[
L_{occ} = \frac{1}{K} \sum_{k=1}^{K} \sigma_k \cdot m_k, \tag{6}
\]

where \(m_k \) is a binary mask vector that determines whether a point will be penalized, and \(\sigma_k \) denotes the density values of the \(K \) points sampled along the ray in the order of proximity to the origin (near to far). To reduce solid floaters near the camera, we set the values of \(m_k \) up to index \(M \), termed
as regularization range, to 1 and the rest to 0. The occlusion regularization loss is easy to implement and compute.

4. Experiments

4.1. Setups

Datasets & metrics. We evaluate our method on three datasets under few-shot settings: the NeRF Blender Synthetic dataset (Blender) [21], the DTU dataset [12], and the LLFF dataset [20]. For Blender, we follow DietNeRF [11] to train on 8 views and test on 25 test images. For DTU and LLFF, we adhere to RegNeRF’s [22] protocol. On DTU, we use objects’ masks to remove the background when computing metrics, as full-image evaluation is biased towards the background, as reported by [22, 37]. We report PSNR, SSIM, and LPIPS scores as quantitative results. We also report the geometric mean of $\text{MSE} = 10^{-\text{PSNR}/10}$, $\sqrt{1-\text{SSIM}}$, and LPIPS, following [22]. More details on the experimental setup can be found in the appendix.

Implementations. Our FreeNeRF can directly improve NeRF [21] and mipNeRF [2]. To demonstrate this, we use DietNeRF’s codebase\(^1\) for NeRF on the Blender dataset and RegNeRF’s codebase\(^2\) for mipNeRF on the DTU dataset and the LLFF dataset. We disable the proposed components in those papers and implement our two regularization terms on top of their baselines. We make one modification to mipNeRF [2], which is to concatenate positional encodings with the original Euclidean coordinates (Eq. (2)). This is a default step in NeRF but not in mipNeRF, and it helps unify our experiments’ initial visible frequency range. We follow their training schedules for optimization. Please refer to the Appendix for full training recipes.

Hyper-parameters. We set the end iteration of frequency regularization as $T = [90\% \times \text{total_iters}]$ for the 3-view setting and 70% for the 6-view setting and 20% for the 9-view setting. We regularize both coordinates x and view directions d. For \mathcal{L}_{occ}, we use a weight of 0.01 in all experiments and set the regularization range $M = 20$ for LLFF and Blender and $M = 10$ for DTU. For DTU in particular, we find that the “walls” are mostly caused by the white desk and black background, so we use this information to penalize more points in a slightly wider range ($M = 15$) if their colors are black or white.

Comparing methods. Unless otherwise specified, we directly use the results reported in DietNeRF [11] and RegNeRF [22] for comparisons, as our method is implemented using their codebases. We also include our reproduced results for reference.

\(^1\)https://github.com/ajayjain/DietNeRF
\(^2\)https://github.com/google-research/google-research/tree/master/regnerf

<table>
<thead>
<tr>
<th>Method</th>
<th>PSNR ↑</th>
<th>SSIM ↑</th>
<th>LPIPS ↓</th>
</tr>
</thead>
<tbody>
<tr>
<td>NeRF [21]</td>
<td>14.934</td>
<td>0.687</td>
<td>0.318</td>
</tr>
<tr>
<td>NV [17]</td>
<td>17.859</td>
<td>0.741</td>
<td>0.245</td>
</tr>
<tr>
<td>Simplified NeRF [11]</td>
<td>20.092</td>
<td>0.822</td>
<td>0.179</td>
</tr>
<tr>
<td>DietNeRF [11]</td>
<td>23.147</td>
<td>0.866</td>
<td>0.109</td>
</tr>
<tr>
<td>DietNeRF + \mathcal{L}_{MSE} ft 50k</td>
<td>23.591</td>
<td>0.874</td>
<td>0.097</td>
</tr>
<tr>
<td>NeRF (repro.)</td>
<td>13.931</td>
<td>0.689</td>
<td>0.320</td>
</tr>
<tr>
<td>DietNeRF (repro.)</td>
<td>22.503</td>
<td>0.823</td>
<td>0.124</td>
</tr>
<tr>
<td>Ours</td>
<td>24.259</td>
<td>0.883</td>
<td>0.098</td>
</tr>
</tbody>
</table>

Table 1. Quantitative comparison on Blender. “\mathcal{L}_{MSE} ft 50k”: fine-tune for another 50k iterations with \mathcal{L}_{MSE}. The top row section includes results from [11], while the bottom row section shows our reproduced results (repro.). Gray: our baseline. Red, orange, and yellow: the best, second-best, and third-best.

