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(a) LDR images (b) Events (c) E2VID [60] (d) Han et al. [24] (e) Ours

Figure 1. Given hybrid inputs of (a) LDR video and (b) stacked events, the HDR video can be reconstructed using different methods shown

in (c) E2VID [60], (d) Han et al. [24], and (e) the proposed HDRev-Net. The samples here are tested on synthetic data (top row) and

real data (bottom row) respectively. The proposed method is able to generate the HDR video with more details and less flickering effects.

Please view our project page for corresponding animations.

Abstract

Limited by the trade-off between frame rate and exposure
time when capturing moving scenes with conventional cam-
eras, frame based HDR video reconstruction suffers from
scene-dependent exposure ratio balancing and ghosting ar-
tifacts. Event cameras provide an alternative visual repre-
sentation with a much higher dynamic range and temporal
resolution free from the above issues, which could be an
effective guidance for HDR imaging from LDR videos. In
this paper, we propose a multimodal learning framework
for event guided HDR video reconstruction. In order to
better leverage the knowledge of the same scene from the
two modalities of visual signals, a multimodal representa-
tion alignment strategy to learn a shared latent space and a
fusion module tailored to complementing two types of sig-
nals for different dynamic ranges in different regions are
proposed. Temporal correlations are utilized recurrently
to suppress the flickering effects in the reconstructed HDR
video. The proposed HDRev-Net demonstrates state-of-the-
art performance quantitatively and qualitatively for both
synthetic and real-world data.

1. Introduction
The dynamic range of the real world usually exceeds

what a conventional camera and 8-bit image can record by a

large margin. High dynamic range (HDR) imaging, which

expands the luminance range limited by low dynamic range

(LDR) images or videos, is a broadly used technique with

extensive applications in photography/videography, video

games, and high-end display.

Most HDR imaging methods for conventional cameras

rely on capturing and merging multiple snapshots with dif-

ferent exposure times [9, 49], which is challenging for cap-

turing videos. There have been enduring efforts for sophisti-

cated modification on conventional frame based cameras to

capture multi-exposure sequences (nearly) simultaneously,

e.g., beam splitting with three or more sensors [69,70], tem-

porally [7, 30, 32] or spatially [1, 8, 22, 28, 53, 54] varying

exposure. Nevertheless, their abilities for HDR video re-

construction are limited by the trade-off between a higher

frame rate (for a smooth viewing experience) and a higher

dynamic range (for capturing details in dark regions with
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prolonged exposure time). Moreover, the optimal expo-

sure ratio between LDR frame sequences with different ex-

posure settings is scene-dependent and temporally-varying,

whose balancing is difficult for diverse scenes captured in

videos. Even worse, moving objects or camera shaking

during video capture can lead to ghosting effects in frames

generated by long exposure shots. An HDR video could

also be hallucinated from LDR inputs in a frame-by-frame

manner by leveraging prior knowledge of tone-mapping op-

erators [61] or data modeling powers of deep learning [11].

However, due to the highly ill-posed nature of the hallucina-

tion process, it inevitably leads to severe flickering effects.

In recent years, the event camera [16] has drawn increas-

ing attention of researchers, due to its advantages over con-

ventional frame based ones in sensing fast motions and ex-

tended dynamic ranges (e.g., 120dB for DAVIS346). Unlike

using multi-exposure frames, events recorded along with an

LDR video encode HDR irradiance changes without sacri-

ficing the frame rate/exposure time of the LDR video, which

avoids ghosting artifacts as well, and is very promising as

guidance for HDR video reconstruction.

However, integrating events with LDR video for HDR

video reconstruction is challenging due to inconsistency be-

tween events and frames in three aspects: 1) Modality mis-
alignment: Frames and events are completely different rep-
resentations of visual information, and “fusing” them by

first translating events into intensity values [60,80] like [24]

often includes artifacts from solving the ill-posed event in-

tegration problem. 2) Dynamic range gap: Performing im-

age/video reconstruction under the guidance of events [75],

i.e., doubly integrating events as intensity changes within

the exposure time [56, 57], ignores the dynamic range clip-

ping in the capturing process of LDR frames, which leads

to uncertainties in under/over-exposed regions. 3) Tex-
ture mismatching: Regions with smooth textures and slow

motion hardly produce effective event observations, which

results in inconsistent textures among consecutive event

stacks and flickering effects in the reconstructed videos.

