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Abstract

Instead of searching the entire network directly, current
NAS approaches increasingly search for multiple relatively
small cells to reduce search costs. A major challenge is
to jointly measure the similarity of cell micro-architectures
and the difference in macro-architectures between different
cell-based networks. Recently, optimal transport (OT) has
been successfully applied to NAS as it can capture the op-
erational and structural similarity across various networks.
However, existing OT-based NAS methods either ignore the
cell similarity or focus solely on searching for a single cell
architecture. To address these issues, we propose a hier-
archical optimal transport metric called HOTNN for mea-
suring the similarity of different networks. In HOTNN, the
cell-level similarity computes the OT distance between cells
in various networks by considering the similarity of each
node and the differences in the information flow costs be-
tween node pairs within each cell in terms of operational
and structural information. The network-level similarity
calculates OT distance between networks by considering
both the cell-level similarity and the variation in the global
position of each cell within their respective networks. We
then explore HOTNN in a Bayesian optimization frame-
work called HOTNAS, and demonstrate its efficacy in di-
verse tasks. Extensive experiments demonstrate that HOT-
NAS can discover network architectures with better perfor-
mance in multiple modular cell-based search spaces.

1. Introduction

Neural Architecture Search (NAS) [22, 59, 66, 68] has
received widespread attention as it can automatically dis-
cover the well-performing network architectures for a given
task. Current NAS methods [12, 13, 36, 66, 70] tend to
search multiple relatively small cells instead of the entire
network directly, which can significantly reduce the search
cost and enhance flexibility. However, most previous cell-
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based NAS methods [36,60,70] focus only on the cell-level
architecture search and ignore the network-level search.
They usually repeatedly stack one or more identical cells
to construct the entire network, which restricts network’s
diversity and efficiency [55]. To overcome these shortcom-
ings, certain studies [10, 62] have proposed a modular cell-
based search space, in which each cell of the whole network
can have a different architecture. They have demonstrated
that the generated network using the modular cell-based
search space achieves superior performance while maintain-
ing a good balance of flexibility and efficiency [55]. In
this study, we mainly focus on searching networks in this
general modular cell-based search space, though our pro-
posed method can also be extended to more complex net-
work search space.

Early NAS methods like random search [33], reinforce-
ment learning [3, 69], and evolutionary search [37] require
collecting a large number of neural networks, which is
costly since training a deep neural network can take sev-
eral hours or even days [1,39]. One-shot methods [0,36,42]
reduce the search cost by training a supernet and sampling
subnetworks from it, where the weights of all subnetworks
are inherited from the trained supernet. Nonetheless, train-
ing the complex supernet is a challenging task, and the pre-
dictive performance of subnetworks is not always indicative
of their fully-trained performance [9]. Bayesian optimiza-
tion methods [7, 18,23,44,49,59] offer a competitive alter-
native to solve the NAS problem in a more efficient manner.
It relies on constructing a probabilistic surrogate model [4]
that learns the complex relationship between the network
architecture and its predictive performance. An acquisition
function [20, 24, 30, 53] determines the next promising ar-
chitecture based on the prediction of the surrogate model,
which fully balance the exploration and exploitation of the
whole search space. Through iteratively updating the surro-
gate model, Bayesian optimization methods can efficiently
discover high-performing network architectures with a lim-
ited number of samples. In the NAS context, Bayesian
optimization methods assume similar networks should ex-
hibit similar performance [25]. Hence, a major challenge
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Figure 1. Example of a modular cell-based network WITH stacked
cells, each having a different architecture.

of Bayesian optimization for NAS is accurately quantifying
the similarity between different networks.

