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Abstract

Entangled representation of clothing and identity (ID)-
intrinsic clues are potentially concomitant in conventional
person Re-IDentification (ReID). Nevertheless, eliminating
the negative impact of clothing on ID remains challenging
due to the lack of theory and the difficulty of isolating the
exact implications. In this paper, a causality-based Auto-
Intervention Model, referred to as AIM1, is first proposed to
mitigate clothing bias for robust cloth-changing person ReID
(CC-ReID). Specifically, we analyze the effect of clothing
on the model inference and adopt a dual-branch model to
simulate causal intervention. Progressively, clothing bias
is eliminated automatically with model training. AIM is
encouraged to learn more discriminative ID clues that are
free from clothing bias. Extensive experiments on two stan-
dard CC-ReID datasets demonstrate the superiority of the
proposed AIM over other state-of-the-art methods.

1. Introduction
Short-term person Re-IDentification (ReID) aims to

match a person within limited time and space conditions,

under the assumption that each individual maintains clothing

consistency. Of both traditional and deep learning methods,

the best way to deceive current ReID models is by having

pedestrians alter their clothing. This highlights the inade-

quacy of existing short-term ReID methods [4, 42, 45]. To

solve this issue, Cloth-Changing person ReID (CC-ReID) [2]

has been recently explored, which is increasingly critical in

public security systems for tracking down disguised criminal

suspects. For example, witnesses typically provide descrip-

tive details (e.g., clothing, color, and stature) when describ-

ing suspects, but it is unlikely that criminals will wear the

same clothes upon their reappearance. It follows that cloth-

ing information will disrupt the existing ReID system [40],

*Corresponding author: wangzwhu@whu.edu.cn. 1 Codes will publicly

available at https://github.com/BoomShakaY/AIM-CCReID.
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Figure 1. Illustration of the entangled representation of clothing

and ID and how clothing bias affects model prediction.

which leads to a growing need felt by the research commu-

nity to study CC-ReID task.

As one of the accompanying objects of people, clothing

is an essential factor in social life. There are two possible

responses when people identify others: confusing the per-

ception of identity (ID) or clearly distinguishing different

IDs through immutable visual appearance (faces or soft-

biometrics). The former manifests as the mix-up of IDs due

to the similarity in flexible visual appearance (e.g., cloth-

ing) of people, while the latter is caused by the high-level

semantic (e.g., ID-clues) perceived by humans, transcending

the similarity that comes with clothing. The above reactions

reflect that the relevance of clothing to ID is a double-edged

sword. Traditionally, clothing is a helpful characteristic for

ReID, where people wearing the same clothes are likely

to have the same ID. However, entangled representation of

clothing and ID leads the statistical-based neural networks

to converge towards shallow clothing features that can be

easily distinguished. This statistical association gives the

ReID model a faulty perception that there is a strong rela-

tion between clothing and ID, which would undermine the

ultimate prediction for seeking robust and sensible results.

Recent years have witnessed numerous deep learning at-

tempts to model discriminative clues for person distinguish-

able learning. However, plenty of misleading information

exists in these attempts, as some non-ID areas (e.g., clothing
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and background) may correlate highly with ID. As shown

in Fig. 1(a), conventional ReID methods focus on image

regions with distinct discrimination characteristics [33, 46],

leading to the entanglement of clothing and ID-intrinsic

clues. In CC-ReID, this phenomenon will lead to biased

classification, misleading the ReID model to focus on the

non-ID areas that appear to be ID-related. As shown in

Fig. 1(b), clothing may mislead the classifier by giving high

scores to person images with similar colors or patterns, but

ignoring the faces and details that matter. To this end, if

clothing bias can be captured and removed from the exist-

ing model, it will enhance the contribution of genuinely

ID-relevant features to ID discrimination.

Lacking practical tools to alleviate clothing bias makes it

challenging to correct the misleading attention of the current

ReID model. Even knowing that clothing is a critical influ-

encing factor, it is not apparent how to intervene in clothing

directly in the representation space. Not to mention that

rough negligence on clothing will damage the integrity of

person representation, e.g., the mask-based [12, 16, 41] and

gait-based methods [6, 17] try to obtain cloth-agnostic rep-

resentations by forcibly covering up or neglecting clothing

information. While effective, these straightforward methods

lose a plethora of semantic information and overlook the

factual relation between clothing and real ID.