We propose HDRev-Net, a multimodal learning frame-

work for event guided HDR video reconstruction to tackle

the challenges by the following strategies: 1) To achieve

multimodal representation alignment for the two modalities

of the same scene, we propose a learning strategy to pro-

gressively project them onto a shared representation space.

2) To reliably complement information from the two modal-

ities in over/under-exposed regions, the representations pro-

duced by the two modality-specific encoders are fused for

an expressive joint representation using a confidence guided
multimodal fusion module. 3) To effectively suppress the
flickering effects, we utilize the temporal redundant infor-

mation between consecutive frames and events via the pro-

posed recurrent convolutional encoders.

As shown in Fig. 1, HDRev-Net can successfully fuse

LDR frames and events to obtain HDR frames with more

details and less flickering effects. It demonstrates state-of-

the-art HDR video reconstruction performance on both syn-

thetic and real data by making the following contributions:
• We design a multimodal alignment strategy to bridge

the gap between events and frames by aligning their

representation in a shared latent space.
• We develop a confidence guided fusion module to

complement HDR information from events and finer

details from well-exposed regions in LDR frames.
• We utilize the temporal correlation from consecutive

events and LDR frames in a recurrent fashion to alle-

viate the flickering effects for recovered HDR videos.

2. Related Work
Frame based HDR reconstruction. A typical technique

for HDR image reconstruction is to merge a stack of brack-

eted exposure LDR images into an HDR one [9, 49]. Such

an idea is also feasible for HDR video reconstruction. Many

works [38, 48, 69, 70] proposed to use multiple sensors to

capture LDR images with different exposures simultane-

ously. Besides, there are methods designing spatially vary-

ing sensors [1, 8, 22, 28, 53, 54, 71] or using coded exposure

by alternating the shutter speed [7,29,30,32,43]. However,

HDR information is obtained at the cost of lowering spa-

tial or temporal resolution in these methods. Moreover, for

dynamic scenes, camera shake and moving objects during

exposure can lead to ghosting artifacts. To tackle this, re-

cent works [45, 68, 77] introduced attention mechanisms to

perform implicit alignment between frames. However, they

still heavily rely on fine-grained similarities across frames,

which is hard to be captured in varying exposures.

To avoid ghosting artifacts, Banterle et al. [2] proposed

inverse tone mapping to reconstruct the HDR image from

a single LDR image, which attempted to hallucinate HDR

information in over/under-exposure regions. More recently,

many works [6,11,12,19,33,39–41,44,47] attempted to bet-

ter perform inverse tone mapping via convolutional neural

networks (CNNs). However, the problem of hallucinating

the lost information in over/under-exposed regions without

any physical guidance is too ill-posed to be reliably solved

in varying real-world scenarios by these methods.

Event based HDR reconstruction. Event cameras inher-

ently have a higher dynamic range than conventional ones,

which enable direct reconstruction of HDR frames from

pure events. Early attempt [35] for intensity reconstruction

from events was based on strict assumptions about the scene

or motion, e.g., brightness constancy and global rotational

movement. Other methods [3, 4] optimized a variational

model to reconstruct intensity images.With the help of deep

learning, Mostafavi et al. [51, 73] and Wang et al. [74]

used generative adversarial networks (GANs) [21] to re-

construct images from events. Rebecq et al. [59, 60] and
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Zou et al. [80] used recurrent convolutional blocks [10, 25]

to maintain temporal consistency inside long event streams

for video reconstruction. However, these methods suffer

from flickering effects and cannot provide stable colored

video reconstruction because stream-like events only record

the quantized logarithmic irradiance changes of each pixel.

It is highly ill-posed to directly reconstruct frames from

events without any intensity information as references.