Figure 4. Novel view synthesis examples on Blender. Our results are qualitatively better than DietNeRF’s. DietNeRF renders “imaginary” components that do not exist in the original images.

4.2. Comparison

We compare with state-of-the-art methods in terms of novel view synthesis quality and computation overhead. We show that FreeNeRF outperforms others in synthesis quality while maintaining a much lower cost.

Blender dataset. Table 1 shows the image synthesis metrics on the Blender dataset [21]. Our approach outperforms all other methods in the PSNR and SSIM scores, with a comparable LPIPS score to the best one. The improved DietNeRF with fine-tuning still underperforms ours. Note that our direct baseline is “NeRF (repro.)” as we do not use any techniques from DietNeRF [11]. Figure 4 shows two examples for qualitative comparison (see Fig. 1 for plain NeRF’s results). Interestingly, we observe that DietNeRF implicitly distills semantic information from a pre-trained CLIP model [27] into NeRF, which leads to unrealistic and “imaginary” patches that do not exist in the original scenes, such as “ketchup” in the hotdog and rubber-like track-pads.
Table 2. **Quantitative comparison on DTU.** We present the PSNR and SSIM scores of foreground objects and full images. Our FreeNeRF synthesizes better foreground objects and full images than most of the others. Our direct baseline is mipNeRF \[^2\] (marked in gray). Results in the bottom row section are our reproductions, and others come from \[^{22}\]. “concat.”: inputs concatenation (Eq. (2)). \(^\dagger\) RNeRF: w/o. appearance regularization. The best, second-best, and third-best entries are marked in red, orange, and yellow, respectively.

<table>
<thead>
<tr>
<th></th>
<th>Setting</th>
<th>Object PSNR ↑</th>
<th>Object SSIM ↑</th>
<th>Full-image PSNR ↑</th>
<th>Full-image SSIM ↑</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3-view 6-view 9-view</td>
<td>3-view 6-view 9-view</td>
<td>3-view 6-view 9-view</td>
<td>3-view 6-view 9-view</td>
</tr>
<tr>
<td>SRF [^5]</td>
<td>Trained on DTU</td>
<td>15.32 17.54 18.35</td>
<td>0.671 0.730 0.752</td>
<td>15.84 17.77 18.56</td>
<td>0.532 0.616 0.652</td>
</tr>
<tr>
<td>PixelNeRF [^{37}]</td>
<td></td>
<td>16.82 19.11 20.40</td>
<td>0.695 0.745 0.768</td>
<td>18.74 21.02 22.23</td>
<td>0.618 0.684 0.714</td>
</tr>
<tr>
<td>MVSNeRF [^4]</td>
<td></td>
<td>18.63 20.70 22.40</td>
<td>0.769 0.823 0.853</td>
<td>16.33 18.26 20.32</td>
<td>0.602 0.695 0.735</td>
</tr>
<tr>
<td>SRF ft [^5]</td>
<td>Trained on DTU and Optimized per Scene</td>
<td>15.68 18.87 20.75</td>
<td>0.698 0.757 0.785</td>
<td>16.06 18.69 19.97</td>
<td>0.550 0.657 0.678</td>
</tr>
<tr>
<td>PixelNeRF ft [^{37}]</td>
<td></td>
<td>18.95 20.56 21.83</td>
<td>0.710 0.753 0.781</td>
<td>17.38 21.52 21.67</td>
<td>0.548 0.670 0.680</td>
</tr>
<tr>
<td>MVSNeRF ft [^4]</td>
<td></td>
<td>18.54 20.49 22.22</td>
<td>0.769 0.823 0.853</td>
<td>16.26 18.22 20.32</td>
<td>0.601 0.694 0.736</td>
</tr>
<tr>
<td>mip-NeRF [^2]</td>
<td>Optimized per Scene</td>
<td>8.68 16.54 23.58</td>
<td>0.571 0.741 0.879</td>
<td>7.64 14.33 20.71</td>
<td>0.227 0.568 0.799</td>
</tr>
<tr>
<td>DietNeRF [^{11}]</td>
<td></td>
<td>11.85 20.63 23.83</td>
<td>0.633 0.778 0.823</td>
<td>10.01 18.70 22.16</td>
<td>0.354 0.668 0.740</td>
</tr>
<tr>
<td>RegNeRF [^{22}]</td>
<td></td>
<td>18.89 22.20 24.93</td>
<td>0.745 0.841 0.884</td>
<td>15.33 19.10 22.30</td>
<td>0.621 0.757 0.823</td>
</tr>
<tr>
<td>mip-NeRF concat. (repro.)</td>
<td>Optimized per Scene</td>
<td>9.10 16.84 23.56</td>
<td>0.578 0.754 0.877</td>
<td>7.94 14.15 20.97</td>
<td>0.235 0.560 0.794</td>
</tr>
<tr>
<td>(^\dagger)RegNeRF concat. (repro.)</td>
<td>Optimized per Scene</td>
<td>18.50 22.18 24.88</td>
<td>0.744 0.844 0.880</td>
<td>15.00 19.12 22.41</td>
<td>0.606 0.754 0.826</td>
</tr>
<tr>
<td>Our FreeNeRF</td>
<td></td>
<td>19.92 23.25 25.38</td>
<td>0.787 0.844 0.888</td>
<td>18.02 22.39 24.28</td>
<td>0.680 0.779 0.833</td>
</tr>
</tbody>
</table>