Causal inference is a recently emerging theory [19]

widely used to extract causality [10] and explore the true

association between two events [25]. Thanks to causal in-

ference, we can revisit the issue of clothing bias from a

causal perspective. The ladder of causality [7] divides cogni-

tive abilities into three levels from low to high: association,

intervention, and counterfactual analysis. Many aforemen-

tioned research works explore CC-ReID from the surface

level of data association, while more advanced cognitive is

not covered. Intervention allows us to incorporate clothing

knowledge into the model prediction and eliminate the cor-

responding effects, in contrast to counterfactual data, which

are difficult to obtain under strict variable control. Therefore,

this paper attempts to start with intervention by examining

the perturbation of clothing on the results and removing such

perturbation from model predictions. Through the causal

intervention, we attempt to remove the effect of clothing

without destroying semantic integrity and further optimizing

the learned discriminative features.

To bring the theoretical intervention into practice, we de-

sign a dual-branch model to capture clothing bias and ID

clues separately and strip clothing inference from ID repre-

sentation learning to simulate the entire intervention process.

The clothing branch represents the model’s perception of

clothing, breaking the false association between clothing and

ID brought by the entangled representation. Subsequently,

while maintaining semantic integrity, this paper achieves bias

elimination and improves the robustness of ID representa-

tion by constantly mitigating the influence of clothing on ID

classification. Further, to improve the accuracy of clothing

bias distillation, as clothing has top-middle-bottom charac-

teristics, this paper adopts pyramid matching strategy [8] to

enhance the partial feature representation of clothing. Ad-

ditionally, we introduce two learning objectives explicitly

designed to encourage clothing mitigation. A knowledge

transfer objective is adopted to strengthen the perception of

clothing bias entangled with ID-intrinsic representation. A

bias elimination objective is utilized to cooperate with the

causal auto-intervention for ID-intrinsic feature extraction.

Our contributions can be summarized threefold:

• We propose a novel causality-based Auto-Intervention

Model (AIM) for Cloth-Changing person Re-

IDentification (CC-ReID). The proposed AIM

guarantees that the learned representation is unaffected

by clothing bias. To the best of our knowledge, AIM is

the first model to introduce causality into CC-ReID.

• A dual-branch model is proposed to simulate the causal

intervention. Clothing bias is gradually stripped from

the entangled ID-clothing representation without de-

stroying semantic integrity, which optimizes the ID-

intrinsic feature learning.

• We comprehensively demonstrate how clothing bias

affects the current ReID model and highlight the signif-

icance of causal inference in CC-ReID. The experimen-

tal results on two CC-ReID datasets, PRCC-ReID [38]

and LTCC-ReID [26], show that AIM outperforms state-

of-the-art methods.

2. Related Work
2.1. Cloth-changing Person ReID

The quest for developing a ReID system that is simul-

taneously robust and discriminative has led to extensive

research on ReID. The mainstream person ReID methods

generally follow the paradigm that clothing is a stationary at-

tribute [39], leading the statistic-based neural network to

form an erroneous correlation between clothing and ID,

known as clothing bias. Although clothing is helpful for

traditional person ReID [46], it poses a significant obstacle

in obtaining unbiased ID-intrinsic features for robust ReID.

To exclude the impact of clothing, many scholars [12, 29,

41] have attempted to use coercion by crude clothing masks

to learn features beyond clothing. Others perform biometric

learning by using shapes [3, 20], contour sketches [38], or

gait [6, 17] to obtain cloth-agnostic representations. Specifi-

cally, Hong et al. [12] attempt to obtain the coarse ID mask

with structure-related details, incorporating ID-relevant in-

formation for discriminative structural feature extraction.

Jin et al. [17] use gait to capture biometric motions and con-

centrate on dynamic motion clues. Despite the remarkable

progress these methods have made, they usually suffer from
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Figure 2. Structure of the proposed AIM. It consists of two branches, clothing branch (Orange) and ID branch (Green), which are training

simultaneously. Such structure is to simulate causal intervention and distills clothing bias from the entangled representation automatically.

The causal intervention is represented on the right. The XC stands for the intervention on X , letting X = c. ZX,C and ZC represent the

feature of the entangled and the bias representation, respectively. YZ,X,C and YZ,C are the corresponding prediction.

estimation errors by overlooking the factual relationship

between clothing and ID. In contrast, AIM utilizes causal

auto-intervention to eliminate clothing bias and save the

potential semantics.

2.2. Causality in Computer Vision

Causality helps to provide better learning and explain-

able models, within the broader context of computer vision,

there is growing interest in causal discovery [32], causality

distilling [14,50], incorporating causality within scene under-

standing downstream tasks [24, 27], stable learning [21, 43],

disentanglement learning [36, 37], and debiasing [5, 22].