Measuring the similarity between different networks on
the modular cell-based search space is not a trivial task [14]
because the performance of a neural network may be in-
fluenced by the number of cells, the layout of each cell, the
cell architectures, etc [ 14]. Therefore, it is necessary to con-
sider the similarity of cells’ internal architectures and the
whole macro-architectures [15,68]. Conventional Bayesian
optimization methods rely on designing specific encoding
schemes like vector encoding [34] and path encoding [59],
which are inadequate for representing complex graph-like
network architectures. Recently, optimal transport (OT)
[5,27,41] has emerged as a promising technique fo NAS
as it achieves impressive results across various tasks. As
a neural network architecture can be viewed as a directed
acyclic attributed graph, OT can naturally handle this graph-
like architecture. Kandasamy et al. [25] explores the use of
OT for measuring the similarity between different networks.
However, the NASBOT method focuses solely on the entire
network, neglecting the potential relationships and similari-
ties between cells. To solve this problem, Nguyen et al. [40]
have proposed the Tree-Wasserstein (TW) metric for quan-
tifying the similarity between different cells. Unfortunately,
they ignore similarities in macro-architectures, such as the
number and layout of stacked cells, and the output channels
associated with each cell.

Current optimal transport for NAS methods either ig-
nore the local cell structure or limit to search for a sin-
gle cell network. To adapt well to the modular cell-based
search space, we propose a hierarchical optimal transporta-

tion metric called HOTNN, which leverages the hierarchical
structure of cell-based networks to measure the similarity of
cell internal architectures and that of macro-architectures of
networks jointly. HOTNN involves a two-level transporta-
tion problem. At the cell level, it computes the similarity
between cells by jointly exploiting the similarities between
various nodes in different cells and the differences in infor-
mation flow costs between different node pairs within each
cell, in terms of both operational and structural information.
At the network-level, it calculates the similarity between
networks by considering both the similarity between cells
in different networks and the difference in the position of
each cell within their respective networks. To demonstrate
the effectiveness of our proposed HOTNN metric, we in-
tegrate it into the Gaussian process surrogate model within
the Bayesian optimization framework and named our pro-
posed method as HOTNAS (Hierarchical Optimal Transport
for Neural Architecture Search). We compare HOTNAS
against other popular Bayesian optimization methods for
NAS. The results show that our proposed HOTNAS method
can find neural networks with superior performance across
various tasks in multiple modular cell-based search spaces.

2. Related Work

Optimal Transport for NAS. Optimal transport has gar-
nered significant attention due to its excellent ability to mine
differences in features and geometric characteristics among
structured objects [19,29,41,57]. Recently, Kandasamy et
al. [25] introduced a metric called OTMANN, , which lever-
ages optimal transport to measure network similarity. It
views each network as a probability distribution and com-
putes the minimum transport distance between them as a
similarity metric between networks. Unfortunately, they ig-
nore the similarity between cells in different cell-based net-
works. Furthermore, the optimal transport metric is gener-
ally indefinite. To solve this problem, Nguyen et al. [40]
proposed a negative definite tree-Wasserstein (TW) dis-
tance for network architectures by utilizing the frequency of
layer operations and global structural information. Unfor-
tunately, they ignore the structural location information of
each layer and the local structural difference between dif-
ferent node pairs within each network. In addition, they
are limited to searching for a single cell architecture and
ignore the similarity of macro-architectures. Compared to
the existing Bayesian optimization for NAS methods, our
proposed HOTNN metric can jointly learn the similarity of
cells’ internal micro-architectures and that of the entire net-
work’s macro-architectures, thus allowing for finding the
best-performing architectures in the general modular cell-
based space. More related works on OT and Bayesian opti-
mization for NAS are provided in the supplementary mate-
rial Sec. S1.
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3. Hierarchical Optimal Transport Approach
for NAS

Problem Setting. The objective of NAS is to discover an
optimal neural network architecture a* € A that achieves
the minimum validation loss on the validation set:

ey

a® = argminf(a),
acA

where f(a) is the validation loss of a neural network a, A
is the search space. Here we choose the modular cell-based
search space as it has been widely employed in designing
neural network architectures [36, ]. Next, we
will provide a formulation of neural networks in the modu-
lar cell-based search space.

k) s i

Neural Network Formulation. As shown in Fig. 1, the
entire neural network architecture a can be represented as a
sequence of n cells, i.e.,a = ByoBy...0B,. Eachcell B,
can have a different structure. The internal structure of a cell
B, can be represented as an acyclic directed attributed graph
Gp, = (L,&,4,,0s), where L denotes the set of nodes in
the cell. Each node in the cell corresponds to a particular
layer of the cell network. The function ¢, L — Q,
assigns a specific operation o,, = ¥, (u) to each node u €
L in the operational metric space (£2,, D). Note that the
metric D : 0, x Q, — R, is symmetric and measures the
similarity of operations at different nodes. An edge (u,v) €
£ is a topologically ordered pair of layers, representing an
information flow from layer u € L to the next layer v € L.
The ¢, : L — €, is an implicit function, mapping each
node u € L to its structural representation s,, = £ (u) in
the structural space (25, G). G : Qs x Qs — R encodes
the structural differences between nodes in the cell network.