DTU dataset. Table 2 shows the quantitative results on the DTU dataset. Transfer learning-based methods that require expensive pre-training (SRF \[^5\], PixelNeRF \[^{37}\], and MVSNeRF \[^4\]) underperform ours in almost all settings, except the full-image PSNR score under 3-view setting. This may be due to the bias introduced by the white table and black background present in many scenes in the DTU dataset, which can be learned as a prior through pre-training. Compared to per-scene optimization methods (mipNeRF \[^2\], DietNeRF \[^{11}\], and RegNeRF \[^{22}\]), our approach achieves the best results. Figure 5 shows example novel views rendered by RegNeRF and ours. In the Buddha scene, for instance, piece-wise smoothness imposed by RegNeRF’s geometry regularization \[^{22}\] leads to the loss of fine-grained details, such as eyes, fingers, and wrinkles. In contrast, our frequency regularization, which can be seen as an implicit geometry regularization, forces smooth geometry at the beginning (due to the limited frequency spectrum) in the bulldozer. This behavior is highly correlated to feature distillation \[^{13}\] and recent developments in 3D object generation that combine NeRF with large pre-trained vision-language models \[^{10}, 25\]. Although this potentially could be an interesting application, such behavior is undesired in our task and will hamper outputs’ fidelity. In contrast, our method does not require semantics regularization while achieving better performance.

Figure 5. **Qualitative comparison on DTU.** We show novel views rendered by RegNeRF and ours in 3 and 6 input-view settings. For the Buddha example, the piece-wise geometry regularization used by RegNeRF \[^{22}\] hurts the fine-grained geometry, erasing the details of eyes, fingers and wrinkles. RegNeRF’s results are rendered by our reproduced \(^\dagger\) RegNeRF concat. (c.f. Tab. 2).
occlusion regularization. eRF (Fig. 6-a) is perceptually acceptable but has poor depth map quality, indicating its incorrect geometry estimation. FreeNeRF, in contrast, renders a less noisy and smoother occupancy field.

Also, our approach suffers less from “floaters” than ReNeRF, in particular, RegNeRF’s rendered “horns” example (Fig. 6-b). Both DietNeRF [11] and RegNeRF [22] render unobserved patches from novel poses for regularization, which significantly sets back the training efficiency. DietNeRF requires additional forward evaluation of a large model (CLIP ViT B/32, 224⇥224), and RegNeRF also experiences increased computation due to the use of a normalizing flow model (this part is not open-sourced and therefore not available for our experiments). In contrast, FreeNeRF does not require such additional steps, making it a lightweight and efficient solution for addressing few-shot neural rendering problems.

Figure 6. Qualitative comparison on LLFF. RegNeRF [22] fails to estimate the accurate depth though it renders visually satisfactory RGB images (a). It also suffers from near-camera floaters (b). In contrast, our method reconstructs less noisy occupancy fields with fewer floaters. RegNeRF’s results are rendered by our reproduced RegNeRF concat. (repro.) (c.f. Tab. 3).

4.3 Ablation Study

In this section, we ablate our design choices on the DTU dataset and the LLFF dataset under the 3-view setting. We and gradually relaxes the constraint to facilitate the details. In the more challenging scenes (e.g., buildings/bronze statue in Fig. 5), FreeNeRF produces higher-quality results.