Causality models are designed to identify and analyze

causal relationships among data, while conventional mod-

els focus on association. Theoretically, causal relationships

are constructed on a deeper understanding of data, a higher

dimensional abstraction of data relationships. Although ran-

domized controlled experiments are a crucial criterion for

establishing causal inference, controlling the specifics of

feature extraction is challenging, making such experiments

impractical. As a consequence, numerous approaches have

surfaced to distill causality from the existing observational

data. Recently, Tang et al. [31] alleviate context bias based

on total direct effect (TDE) in causal inference for unbi-

ased scene graph generation. CAL [27] leverages random

attention to formulate counterfactual causality for visual

categorization. CF-VQA [24] analyses the causal effect of

questions on answers in visual question answering and miti-

gates language bias by subtracting the direct language effect

from the total causal effect.

However, to our knowledge, no one has applied causality

to CC-ReID. Enlightened by previous excellent works, we

introduce causality into CC-ReID to separate the clothing

bias and the ID-intrinsic clues. By utilizing causal auto-

intervention, the clothing bias can be reasonably mitigated

without compromising the integrity of the original semantics.

3. Proposed Method
3.1. CC-ReID form Causal View

The proposed AIM is trying to automatically eliminate

clothing bias through causal intervention without destroy-

ing the semantic integrity within images. Fig. 2 shows the

framework of AIM. Given a batch of person images, cloth-

ing knowledge is extracted with the assistance of pyramid

matching strategy, while the ID branch is the ReID model for

ID-intrinsic feature learning. With the knowledge transfer in

training process, the clothing branch is gradually strength-

ened to perceive the clothing bias entangled with the ID

representation. Subsequently, causal intervention is con-

ducted by a simple subtraction operation between two ID

classifiers to remove the effects of bias indirectly, which does

not destroy semantic integrity. Finally, under the constraint

of causality, the ID branch learns features unrelated to cloth-

ing as training continues, focusing the model’s attention on

ID-intrinsic features, without external cost.

Causal Analysis. Discovering causal relations from head-

less randomized controlled trials typically involves inter-

ventions [22] on data. Due to the severe entanglement of

numerous influencing factors with the original data, it is ei-

ther difficult or impossible to distill specific factors solely in

the observational representation space. Causal theory sheds

light on distilling specific effects without knowing all influ-

encing factors, attributed to do-operation [7]. The do(X)
denotes the do-operation on variable X , also known as mak-

ing causal intervention upon X . Performing do(X) allows

us to specify the exact value of X and isolate its cause.

Before further analysis, we first construct a CC-ReID

based causal graph as the theoretical basis, as shown in

Fig. 3(a). A causal graph is a directed acyclic graph showing

how variables interact through causal paths, which provides

a sketch of the causal relations behind the data. We begin

with a brief description of the rationale behind the nodes and
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paths to further elaborate on how the existing ReID models

are misled by clothing bias.

Two nodes connected by a directed edge in a causal

graph indicate that there are causalities between them, e.g.,
(X→Y ) stands for Y is caused by X . In the causal graph

of CC-ReID, we denote X as the ID-intrinsic clues that only

related to person; Y as the ID prediction by the ReID model,

whose expectation value is equivalent to the ground truth; Z
represents the feature produced by ReID model; C is term

as the entangled knowledge that affect X . Many potential

elements are responsible for the entangled knowledge, where

clothing, as part of a person’s intuitive understanding, has

a greater impact on ReID than others. The concomitant of

clothing to people makes it closely entangled with intrinsic

ID clues, which is the main concern of this paper.

(C,X)→Z→Y shows the complete calculation process,

which can be divided into two paths. The first is ideal path

X→Z→Y , representing the ideal CC-ReID is performed

through the feature of factual related to ID. Z→Y denotes

that the extracted feature determines the final person recogni-

tion. Z appears as a mediator, which is inevitable for existing

deep learning models. The second path is C→X→Z→Y ,

where C→X is the entangled representation contributing to

the faulty association between clothing and ID.

Additionally, the dashed arrow means there exists statisti-

cal dependence. As in C→Y and X→Y , neither ID clues

nor clothing bias of the person has a direct impact on the

prediction results of the deep learning model.

Causal Intervention. Clothing bias stems from the entan-

gled knowledge intertwined with ID-intrinsic clues, which

can be challenging to discern and distinguish accurately.