It is not a trivial work to quantify the similarity be-
tween different networks in this modular cell-based search
space. There exist several challenges in defining this simi-
larity metric: (i) it should jointly learn the similarity of cell-
level micro-architectures and that of network-level macro-
architectures in different networks. (ii) the similarity of
cell micro-architectures should be able to leverage the op-
erational and structural information of each cell network.
(iii) the similarity of macro-architectures needs to take into
account the similarity between cells in different networks
and the difference in the position of each cell in their re-
spective networks. Hence, there is an urgent need to de-
sign a network similarity metric to address the above chal-
lenges together. To this end, we propose a novel metric
called HOTNN in Sec. 3.1 that utilizes hierarchical opti-
mal transport to measure the similarity between different
networks. We further integrate HOTNN into the Bayesian
optimization framework and introduce our proposed HOT-
NAS method in Sec. 3.2.
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3.1. Hierarchical Optimal Transport for Neural
Networks

3.1.1 Cell-level Similarity

Defining the similarity between cells requires simultane-
ously considering the similarity of operational and struc-
tural information. Recent works like NASBOT [25] and
BO-TW [40] explore the usage of OT for solving this prob-
lem. Unfortunately, they focus only on the similarity of op-
erational and structural information between different nodes
within cells, while ignoring differences in the information
flow costs between various node pairs within each cell, in
terms of the operational and structural information. For ex-
ample, as shown in Fig. 2a, the two cells B, By share the
same topological structures and operations, while they have
different mappings of operations at each node. The distance
between the two different cells is 0, according to the NAS-
BOT or BO-TW methods. However, it is obvious to see that
the information flows of the two cell networks are distinctly
different. Therefore, the two cell networks are functionally
different, and their distance is not 0.

To overcome these problems, we need to define a new
OT distance to better characterize the similarity between
different cell networks. Inspired by the ability of Fused
Gromov-Wasserstein (FGW) metric [56] to compare graphs
using the similarity of operational information at each
node and local structural differences between node pairs
within each graph, we propose an improved Fused Gromov-
Wasserstein iIFGW) metric for measuring the similarity be-
tween different cells. Note that the original FGW metric is
specifically designed for the undirected acyclic graph, while
the cell network can be viewed as a directed acyclic graph.
Unlike the original FGW metric that selects arbitrary undi-
rected node pairs within each graph, our proposed iFGW
metric selects only the topologically ordered node pairs on
the paths from the input to output, i.e., the selected node
pair (u,v) is ordered where the node u € £ comes before
the node v € L on the paths from the u to v. Moreover, the
iFGW metric can jointly learn the similarity between nodes
in different cells and the differences in the information flow
costs between node pairs within each cell, in terms of the
operational and structural information. Next, we will give a
detailed explanation of the iIFGW metric.

In the context of OT, each cell network can be rep-
resented as a probability measure over the joint metric
space of the operational and structural information, i.e.,
T = > Wil(o,,s), Where O, ) is the Dirac delta
function at the node ¢ with the operation o; and location
si, w; is the layer mass that quantifies the importance of
each node in the cell network, n is the number of nodes
in the cell network. In this study, we assume the oper-
ation of each node contributes equally to the overall cell
network, i.e., w; = 1/n, though our work can be ex-
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Figure 2. An example of the cell-level similarity and network-level similarity in the HOTNN metric. (a) Each node has a different color,
which represents a specific operation. Similar operations have a closed colour. The red solid line represents the pointwise matching
between nodes in two networks, and the purple dotted line represents the pairwise matching between node pairs in their respective cell
networks. (b) Each cell has a different color, which represents a specific architecture. The red solid line represents the cell-level similarity
in two networks, the blue dotted line represents the location difference of each cell in their respective cell networks.