Event guided HDR reconstruction. Conventional cam-

eras record the irradiance within a limited dynamic range

synchronously, while event cameras record the logarith-

mic irradiance change with a much higher dynamic range

asynchronously. Event guided HDR reconstruction com-

bines the best of the two worlds by considering hybrid in-

put of events and frames for reconstructing HDR frames.

Wang et al. [72] proposed a sparse learning method along

with the integration method [56] to enhance the image qual-

ity. Han et al. [24] proposed to reconstruct HDR intensity

maps from events first and then fused them with LDR frame

in the intensity domain. It is also proposed to guide the fu-

sion of bracketed exposure with events [50,64] for plausible

results. However, blurry artifacts are also introduced by the

longer exposure of bracketed images. All these works fo-

cused on the reconstruction of HDR images.

For event guided video reconstruction, Wang et al. [75]

integrated events to interpolate frames based on [56,57] and

handled the noise and artifacts under simplified assump-

tion by a variant of Kalman filter. However, the integration

model [56, 57] ignored the dynamic range clipping of LDR

frames, which leads to uncertainties in under/over-exposed

regions. In contrast, we propose to integrate the two modal-

ities in a learned shared representation space by leveraging

the data modeling power of deep learning.

3. Proposed Method
3.1. Formulation

Event generation and stacking. An event camera trig-

gers an event e = (t, p, σ) at pixel position p = (px, py)
�

and time t with polarity σ ∈ {−1,+1}, when the logarith-

mic change of irradiance R since the last event at the pixel

p and time t− δt exceeds a dispatched threshold θ:

‖logR(p)
t − logR

(p)
t−δt‖ ≥ θ. (1)

To process stream-like events using CNNs, we need to

convert a stream of events into a fixed size tensor-like rep-

resentation. We use voxel grid [79] that encodes temporal

information in a C-channel 3D-volume. By discretizing du-

ration Δt = tK−1 − t0 spanned by K events into C tempo-

ral bins, each event ek = (tk, pk, σk) distributes its polarity

σk to the two closest voxels as follows [60]:

E
(p)
t =

∑
pk=p

σk max (0, 1− |t− t̃k|), (2)

where t̃k := C−1
Δt (tk − t0) is the normalized timestamp.

LDR image formation. Given the irradiance R and ex-

posure time Δt, an HDR image can be represented as

IHDR = R·Δt. There are three steps to produce an LDR im-

age: dynamic range clipping, tone mapping with a camera

response function (CRF) fCRF, and quantization:

ILDR = �255 · fCRF (max(min(IHDR, 1), 0))�/255. (3)

To align the LDR image and events in the linear irradiance

domain, we first convert the LDR image by:

L = f−1
CRF(ILDR)/Δt, (4)

where f−1
CRF is the inverse CRF. To ease the learning diffi-

culty in regression of values in linear domain spanning a

wide range, the range of IHDR are compressed by [31]:

H =
log(1 + μIHDR)

log(1 + μ)
, (5)

where μ controls the amount of compression.

3.2. HDRev-Net
Given the stacked event sequence E = {Et}Tt=1 and

the corresponding LDR frame sequence L = {Lt}Tt=1 of

length T , our goal is to reconstruct the HDR frame sequence

H = {Ht}Tt=1 through a multimodal learning network F
dubbed HDRev-Net. As illustrated in Fig. 2, F consists of

two modality-specific encoders FL and FE for both tempo-

ral context encoding and multimodal representation align-

ment, confidence guided multimodal fusion module Ffusion,

and decoder FH for HDR video reconstruction from latent

representation. Our pipeline can be described as:

H = FH(Ffusion(FL(L),FE(E)). (6)

Multimodal representation alignment. Events and LDR

frames are two quite different modalities for representing

visual information, whose fusion is non-trivial due to dis-

tinct low-level statistical properties and highly non-linear

relationships between them. Non-learning approaches

based on the explicit fusion model [56, 57] may lead to un-

certainties in over-exposed regions, while using CNNs to

predict HDR frames from the two modalities by direct con-

catenation or performing event-to-frame translation firstly is

ill-posed, which does not consider the differences and com-

plementarities between the two modalities.