Causal intervention provides an opportunity to incorporate

clothing knowledge into the model’s prediction through back-

door adjustment without destroying semantic integrity:

P (Y |do (X)) =
∑
C

P (Y |X,C = c)P (C = c) , (1)

where do(X) is do-calculate, which is used for cutting the ef-

fect of C→X . Specifically, through do(X), we can separate

the effect of clothing bias and ID-intrinsic clues. However,

P (C = c) in the conventional backdoor adjustment needs to

be aware of the specific impact of all clothing that appears,

which remains difficult to implement.

Fortunately, TDE serves as a way to remove specific

influences in causal inference [31], aligns with our goal,

and provides guidance for the construction of AIM. For the

model to separate the entangled representation and make

predictions from the ID-intrinsic feature, an intuitive idea

is to consistently eliminate the influence of clothing. To

this end, given the observed outcome Yx,c(z) and the bias-

specific prediction Yc(z), TDE can be formulated as:

TDE = Yx,c (z)− Yc (z) , (2)

where the first term is from the regular prediction and the

second is from the intervention by P (Y |X = c)P (C = c).
Letting the clothing bias as the main effect, through a

simple subtraction, we are able to remove the influence of the

biased effect C→Z from the direct effect of X→Z. Finally,

the final prediction Y can be more robust by revealing the

true relationship between unbiased feature Z and X .

3.2. Model Construction

Following the TDE in causal theory, we build AIM, as

shown in Fig. 2, which consists of two branches. The ID

branch is to simulate Yx,c(z) to obtain the observed ID fea-

ture. The clothing branch is the realization of Yc(z). Further,

the challenge lies in distilling clothing bias from the obser-

vation features. As preparation, we combine the samples’

ID and the suit category as a separate clothing label for each

suit, which denotes YC . The number of suits of all samples

is summarised as NC . Please note that this is a rough catego-

rization strategy, and pedestrians are not necessarily sharing

the same clothing label even if they wear similar clothes.

In the ID branch, the biased ID feature can be obtained

through the ID encoder FID = E(xi) by minimizing the

identification loss LID as:

LID = −
N∑
i=1

yi log
(
pID

(
yi|xi

))
, (3)

where pID(y
i|xi) is the probability of the i-th ID from the

ID classifier δID for image xi.

In the clothing branch, two objectives are the basis of its

design. Firstly, clothing information needs to be precisely

extracted. Secondly, knowledge transfer learning from the

ID branch is also required to understand how clothing bias

affects the ID branch.

For the first purpose, we concentrate on the intrinsic top-

middle-bottom characteristics of clothing (i.e., shirts, pants,

and shoes) and adopt pyramid matching strategy [8] to en-

hance the partial feature representation of clothing. Specifi-

cally, as shown in Fig. 3(b), pyramid features are extracted

by dividing the deep features into different numbers of par-

tial feature blocks. By incorporating feature blocks with

1475



diverse scales, the model can effectively capture both global

and local information at varying spatial scales, resulting in

more precise sensing of clothing details. The final cloth-

ing feature can be obtained from the clothing encoder with

pyramid matching strategy as FC = PM(EC(x
i)).

Then, we adopt a cloth classifier δC trained by cloth clas-

sification loss LC to leverage the ground-truth clothing la-

bels while maintaining clothing information in feature space,

which can be formulated as:

LC = −
NC∑
i=1

yiC log
(
pC

(
yiC |xi

))
, (4)

where pC(y
i
C |xi) is the probability of the i-th clothing, yiC

is the corresponding clothing label.

For the second purpose, to enable FC to perceive clothing

bias in FID, we adopt Kullback Leibler (KL) Divergence as

in mutual learning [44] to fit the distribution of clothing bias

entangled with ID representation. To this end, we utilize an

additional classifier δA trained by cloth classification loss in

the ID branch. The clothing inference is distilled by δA and

then transferred to the clothing branch for knowledge migra-

tion. The KL distance DKL from FC to FID is computed as:

p̂C = exp (δC (FC)) , p̂ID = exp (δA (FID)) , (5)

DKL (p̂C‖p̂ID) =
M∑

m=1

p̂m
C log

p̂m
C

p̂m
ID

, (6)

where M denotes the number of samples in a mini-batch. To

be noticed, due to the asymmetry of Kullback–Leibler (KL)

Divergence, we compute DKL(p̂ID‖p̂C) as well. The total

KL Divergence can be formulated as:

LKL = DKL (p̂C‖p̂ID) +DKL (p̂ID‖p̂C) . (7)

With the above preparations, to transfer TDE from theory

to reality, (2) can be transferred into a causality loss:

LCAL = −
N∑
i=1

yi log
(
δID (FID)− δ

′
ID (FC ⊗ FID)

)
, (8)

where δ
′
ID is the ID-Cloth classifier sharing weight with δID.