tended to a more general case in which each operation con-
tributes differently. The discrete probability distribution
w = (wy,ws,...,w,) belongs to a probability simplex
Ay, ie, A, = {w; eRY |37 w; =1}. As such, the
two cell networks Gp,, Gp, with n and m nodes can be
described separately by their discrete probability measure
a = Z?:lpi6(0f7sf) and = 37", qﬂ'd(oj,sj)’ where
P = (pl,p% s 7pn) € An and q = (CI1,Q2, s 7qm) €
A, are probability distributions of each cell network. The
OT problem aims to find the minimal transportation cost
iFGW(Gp,,Gp,) with the optimal matching matrix T €
R}*™ between p and q of two cell networks. The trans-
port matching matrix T must satisfy the mass conservation
constraint with U (p, q):

T e U(p,q) = {T e R?*" | T1,, =p, T'1, = q},
@

where each element T;; describes the amount of masses
transported from node ¢ in the cell network Gp, to another
node j in the cell network Gp, .

Pointwise Matching. To measure the similarity of nodes
in different cell networks, we design a pointwise matching
scheme that maps each node ¢ in Gp, to a corresponding
node j in Gp,. Since each node in the cell network has
a unique operation type and structural location, we measure
the similarity between nodes by simultaneously considering
their differences in operational type and structural location
information.

* Operation similarity. Let D(o},0) be the opera-
tional similarity cost matrix between node ¢ with op-

eration o and another node j with operation o?-. To
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model the similarity between different operations, we
first build a predefined operation tree by hierarchically
grouping similar operations like the tree-Wasserstein
method proposed by Nguyen et al. [40]. Then, we
transform this operation tree into an operational sim-
ilarity cost matrix DP¢ € R™ ™, where each ele-
ment D(o?, 0;1-) is computed by summing over all edge
weights from the operation of to the operation 0;1 in the
predefined operation tree. An example of calculating
the similarity of different operations is shown in the
supplementary material Sec. S2.

Location difference. In this work, we use
the shortest/longest/random-walk  path  lengths
(GSP()IGE (i)/GIP (7)) from the input ws, to
node ¢ and the shortest/longest/random-walk path
lengths (G2Z,(i)/G™®,(i)/GT (i) from node i to
the output we,; to represent the structural loca-
def.

tion of node ¢ in the whole cell network (s;
(G2 (i), G (0), GE (i), Gy (1), Gy (), G (0))-
Kandasamy et al. [25] have demonstrated that these
path lengths are finite and can capture various types
of structural location information of each node within
each cell. The detailed definition and computation
of the shortest, longest, and random-walk path
lengths can be referred to Kandasamy et al. [25].
Let H(s],s}) be the structural location difference
between the node ¢ with location s} and another node
7 with location s?, which is defined as:

1
H(s?, 1) = (s — D)1,

where 14 denotes a 6-dimensional all-one vector.
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Let CP9 € R™ ™ be the cross node-node transport cost
matrix, where each element CZ-q is a combination of the
operational similarity D(o

P o%) and location difference
H(s},s9):

77 J

Pq _ D q D oq
Cij _ED(Oi’Oj)+(1_6)H(sivsj)v @)
1<i1<n,1<5<m,

where ¢ € [0,1] is the hyperparameter that controls the
trade-off between the operational similarity and location
difference between different nodes in two networks. If the
two nodes ¢ and j have similar operations and share simi-
lar structural locations in their respective cell networks, the
cross node-node transport cost is low, and they are likely to
be matched together. Finally, the pointwise matching prob-
lem becomes seeking the minimum transportation cost be-
tween nodes in two cell networks G, and Gp,:

i T;;CPY. 5
r il 22 2 THOY ®

i=1 j=1

Pairwise Matching. We design a pairwise matching
scheme to learn the differences in the movement cost of var-
ious information flows between pairs of nodes within each
cell network. We assume there exists a node pair (i, k)
and have different paths from node 7 to node k in the cell
network Gp,. Similar to pointwise matching, we use the
structural location difference H (s?, s} ) between node ¢ and
node k to represent the structural information of the node
pair (7, k) in the network Gp,. The structural location dif-
ference H (s?, s7) reflects the movement cost of various in-
formation flows from the node ¢ with location s? to the node
k with location s% in terms of structural information. In ad-
dition, we consider the operational difference between the
node pair (i, k) and use D(o!,0}) to represent the move-
ment cost of various information flows from node i with
operation of to node k with operation of, in terms of the op-
erational information. Let C%_ be the total movement costs
of various information flows from the node ¢ to the node
k by considering both the operational and structural differ-
ence in the node pair (i, k) of the cell network G, :