LLFF dataset. Table 3 and Figure 6 show quantitative and qualitative results, respectively, on the LLFF dataset. We reproduce mipNeRF [2] and obtain better results. Our FreeNeRF is generally the best. Transfer learning-based methods [4, 5, 37] perform much worse than ours on the LLFF dataset due to the non-trivial domain gap between DTU and LLFF. Compared to RegNeRF [22], our approach predicts more precise geometry and exhibits fewer artifacts. For instance, RegNeRF’s rendered “horns” example (Fig. 6-a) is perceptually acceptable but has poor depth map quality, indicating its incorrect geometry estimation. FreeNeRF, in contrast, renders a less noisy and smoother occupancy field. Also, our approach suffers less from “floaters” than ReNeRF (Fig. 6-b), further demonstrating the efficacy of our occlusion regularization.

Table 3. Quantitative comparison on LLFF. Our FreeNeRF achieves the best results in most metrics under different input-view settings. Our direct baseline is mipNeRF [2] (marked in gray). Results in the bottom row section are our reproductions, and others come from [22]. “concat.”: inputs concatenation (Eq. (2)). ReNeRF: w/o. appearance regularization. The best, second-best, and third-best entries are marked in red, orange, and yellow, respectively.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Training</th>
<th>PSNR ↑</th>
<th>SSIM ↑</th>
<th>LPIPS ↓</th>
<th>Average ↓</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3-view</td>
<td>6-view</td>
<td>9-view</td>
<td>3-view</td>
<td>6-view</td>
</tr>
<tr>
<td>SRF [5]</td>
<td>Trained on DTU</td>
<td>12.34</td>
<td>13.10</td>
<td>13.00</td>
<td>0.250</td>
</tr>
<tr>
<td>PixelNeRF [37]</td>
<td>Trained on DTU</td>
<td>7.93</td>
<td>8.74</td>
<td>8.61</td>
<td>0.272</td>
</tr>
<tr>
<td>MVSNeRF [4]</td>
<td>Trained on DTU and Optimized per Scene</td>
<td>17.25</td>
<td>19.79</td>
<td>20.47</td>
<td>0.557</td>
</tr>
<tr>
<td>SRF ft [5]</td>
<td>Trained on DTU</td>
<td>17.07</td>
<td>16.75</td>
<td>17.39</td>
<td>0.436</td>
</tr>
<tr>
<td>PixelNeRF ft [37]</td>
<td>Trained on DTU and Optimized per Scene</td>
<td>16.17</td>
<td>17.03</td>
<td>18.92</td>
<td>0.438</td>
</tr>
<tr>
<td>MVSNeRF ft [4]</td>
<td>Trained on DTU and Optimized per Scene</td>
<td>17.88</td>
<td>19.99</td>
<td>20.47</td>
<td>0.584</td>
</tr>
<tr>
<td>mip-NeRF [2]</td>
<td>Optimized per Scene</td>
<td>14.62</td>
<td>20.87</td>
<td>24.26</td>
<td>0.351</td>
</tr>
<tr>
<td>DietNeRF [11]</td>
<td>Optimized per Scene</td>
<td>14.94</td>
<td>21.75</td>
<td>24.28</td>
<td>0.370</td>
</tr>
<tr>
<td>RegNeRF [22]</td>
<td>Optimized per Scene</td>
<td>19.08</td>
<td>23.10</td>
<td>24.86</td>
<td>0.587</td>
</tr>
<tr>
<td>mip-NeRF concat. (repro.)</td>
<td>Optimized per Scene</td>
<td>16.11</td>
<td>22.91</td>
<td>24.88</td>
<td>0.401</td>
</tr>
<tr>
<td>†RegNeRF concat. (repro.)</td>
<td>Optimized per Scene</td>
<td>18.84</td>
<td>23.22</td>
<td>24.88</td>
<td>0.573</td>
</tr>
<tr>
<td>Our FreeNeRF</td>
<td>Optimized per Scene</td>
<td>19.63</td>
<td>23.73</td>
<td>25.13</td>
<td>0.612</td>
</tr>
</tbody>
</table>

Training overhead. In Table 4, we include the training time of different methods under the same setting. Our method only introduces negligible training overhead (1.02⇥1.04⇥) compared to the other approaches (1.62⇥2.8⇥). Both DietNeRF [11] and RegNeRF [22] render unobserved patches from novel poses for regularization, which significantly sets back the training efficiency. DietNeRF requires additional forward evaluation of a large model (CLIP ViT B/32, 224⇥224), and RegNeRF also experiences increased computation due to the use of a normalizing flow model (this part is not open-sourced and therefore not available for our experiments). In contrast, FreeNeRF does not require such additional steps, making it a lightweight and efficient solution for addressing few-shot neural rendering problems.