FC⊗FID stands for the bilinear pooling to fuse both features.

As bias and ID features are entangled, the model pays simi-

lar attention to both features, while clothing branch focuses

only on the distillation of bias. Fusing both features can

enhance the expression of same-located bias and suppress

the attention on ID to achieve accurate intervention. It also

promotes separating both features, whose effects on feature

variation can be seen in ablation studies in Sec. 4.5. We

perform P (Y |X = c)P (C = c) as making clothing bias

the source of ID prediction to remove it in the latent space

without destroying semantic integrity. The right of Fig. 2

illustrates the intervention in graph view and the variation

of the feature heatmap at each step. The green and orange

arrows denote the normal and the biased routes, respectively.

In summary, the clothing bias learned through model infer-

ence and knowledge transfer is automatically eliminated by

causal constraints through training, resulting in unbiased ID

representations for robust ReID.

3.3. Objective Function

In clothing branch, clothing representation is trained by

minimizing LC . The ReID model of ID branch is trained

by minimizing LID. LKL is minimized to perceive clothing

bias in ReID training. The causal intervention of eliminating

clothing bias is produced by minimizing LCAL The total

objective function is a weighted sum of all the above losses:

LTotal = LC + LID + λCALLCAL + λKLLKL, (9)

where λCAL is the weight of causal auto-intervention loss

to strengthen the effect of bias elimination, and λKL is used

as the weight to control the transfer intensity of clothing

knowledge. A detailed analysis of the hyper-parameters

selection of λ can be referred to Sec. 4.3. The weights of

other loss terms are basic terms [9] and set as 1. We fix the

above weights during the training process in all experiments.

Both branches are trained simultaneously, while only ID

branch is employed for testing.

4. Experimental Results
4.1. Datasets and Metrics

We evaluate AIM on two standard cloth-changing

datasets, PRCC-ReID [38] and LTCC-ReID [26]. PRCC-

ReID [38] consists of 221 IDs with three camera views, in-

cluding 33,698 images. Each person wears the same clothes

in camera A and camera B, and different clothes in camera

A and camera C. LTCC-ReID [26] is a long-term person

ReID dataset with frequent changes in clothing and multiple

environmental changes. It is captured indoors with 12 cam-

era views, containing 152 IDs and 478 outfits with 17,119

labeled images. Additionally, we follow the previous stud-

ies [9, 12] and leverage rank-K (R@K) and mean average

precision (mAP) for evaluation.

4.2. Implementation Details

We conduct experiments on both cloth-changing and stan-

dard settings. The default settings of datasets [26, 38] with

multi-shot matching strategy are employed for training and

evaluation. In standard setting, images with the same ID and

camera view in the testing set are discarded when evaluating.

In contrast, in cloth-changing setting, images with the same

ID, camera view, and clothing are discarded during testing

to evaluate the model performance on unseen clothing.
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Table 1. Comparison of R@K (%) and mAP (%) performance with the state-of-the-arts on PRCC-ReID and LTCC-ReID dataset. “†”

denotes the methods that are designed for CC-ReID. “‡” indicates the reproduced results. “*” represent the single-shot result. Bold and

underline numbers are the best and second-best results, same as the following. Type “RGB” means only RGB modality is utilized.