Cl =eD(d},0})+ (1 —e)H (s, sh),1 <i<k<n,
(6)

where ¢ € [0,1] is the hyperparameter that controls the
trade-off between the operational similarity and structural
difference. Note that C}, is oo if there exits no information
flows from node ¢ to node k. Similarly, let C]ql be the total
movement cost of various information flows from node j
to node [ by considering both the operational and structural
difference in the node pair (j,!) in the cell network Gp, :

Cj, =eD(0},0/) + (1 —e)H(s],s]),1 < j<l<m.

)

Then we define the transport cost between the node pair
(i, k) in the network Gp, and another node pair (4, 1) in the
network Gp, is the total movement cost difference of each
node pair in their respective cell networks, i.e., |CY, — qul |
Finally, the pairwise-wise matching problem becomes seek-
ing the minimum transport cost between different node
pairs within each cell network:

Terlrfl%g,q) Z Z Z Z TijTh lcfk B CJQI" ®)

i=1 k=i+1 j=11=j+1

If the node pairs (7, %) and (j,!) have similar total move-
ment costs, they are likely to be matched together.

iFGW Metric. We propose the iFGW metric to simulta-
neously learn the similarity of operational and connection
information in different cell networks. It combines point-
wise and pairwise matching schemes (see Fig. 2a). We
define the iFGW metric as the minimum transport cost by
jointly exploiting the similarity between different nodes in
two cell networks and the total movement cost difference
between different pairs of nodes within each network:

min

IFGW(gBl ) ng) =
i=1 k=i+1 j=11=j+1
+(1 = NTy T |Cl - C

C))

where A € (0,1) is the hyperparameter that controls the
tradeoff between the pointwise matching cost of the nodes
¢ and 7 in each cell network and the pairwise matching cost
of the node pair (¢, k) and the node pair (j, ).

Theorem 3.1. Given two cell internal networks Gp, and
Gp,, iIFGW(Gp,,Gp,) is a pseudo-metric. The iFGW met-
ric is O if the two cell networks have the same number of
nodes with the same type of operations and are connected
by the same edges.

The proof of this theorem can be found in the supple-
mentary material Sec. S3. The iFGW metric is generally
lower when two cell networks are more similar. This the-
orem provides a reasonable interpretation of why the two
cell networks are similar in terms of operational information
and network’s structure. It means the iFGW metric tends to
map node pairs with similar pairs of operations and obtains
small differences in structural location on their respective
cell networks.
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3.1.2 Network-level Similarity

As is shown in Fig. 2b, suppose there exit two networks
a' and a? with N and M cells, respectively. Each net-
work consists of a sequence of different cell networks i.e.,
a'=BloB}...oB\anda®? = BfoBZ...0B%,. Sim-
ilar to the iFGW metric, each network can be rejgresented
by a probability measure separately i.e., p = > ., fs0p1
and v = Zﬁl gt0p2, where dp1 and d 2 is the Dirac delta
function at the cell B! of the network a! and at the cell B?
of the network a2, respectively. f = (f1, fa,...,fn) €
An and g = (g1,92,---,9m) € Ay are probability dis-
tributions of each network, where each element is the mass
of cells in their respective networks. Here we use the rel-
ative size of output channels in each cell as the cell mass
ie., fs =cs/ Zi\[:l Cs, gt = Ct/ Zivil c:, where ¢, and ¢;
are the output channels of each cell in the networks a' and
a?, respectively. The similarity between two networks a!
and a? is the minimal transportation cost that has the opti-
mal matching I" € REXM between f and g. The transport
matching I' must satisfy the mass conservation constraint

with V(f, g):

FeV(f,g)={L eRVM|T1y =f, TT1y =g},
(10)

where each element of the transport matching matrix I's
describes the amount of mass transported from the cell B}
in the network a'! to another cell B? in the network a?.