In this paper, we propose to perform implicit fusion by

an encoder-decoder network: learning to represent events

and LDR frames in a shared latent space by two modality-

specific encoders and then integrating them by a fusion

module in the bottleneck layer. A straightforward solution

is training the two encoders simultaneously for jointly de-

coding the latent representation into HDR frames. How-

ever, due to the modality gap between frames and events,
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shared representation
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(details in Figure 4)

channel attention
module

average pooling

Figure 2. Overview of the proposed HDRev-Net. For multimodal representation alignment, the hybrid inputs of stacked events E and

LDR frames L are mapped onto a shared representation space by the modality-specific encoders FE,FL, in which recurrent connections

are applied for temporal context encoding. Under the guidance of confidence masks ME and ML extracted from E and L, respectively,

their latent representations FE, FL are then integrated into a joint one FH by the multimodal fusion module Ffusion. The HDR decoder FH

decodes FH into HDR frame sequence H eventually.

jointly performing intra-modality (LDR to HDR) and inter-

modality (event to HDR) reconstruction can lead to a triv-

ial solution: predicting HDR frames from the LDR frames

mostly, leaving almost all the stacked events ignored in the

training process and heavily relying on LDR frames.

To effectively utilize the properties of high dynamic

range and high frame rate of events, we should find a shared

representation space that can well express common and

complementary information from events and LDR frames

for the subsequent multimodal fusion. To achieve this, we

propose a multi-stage approach: performing inter-modality

reconstruction from events and then intra-modality recon-

struction from LDR frames at first, then jointly training the

two encoders and HDR decoder together.

Specifically, the event encoder FE is pretrained to map

the input events to a latent representation, which is then de-

coded to HDR frames by an HDR decoder FH:

FE = FE(E), H = FH(FE). (7)

In order to project the input LDR frames onto the same

latent space for representation alignment, an LDR encoder

FL is then trained with the parameters of FH fixed:

FL = FL(L), H = FH(FL). (8)

Thanks to the shared decoder FH, the representation of

events and LDR frames are aligned in a shared latent space

and can then be effectively fused by the proposed event

guided HDR video reconstruction pipeline Eq. (6).

Confidence guided multimodal fusion. As shown

in Fig. 2, both manually designed confidence masks and

learnable channel-wise attention are used for weighting the

intermediate representation FL, FE along two separate di-

mensions, spatial and channel. The manually designed con-

fidence masks emphasize more reliable regions and robust-

ness to inherent noise in data. Intuitively, events are trig-

gered on high contrast edges. The confidence mask for

0.5

0.0

1.0
(b) Event stack 

(e) Event mask 

a) LDR image 

(d) LDR mask (f) Ours result

(c) W/o fusion results

Figure 3. Visualization of the confidence masks (d) ML and (e) ME

extracted from (a) LDR frame L and events (b) E, respectively.

The HDR reconstruction results are (c) “W/o fusion” and (f) ours.

events makes the fusion module pay more attention to such

regions (an example is shown in Fig. 3 (e)). The confidence

mask ME is defined as:

ME = min (G ∗ |E|, 1), (9)

where ∗ denotes the convolution operator; G denotes a

Gaussian kernel with variance 3 and support 21×21, which

is used to propagate the influence of the sparsely distributed

events to their neighboring regions.

For LDR frames, irradiance in well-exposed regions is

more reliable. The confidence mask ML for LDR frames

(an example is shown in Fig. 3 (d)) is defined as:

ML =
0.5−max(|L− 0.5|, λ− 0.5)

1− λ
, (10)

where λ is a hyper-parameter (set as 0.8 in our experiments)

that defines the range of values in which reliable pixels lie.