Method Venue Size
Type

PRCC-ReID LTCC-ReID

Standard Cloth-Changing Standard Cloth-Changing

RGB Hybrid R@1 mAP R@1 mAP R@1 mAP R@1 mAP

PCB [30] ECCV 18 384×192 � - 99.8 97.0 41.8 38.7 65.1 30.6 23.5 10.0

OSNet [48] ICCV 19 384×192 � - - - - - 67.9 32.1 23.9 10.8

HPM [8] AAAI 19 384×128 � - 99.4 96.9 40.4 37.2 - - - -

IANet [13] CVPR 19 384×192 � - 99.4 98.3 46.3 46.9 63.7 31.0 25.0 12.6

ISP [49] ECCV 20 256×128 � - 92.8 - 36.6 - 66.3 29.6 27.8 11.9

3DSL [3] † CVPR 21 256×128 - +Shape - - 51.3 - - - 31.2 14.8

FSAM [12] † CVPR 21 256×128 - +Mask 98.8 - 54.5* - 73.2 35.4 38.5 16.2

GI-ReID [17] † CVPR 22 256×128 - +Gait 86.0 - 33.3 - 63.2 29.4 23.7 10.4

UCAD [35] † IJCAI 22 384×192 - +Mask 96.5 - 45.3 - 74.4 34.8 32.5 15.1

ViT-VIBE [1] † WACV 22 - - +Shape 99.7 - 47.0 - 71.4 35.8 - -

IRANet [28] † IVC 22 384×128 - +Pose 99.7 97.8 54.9 53.0 - - - -

AFD-Net [34] † IJCAI 21 256×128 � - 95.7 - 42.8 - - - - -

RCSANet [15] † ICCV 21 336×336 � - 99.6 96.6 48.6 50.2 - - - -

CAL [9] (Baseline) ‡ CVPR 22 256×128 � - 100.0 99.7 53.4 53.1 74.4 39.0 34.4 16.0

CAL [9] (Baseline) ‡ CVPR 22 384×192 � - 100.0 99.8 54.4 54.4 73.4 39.4 38.0 17.2

AIM (Ours) 256×128 � - 100.0 99.9 54.7 55.0 76.1 39.1 38.3 17.0

AIM (Ours) 384×192 � - 100.0 99.9 57.9 58.3 76.3 41.1 40.6 19.1

(a) Performance on PRCC-ReID (b) Performance on LTCC-ReID

Rise

Rise

Decline

Decline

RiseDecline

DeclineRise

Decline

Figure 4. R@1 accuracy for different hyper-parameters on two

datasets. Different colors indicate different loss terms.

Following CAL [9], ResNet50 [11] pre-trained on Im-

ageNet is involved as the encoder of AIM, where the last

two pooling layer and fully connected layer are removed.

Following the top-middle-bottom characteristic of clothing,

we adopt the maximum split number of N = 4 in the

pyramid matching strategy. Following [26], in the train-

ing phase, the input images are regularized as 384×192 with

random horizontal flipping, random cropping, and random

erasing [47]. We adopt Adam [18] optimizer for the training

of both branches. The learning rate is initialized to 3.5e−4
and divided by 10 after every 20 epochs, totaling 80 epochs.

LCAL is used for training after the 25th epoch.

4.3. Parameter Analysis

The hyper-parameters of AIM including λCAL and λKL

in (9). These two parameters control the intensity of causal

auto-intervention and knowledge transferring. Inspired by

the Gibbs sampling strategy, we first fix the initial value

of λCAL to 1 and determine λKL by iterative experiments.

Then, the λKL is fixed and reversely determines the value of

the λCAL by the same iterative experiments. The results are

presented in Fig. 4. The results on two datasets demonstrate

that when λCAL is fixed, an increase of λKL does not improve

accuracy. When λKL is fixed, an increase of λCAL leads to

an increase and then a decrease in accuracy. Finally, we

leverage the value of (0.1, 0.01) and (1, 1) for (λCAL, λKL)

on PRCC-ReID and LTCC-ReID, respectively. The results

show that λCAL, as a proxy for the ability of bias elimination,

prefers a medium value, while λKL depends on different data

environments and is therefore chosen accordingly.

4.4. Comparison with State-of-the-art Methods

We conduct comparative experiments with conventional

short-term ReID and novel CC-ReID state-of-the-art meth-

ods on two standard CC-ReID datasets. Since CC-ReID is in

its infancy, most methods are hybrids, consisting of multiple

modalities, e.g., sketch, keypoint, pose, mask, and gait. In

contrast, only a few methods, including AIM, make their

efforts to explore discriminative features from pure RGB

modality. As shown in Table 1, the results of AIM show a

significant improvement over hybrid and RGB state-of-the-

art methods by causal auto-intervention.

Specifically, we compare AIM with 5 conventional

methods in short-term ReID and 8 methods explicitly de-

signed for CC-ReID. For PRCC-ReID, in the standard set-

ting, AIM achieves the same metrics as the baseline [9]

method and maintains a high level; In the cloth-changing

setting, AIM surpasses the baseline with 3.5%/3.9% of

R@1/mAP, and it also outperforms the second-best method

IRANet [28], which leverages keypoint as external knowl-

edge, by 3.0%/5.3% of R@1/mAP. The result demonstrates

that AIM works well compared to existing CC-ReID meth-
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Table 2. Ablation studies of each component of AIM in cloth-

changing setting on PRCC-ReID and LTCC-ReID.