Let S € RV*M be the cost matrix between cells in net-
works @' and a?. The same cell appearing in different po-
sitions within a network may have varying impacts on the
final network performance. We quantify the transport cost
between cells in two networks by considering both the sim-
ilarity between cells in two networks and the difference in
the global position of each cell in their respective networks.
Let I(B!, B?) be the similarity between cell B} in the net-
work a' and cell B? in the network a?, which is also the
iFGW(Gp1,Gp2). Let P(B{, Bf) be the global position
difference between cell B} in the network a' and cell B?
in the network a2, which is defined as follows:

PBLBY) =B/ — B/
1<s<N,1<t<M,

where §'(B!) and §2(B?) denote the longest path length
from the input to the cell B! in the network a' and the
cell B? in the network a?, respectively. J' and 6% denote
the longest path length from the input to the output in the
network a' and a?, respectively. Then, the transport cost
between the cell B! in the network a' and the cell BZ in
the network a? is:

8.t =(1—-n)I(BL B})+nP(B},B}), (12)

where 77 € [0, 1] is the hyperparameter that controls the
tradeoff between the similarity between different cells in
two networks and the difference in the global position of
each cell in their respective networks.

HOTNN Metric. To measure the similarity between dif-
ferent networks, we propose the HOTNN metric that com-
bines both the similarity between different cells in two net-
works and the difference in the global position of each cell
in their respective networks, which is defined as follows:

N M
HOTNN(a!, a?) = i Iy Si2. 13
(a',a%) re%l%?,g)ZZ wSit. (13)

s=1t=1

The HOTNN metric looks for the optimal map I'" with the
minimum transport cost between two networks.

1 2

Theorem 3.2. Given two networks a- and a,
HOTNN(a',a?) is a pseudo-metric and negative semi-
definite. The HOTNN metric is O if the two networks have
the same number of cells with the same architectures.

The proof of this theorem can be found in the supple-
mentary material Sec. S3. The HOTNN metric is generally
lower when the two networks are more similar. This the-
orem provides a reasonable explanation as to why the two
networks are similar in terms of cell micro-architectures and
network macro-architectures. The HOTNN metric tends to
match the cells that have similar architectures and similar
global positions in their respective networks.

3.2. Neural Architecture Search via Bayesian Op-
timization with Hierarchical Optimal Trans-
port

In this section, we explore the usage of HOTNN dis-
tance in the Bayesian optimization for the NAS frame-
work to demonstrate its effectiveness across various mod-
ular cell-based search spaces. The Bayesian optimization
method uses surrogate models to learn the complex rela-
tionship between the network architecture and its valida-
tion performance. The commonly-used surrogate models in
Bayesian optimization include the Gaussian process (GP)
[61], Bayesian neural networks [51, 52], and random for-
est [21]. Here we choose the GP as our surrogate model
because it provides a closed-form of the smooth predictive
distribution and accurately estimates the predictive uncer-
tainty [4]. Moreover, it can optimize model hyperparam-
eters automatically by maximizing the log marginal likeli-
hood [61]. The GP employs a kernel function to model the
similarity between different input pairs. The kernel function
value is higher if the two inputs are more similar. Therefore,
it is natural to incorporate our proposed HOTNN distance

11995



Table 1. Comparisons of the best-found valid loss and test loss on the TransNAS-Bench-101 benchmark and the DARTS benchmark.