To guide the fusion of latent representation with a

smaller spatial size, we propagate the values of the mask

according to the receptive field of each pixel. Specifically,
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Figure 4. Illustration of the recurrent connections in encoder FL

(the same structure is used for FE).

the confidence mask M (l) for reweighing the chosen bottle-

neck feature FE, FL outputted by the l-th layer is defined by

the following recursive rule:

M (0) = M, M (l) = GKl
∗M (l−1), (11)

where GKl
denotes a Gaussian kernel with variance 3 and

support Kl ×Kl, whose size is the same as the l-th convo-

lutional layer. Given the confidence masks M
(l)
L ,M

(l)
E , the

spatially weighted features are obtained by:

F̃L = FL ·M (l)
L , F̃E = FE ·M (l)

E . (12)

To adaptively exchange information between F̃L and F̃E,

they are concatenated and reweighted by a channel atten-

tion module [27] A to obtain an integrated one F̃H:

F̃H = A([F̃L, F̃E]). (13)

To better balance the contributions of different modali-

ties, F̃E, F̃L are reweighted along all dimensions with the

weighting maps extracted from F̃H by weighting layers WL

and WE. Then they are concatenated and fed into a convo-

lutional blending layer B to obtain the joint representation

for HDR reconstruction:

FH = B([F̃L �WL(F̃H), F̃E �WE(F̃H)]). (14)

Temporal context encoding. To alleviate the flickering

effects in the generated HDR videos caused by texture mis-

matching among consecutive event stacks, we exploit the

temporal structure within the data via a recurrent convolu-

tional encoder, as shown in Fig. 4. The temporal context

encoders FE,FL learn modality-specific latent representa-

tions FE, FL by capturing their underlying temporal struc-

tures by a recurrent variant of the encoder in U-Net [62], in

which each convolutional layer is replaced by the ConvL-

STM [65]. At each timestamp, it outputs the internal state

from its own input as well as the encoded past states from

its previous input. It can provide more consistent global

features of each modality and alleviates flickering effects in

the recovered HDR videos.

The internal states not only preserve temporal correla-

tion between consecutive frames to suppress the flickering

effects but also reduce noise in both input modalities, espe-

cially in the under-exposed regions. Through the recurrent

design of the encoders, the temporal complementary and re-

dundant information through time can be well exploited in

the learned latent representations of events and LDR frames

for better HDR video reconstruction.

3.3. Training

Dataset preparation. For the training of HDRev-Net, a

large amount of triplets (E,L,H) are required. There are

no readily available datasets containing these triplets nor

HDR video datasets with satisfactory scale and quality.

To synthesize such a dataset, we collect 733 HDR images

from [13, 15, 17, 18, 26, 37, 55, 66, 76] and 110 videos with

local motion from [13, 14, 34, 37]. For HDR images, 733
HDR videos with global motion are simulated by generated

random camera motion trajectories [5]. From each frame

sequence of these videos, the hybrid input of events and

LDR frames are simulated by [58] and [12], respectively,

like capturing with a virtual camera. To better simulate

real LDR images, the LDR frames are generated with ran-

domly sampled CRF, exposure time and Poisson-Gaussian

noise [23] for each iteration during training. The event gen-

erator [58] also considered the normal distributed thresh-

olds to bridge the gap between real and synthetic. There are

a total of 26520 (global motion) + 63754 (local motion) =
90274 frames with a resolution of 240 × 180 for training

and 5600 frames with a resolution of 256× 256 for testing.

Loss functions. To train the proposed framework, the loss

function to be minimized is defined as:

L = α1Lmse + α2Lperc + α3Lcolor, (15)

where α1,2,3 are hyper-parameters for balancing different

terms. Our goal is to reconstruct HDR frame sequence

{Ht}Tt=1, while the prediction of the network F is {Ot}Tt=1.

The mean square error (MSE) loss Lmse is defined as:

Lmse =
∑
t

(‖Ht −Ot‖22). (16)

The perceptual loss Lperc is defined based on the feature

maps extracted by the VGG-16 [67] network pre-trained on

ImageNet [63]:

Lperc =
∑
t

(∑
l

(‖φl(Ht)− φl(Ot)‖22

+ ‖Gφ
l (Ht)− Gφ

l (Ot)‖22)
)
,

(17)
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where φl denotes the feature map extracted from l-th layer

of VGG-16, Gφ
l calculates the Gram matrix of φl. The layer

we use in our experiments is “relu4 3”. To enforce the color

appearance of the reconstructed HDR frames to match that

in the ground truth, a color loss is defined as:

Lcolor =
∑
t

(‖H̃t − Õt‖22), (18)

where H̃ = G ∗H and Õ = G ∗ O are blurred from H,O
to eliminate texture and content.