Basic Causality PRCC-ReID LTCC-ReID

B/L Debias ⊗ KL R@1 mAP R@1 mAP

� � � � 54.4 54.4 38.0 17.2� � � � 55.1 56.2 39.3 17.9� � � � 56.1 56.4 38.0 18.2� � � � 55.2 56.4 40.1 18.0� � � � 57.9 58.3 40.6 19.1

ods with unbiased ID-intrinsic feature learning. For LTCC-

ReID, AIM improves by 2.9%/2.6% of R@1 and 1.7%/1.9%

of mAP to the baseline method in two settings. The second-

best method on LTCC-ReID is FSAM [12], which leverages

fine-grained mask and multi-branch learning strategy for

appearance and structure features. Compared to it, we attain

3.1%/2.1% of R@1 and 5.7%/2.9% of mAP in two settings.

The results show that even under complex scenarios (resolu-

tion, illumination, viewpoint, et al.), AIM can still capture

the existing discriminative features rather than being mis-

led by the noticeable clothing bias. We also compare the

conventional ReID methods (rows 1-5) and find that AIM

significantly outperforms them. This is because capturing ID-

intrinsic information becomes challenging under complex

conditions, which increases the probability of the entangled

representation misleading the conventional model.

4.5. Ablation Studies

Component Analysis. To verify the validity of the AIM

model and each component, we perform ablation studies in

Table 2. Specifically, there are two basic components, “B/L”

is for baseline, and “Debias” is for the pure dual-branched

causal intervention structure without other components. “⊗”

stands for the fusion operation in (8). “KL” denotes the

knowledge transfer process, specified as the KL Divergence

loss in (7). The solid black dot indicates that the correspond-

ing module is being used for training. By comparing rows

1-2, we observe that the causal auto-intervention has a certain

effect but is still unsatisfactory. By comparing rows 2 with

3-4, the results indicate the effectiveness of feature fusion

and clothing knowledge migration. Each component en-

hances the ability to distill clothing bias from the entangled

representation. The last row demonstrates that AIM with

all components gives the best performance. These results

indicate that by auto-intervention and clothing bias distilla-

tion, the unbiased ID-intrinsic representation is exploited for

better identification, and each component contributes equally

to the final result.

Influence of Pyramid Matching. We evaluate the effect

of adding pyramid matching (PM) strategy to the backbone

of each branch. Table 3 shows the performance changes on

two datasets. The results show that either adding PM to the

Table 3. Ablation studies of the backbone of each branch of AIM

in cloth-changing setting on PRCC-ReID and LTCC-ReID.

Baseline Debias PRCC-ReID LTCC-ReID

Res PM Res PM R@1 mAP R@1 mAP

� - - - 54.4 54.4 38.0 17.2� � � � 55.8 56.9 39.3 18.1� � � � 57.1 57.6 37.0 16.8� � � � 56.2 56.6 35.7 16.7� � � � 57.9 58.3 40.6 19.1

B/L +C +C+ +C+ +KL

Heatmap of ID-branchProbe Heatmap of Clothing-branch

B/L +C +C+ +C+ +KL

N\A

N\A

B/L +C +C+ +C+ +KL B/L +C +C+ +C+ +KL

ID:A
Cloth: A

ID:A
Cloth: B

Figure 5. Visualization of the ID feature and the clothing feature.

ID branch (rows 3 & 4) or the clothing branch (rows 3 &

5) can improve the ReID accuracy. While, the combination

of ResNet (R) + PM, which only adds PM for the clothing

branch, gives the best results. A possible reason is that the

model with PM has better clothing sensitivity through the

top-middle-bottom structures, which increases the partial

representation. For ID branch, although more detailed in-

formation is extracted, it somehow exacerbates the clothing

bias, which violates the purpose to optimize ID-intrinsic

representation for robust ReID.

4.6. Qualitative Results

Analysis of Robust Representation. Fig. 5 shows how

the heatmap of the ID and the clothing change as each com-

ponent is added. The details of notations can be referred to

Sec. 4.5. More components indicate more accurate clothing

bias distillation and more robust ID-intrinsic representation

learning. The comparison from left to right clearly shows the

variation of feature attention areas. For the same person with

cloth changing, the ID features of the baseline [9] method

are misled by clothing bias, which has faulty attention on the

wearings. While AIM successfully mitigates the impact of

clothing bias, redirects the model’s attention to the intrinsic

areas (e.g., head) and weakens for regions of the body that

are not associated with the ID (e.g., bag, shoes, and shoul-

der). Through continuous refinement of the clothing bias

distillation, the clothing features become more concentrated

on areas that affect the learning of ID-intrinsic information.