Search Space Tasks Loss Random Search  Evolutionary Search BO-edit NASBOT HOTNAS
Autoencoding Valid Error 28.09+0.18 28.19+0.24 28.55+£0.28 29.25+0.25 25.80+0.04
Test Error 26.65+0.18 26.74+0.24 27.14+£0.28 27.82+0.25 24.36+0.01
Object Classification Valid Error 53.21£0.02 52.96+0.02 53.42+0.03 53.28+0.02 52.69+0.00
Test Error 46.49+0.02 46.25+0.04 46.67£0.03  46.30+£0.03  45.90+0.02
Scene Classification Valid Error 43.85+0.03 43.434+0.03 43.584+0.03 43.78+£0.04 43.19+0.01
Test Error 35.43+0.02 35.25+0.03 35.29+0.02 35.25+0.03 35.00-+0.01
TransNAS-Bench-101 Jigsaw Valid Error 3.58+0.03 3.25+0.01 3.31+0.00  3.2740.01 3.17+0.01
Test Error 3.79+0.04 3.35+0.01 3.34+0.01  3.38+0.02  3.29+0.01
. Valid Error 39.20+0.04 37.55+0.16 37.424+0.14 38.80+0.15  36.65+0.20
Surface Normal
Test Error 36.27+0.04 34.7240.15 34.694+0.14 35.99+0.15  33.91+0.19
Room Layout Valid Error 59.9840.04 59.83+0.03 59.954+0.06 60.19+0.05 58.9240.05
Test Error 53.9440.06 55.5440.10 54.024+0.03  54.72+0.09  53.80+0.04
Semantic Segmentation Valid Error 71.59+0.04 71.39£0.05 71.01£0.05 70.89+0.04 70.51+0.01
Test Error 68.97+0.01 68.11+0.05 68.45+0.05 68.30+£0.04 67.98+0.03
CIFAR-10 Valid Error 5.90+0.07 5.50=+0.09 5.42+0.14  5.73£0.07  5.37+0.01
DARTS Test Error 3.28+0.09 2.87+0.04 2.724£0.07  2.93+0.12  2.43+0.04
CIFAR-100 Test Error 21.47+0.08 19.75+0.13 20.62+0.12  19.95+0.17 18.460.09
into the design of the kernel function. Here we choose the o5 ] o
random search
Gaussian kernel, which is defined as: evolutionary search
6.4 —e— BO-edit
—#— NASBOT

K(a',a’) = exp (-HOTNN(a',a’)/d7) , (14)

where o0; is the length-scale hyperparameter,
HOTNN(a’,a’) is the HOTNN distance between two
networks a’ and a’, the kernel has a higher value if
the HOTNN distance is closer. The detailed algorithm
description of our proposed HOTNAS method is given in
the supplementary material Sec. S4.

4. Experiments

To prove the effectiveness of our proposed HOTNAS
method, we compare it with a range of NAS methods
on multiple modular cell-based search spaces across dif-
ferent tasks. Further, we visualize the relationship be-
tween HOTNN distance and the validation performance to
make a reasonable interpretation for our proposed HOT-
NAS method (see supplementary material Sec. S5). Finally,
we conduct ablative experiments on our proposed HOTNAS
approach (see supplementary material Sec. S7).

Architecture Search on NAS-Bench-101 Benchmark
The search space of NAS-Bench-101 is a single cell net-
work architecture with 7 nodes and a maximum of 9 edges.
The benchmark contains a total of 423,624 unique cell neu-
ral architectures. More detail of the NAS-Bench-101 bench-
mark can refer to [66]. We compare our proposed HOT-
NAS method to a range of existing Bayesian optimization
for NAS methods, including BO with edit distance [23],
NASBOT [25], BANANAS [59], BO-TW [40], BO-TW-
2G [40], and NAS-BOWL [44]. We also include common
baselines like random search [33] and evolutionary search

HOTNAS

best validation loss

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

number of observations (beyond initial points)

Figure 3. The best-found validation loss over the number of it-
erations (beyond initial points) of various NAS methods on the
DARTS benchmark.

[37] for comparison. The implementation details and ex-
perimental settings of these methods are summarized in the
supplementary material Sec. S6. The best-found validation
loss and test loss of different NAS methods on the NAS-
Bench-101 dataset are summarized in Tab. S2. The best-
found validation loss over the number of iterations of these
NAS methods on the NAS-Bench-101 benchmark are pre-
sented in Fig. S3. The results show that our proposed HOT-
NAS method achieves the lowest valid loss and test loss,
which reveals that our proposed HOTNAS method can find
a neural architecture with better performance on the NAS-
Bench-101 search space.