8260
use a batch size of 1024 for faster training instead of 4096 for the main experiments in Tables 2 and 3.

Frequency curriculum. We investigate the impact of frequency regularization duration T in Figure 7. Our FreeNeRF benefits more from a longer curriculum in terms of PSNR score across two datasets, with the 90%-schedule being the best. We thus adopt it as our default schedule. However, we notice a trade-off between PSNR and LPIPS scores. More discussions are provided in the Appendix.

Occlusion regularization. Table 5-(a) studies the effect of occlusion regularization. We observe consistent improvements in both datasets when occlusion regularization is included, confirming its efficacy. In contrast, the distortion loss L_{distort} in [3] worsens the results. Additionally, we find the performance of DTU-3 drops significantly if a large M is chosen since a large portion of near radiance fields falls in those ranges. The hyper-parameter M can be set per dataset empirically according to the scene statistics. Further, in Table 5-(b), we show that the way our regularization penalizes points near the camera differs from simply adjusting the near bound. The latter changes the absolute location of the ray starting point, while the occlusion effect remains in the starting area regardless of changes to the near bound.

Limitations. Our FreeNeRF has two limitations. First, a longer frequency curriculum can make the scene smoother but may decrease LPIPS scores despite achieving competitive PSNR scores. Second, occlusion regularization can cause over-regularization and incomplete representations of near-camera objects in the DTU dataset. Per-scene tuning regularization range can alleviate this issue but we opt not to use it in this paper. Further discussion on these limitations can be found in the Appendix. Addressing these limitations can significantly improve FreeNeRF and we leave them as future work. Still, we consider FreeNeRF to be a simple yet intriguing baseline approach that differs from the current trend of constructing more intricate pipelines.

Table 4. *Training time comparison.* We run experiments under a fair setting and report the training time multipliers relative to the baselines. Our FreeNeRF has negligible training overhead compared to baselines (gray), while DietNeRF and RegNeRF do not.

<table>
<thead>
<tr>
<th>Dataset</th>
<th># views</th>
<th>Training time multiplier w.r.t. baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blender</td>
<td>8</td>
<td>1.0x</td>
</tr>
<tr>
<td>DTU</td>
<td>3</td>
<td>1.0x</td>
</tr>
<tr>
<td>LLFF</td>
<td>3</td>
<td>1.0x</td>
</tr>
</tbody>
</table>

Figure 7. *Effect of frequency regularization duration.* We set the end of frequency regularization as $T = \lfloor \text{total_iters} \times x \% \rfloor$. FreeNeRF achieves reasonably well performance across a wide range of curriculum choices. All entries use the occlusion regularization, including “w/o. frequency regularization”.

Table 5. *Effect of occlusion regularization range.* (a) We report PSNR scores on the DTU-3 object and LLFF-3 datasets. Entries except the last row use a batch size of 1024. “B&K” means using the predicted black & white color as additional prior (see “Hyper-parameters” in the “Setup” section). All entries use a 90%-schedule frequency regularization. (b) In the 3-view DTU ablation setting, we disable/enable L_{occ} and vary the near bound to study the impact of our occlusion regularization. Our results show consistent improvement while adjusting the near bound has little impact. Our default settings are marked in gray.

5. **Conclusion**

We have presented FreeNeRF, a streamlined approach to few-shot neural rendering. Our study unfolds the deep relation between the input frequency and the failure of few-shot neural rendering. A simple frequency regularizer can drastically address this challenge. FreeNeRF outperforms the existing state-of-the-art methods on multiple datasets with minimal overhead. Our results suggest several venues for future investigation. For example, it is intriguing to apply FreeNeRF to other problems suffering from high-frequency noise, such as NeRF in the wild [18], in the dark [20], and even more challenging images in the wild, such as those from autonomous driving scenes. In addition, in the Appendix, we show that the frequency-regularized NeRF produces smoother normal estimation, which can facilitate applications that deal with glossy surfaces, as in RefNeRF [32]. We hope our work will inspire further research in few-shot neural rendering and the use of frequency regularization in neural rendering more generally.
References