Clothing Bias Elimination. As mentioned, the entangled

representation of clothing and ID-intrinsic clues is an obsta-

cle to the existing CC-ReID methods. The solution to this
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(a) Retrieval of dataset images (b) Retrieval of real world same-cloth images

Figure 6. Retrieval results of dataset images and real-world images.

The green bar at the bottom represents the correct matching, while

the red bar is the opposite.

Probe Clothing
Heatmap Rank@5 Retrieved Images 

(a) Similar appearance (b) Similar pattern 

Probe Clothing
Heatmap Rank@5 Retrieved Images 

Figure 7. Visualization of the clothing heatmap and top-5 retrieval

results by feature of clothing branch in AIM.

problem emphasizes eliminating the influence of clothing

and focusing on the intrinsic properties of people. To no-

tice the difference between the baseline [9] and ours and

further demonstrate the ability of AIM to eliminate clothing

bias, Fig. 6 illustrates the results of the retrieval ranks at

the laboratory and real-world level. Five candidate gallery

images with the highest similarity to the probe image are

displayed. The results in Fig. 6(a) demonstrate that simi-

lar clothing patterns or colors mislead the baseline method,

while AIM captures ID information and yields the correct

retrieval results, despite the dramatic shift in dressing style.

As there are no samples for different people wearing the

same cloth, we collect samples in DeepFashion [23] for eval-

uation, where all people wear the same kind of white dress.

Fig. 6(b) demonstrates that AIM performs well even with

interference of identical clothing. The above results reveal

that the proposed AIM is more robust to clothing bias and

accurately captures the correct candidates.

Clothing Knowledge Distillation. Additionally, to verify

that the clothing branch indeed distills the knowledge of

clothing and learns the representation of clothing bias, we

also visualize the feature of the clothing branch and use

such features as probes to produce retrieval in the database.

Note that all clothing in the gallery is not identical to the

probe. The heatmap of clothing and the top 5 images with

the highest similarity scores are displayed. Fig. 7(a) shows

the similarity of the striped plaid shirt, while Fig. 7(b) shows

the similarity of the clothing with similar color style and

logo on the chest. The results demonstrate that the clothing

branch of AIM captures the clothing knowledge as expected.

Features Distribution Analysis. Moreover, to evaluate

the methodology of AIM from another dimension, Fig. 8

visualizes the feature distributions of 10 randomly selected

(a) t-SNE of Baseline (b) t-SNE of AIM

assembledscattered

Figure 8. Visualization of 10 classes randomly selected from PRCC-

ReID. Our AIM separates different classes while effectively reduc-

ing the inter-class variance.

categories on PRCC-ReID, which compares the feature dis-

tributions in the latent space of the baseline [9] and AIM.

The results show that AIM can reduce the intra-class distance

and make the feature distribution more aggregated (as shown

in the red dashed circle). The blue dashed circles in Fig. 8(a)

enclose three groups of yellow points with very scattered

distances, which are better clustered together in Fig. 8(b).

5. Conclusion
Clothing is an essential aspect of human identity and is

crucial in general person ReID. However, it also poses a

significant challenge in Cloth-Changing person ReID (CC-

ReID) due to its confounding nature. In this paper, we

analyze the effect of clothing on model prediction and adopt

causal intervention to eliminate this effect automatically.

Specifically, a causality-based Auto-Intervention Model

(AIM) is first proposed to mitigate clothing bias for robust

CC-ReID. A dual-branch structure of clothing and ID is

utilized to simulate the causal intervention process and pe-

nalized by a causality loss. AIM is eventually encouraged to

learn ID-intrinsic clues free from clothing bias. Furthermore,

experimental results on two CC-ReID datasets demonstrate

the effectiveness and the ability of clothing bias distillation

of AIM, which achieves state-of-the-art performance.

Although causal theory provides sufficient guidance for

AIM, limitations remain. In the entangled representation,

clothing is merely one of several intuitive factors, and many

other confounding factors are worth investigating. The de-

sign of the clothing branch requires the perception of cloth-

ing as a prerequisite, which is limited by clothing annotations

and sample numbers. Besides, as bias is widely present in

ReID tasks, a stronger backbone might lead to greater boosts.
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