Architecture Search on TransNAS-Bench-101 Bench-
mark. The TransNAS-Bench-101 is a benchmark dataset

11996



containing network performance across diverse tasks, in-
cluding object classification, scene classification, room lay-
out, jigsaw, autoencoding, surface normal, and semantic
segmentation. We focus on searching its macro skeleton
search space, where each network can stack a different num-
ber of modules, and each modular can decide various oper-
ations (e.g., where to raise the channel or downsample the
resolution). It consists of 3256 networks across seven tasks.
More detail on this benchmark can refer to [ 14]. To demon-
strate the effectiveness of our proposed HOTNAS method
we compare it to several prevalent NAS methods, including
random search [33], evolutionary search [37], BO with edit
distance [23], and NASBOT [25]. Note that we have not
included BANANAS [59], BO-TW [40], BO-TW-2G [40],
NAS-BOWL [44] methods as they are limited to a single
cell architecture search and ignore the differences in the
macro-architecture of the whole network. These methods’
implementation details and experimental settings are sum-
marized in the supplementary material Sec. S6. The best-
found validation loss and test loss of different NAS methods
across seven tasks on the TransNAS-Bench-101 benchmark
are summarized in Tab. 1. The best-found validation loss
over the number of iterations of these NAS methods on the
TransNAS-Bench-101 benchmark are presented in the sup-
plementary material Fig. S3. Overall, our proposed HOT-
NAS method performs best among these NAS methods on
all tasks. Especially on the autoencoding and surface nor-
mal tasks, our proposed HOTNAS method can find an ar-
chitecture with significantly better performance. Besides,
our proposed HOTNAS method has a low variance of the
best-found validation loss on most tasks, which reveals its
strong stability.

Architecture Search on DARTS Benchmark. The
DARTS is a large-scale non-tabular benchmark about 108
neural architectures. It consists of two types of cells i.e.,
the normal cell and the reduced cell. Each cell can choose
different operations and connections. The details of the
DARTS search space can refer to [36]. Unlike most exist-
ing NAS methods on the DARTS benchmark that focus only
on searching the cell’s internal architectures, we also search
the depth of the entire network. We choose the number of
stacked cells from 5 to 20. This is challenging as the size
of DARTS search space expands to 16 x 10'8. We compare
our proposed HOTNAS method to several prevalent NAS
methods, including random search [33], evolutionary search
[37], BO with edit distance [23], and NASBOT [25]. These
methods’ implementation details and experimental settings
are summarized in the supplementary material Sec. S6. We
first search the networks on the training set of the CIFAR-10
dataset and then evaluate the searched best network on the
test set of the CIFAR-10 dataset. Besides, we directly trans-
fer the best-performing network searched on the CIFAR-10
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dataset to the CIFAR-100 dataset and train it from scratch
to test its generalization ability. The best-found validation
losses in the CIFAR-10 dataset and the test losses in the
CIFAR-10 and CIFAR-10 datasets of different NAS meth-
ods on the DART search space are shown in Tab. 1. Fig. 3
presents the best-found validation loss over the number of
iterations of these NAS methods on the DARTS benchmark.
The results indicate that our proposed HOTNAS method
outperforms other BO for NAS methods. Note that the best-
found network of our proposed HOTNAS method achieves
a lower test error in the CIFAR-10 dataset, which demon-
strates its excellent generalization ability. Besides, it still
performs well on the CIFAR-100 dataset, which reveals our
proposed HOTNAS method can find a network with better
transferability.

5. Conclusion

In this paper, we design a hierarchical optimal trans-
portation metric called HOTNN to measure the similarity
between different networks by leveraging the hierarchical
structure of the cell-based networks. Our proposed HOTNN
metric considers the similarity between cells’ internal ar-
chitectures and the differences in the macro-architectures
of various networks. We then integrate the HOTNN met-
ric into the GP surrogate model in the Bayesian optimiza-
tion framework called HOTNAS and demonstrate its effi-
cacy by comparing the current popular Bayesian optimiza-
tion for NAS methods. The experimental results show that
our proposed method can find a neural network architecture
with better performance. We hope our proposed method can
extend to more complex cell-based search spaces in future
work.
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