Other implementation details. We adopt a lightweight

variant of recurrent U-Net with 2 downsampling layers in

all experiments. The network is unrolled for T = 6 steps

during training. It is implemented on the PyTorch frame-

work and runs on an NVIDIA GeForce RTX 3080 GPU.

We use ADAM [36] with default parameter setting for op-

timization. The batch size is set as 1. The learning rate

was fixed to 10−5 in the earlier epochs and reduced to 0
in the last 40% epochs by the linear decay strategy. The

number of epochs for pretraining Eq. (7), representation

alignment Eq. (8), and training the whole pipeline Eq. (6)

are set as 40, 5, 5, respectively. Xavier initialization [20]

is used for network initialization. The hyper-parameters in

the loss function Eq. (15) are set as α1 = 30, α2 = 5, α3 =
10−3. The hyper-parameter μ for dynamic range compres-

sion Eq. (5) is set as 5000.

4. Experiments
We compare the proposed HDRev-Net to several state-

of-the-art HDR imaging methods, including a frame based

HDR image reconstruction method: Liu et al. [44]; the col-

ored variant of an event based HDR reconstruction method:

E2VID [60]; two event guided HDR image reconstruc-

tion methods: Han et al. [24] and eSL-Net [72]; and two-

exposure-based methods [9, 42].

4.1. Evaluation on synthetic data
Metrics. We adopt the HDR-VDP-3 (“VDP” for short),

the updated version of HDR-VDP [46], to evaluate the qual-

ity of reconstructed HDR images frame by frame. For eval-

uating the quality of HDR videos, we use HDR-VQM [52]

(“VQM” for short), which is computed based on a spatio-

temporal analysis related to human eye fixation behavior

during video viewing. We also adopt commonly used peak

signal-to-noise ratio (PSNR), structural similarity (SSIM),

and the perceptual error with learned perceptual image

patch similarity (LPIPS) [78] metrics as reference.

Results. The quantitative results are reported in Table 1.

For the two-exposure-based method Li et al. [42], we only

calculate the PSNR, SSIM, and LPIPS since it only output

tone-mapped HDR images which can not be used to calcu-

late VDP and VQM in the linear domain. We generate two-

exposure frame sequences for all the two-exposure-based

Table 1. Comparisons on synthetic data. ↑ (↓) means higher

(lower) is better.

Methods PSNR↑ SSIM↑ LPIPS↓ VDP↑ VQM↓
eSL-Net [72] 16.575 0.713 0.413 5.903 0.467

E2VID [60] 13.734 0.589 0.451 4.143 0.343

Liu et al. [44] 23.159 0.901 0.104 7.543 0.107

Han et al. [24] 20.697 0.861 0.208 6.709 0.243

Debevec et al. [9] 23.596 0.877 0.264 6.192 0.264

Li et al. [42] 20.673 0.890 0.151 - -

Ours 24.071 0.928 0.110 8.108 0.103

methods with an exposure ratio setting that takes a reason-

able balance between the dynamic range covered and the

details preserved. The proposed method outperforms exist-

ing methods in terms of all metrics.

The visual quality comparisons are shown in Fig. 51. In

over/under-exposed regions of the LDR input, most of the

details have been lost due to dynamic range clipping. Both

frame-based [44] and event-based [60] approaches cannot

restore lost information to produce high-quality HDR im-

ages. In particular, E2VID [60] produces severe artifacts

and distorted color in the reconstructed HDR frames. Han et
al. [24] converted one modality into another explicitly (i.e.,
events to intensity) at first, which leads to stripe-like ar-

tifacts and cannot restore natural color appearance. eSL-

Net [72] mainly focuses on LDR input and cannot fuse the

two modalities well. The performance of Li et al. [42]

heavily depends on the selected exposure ratio. As shown

in Fig. 52, even with the optimal exposure ratio, the results

of Li et al. presents insufficient details (e.g., on the stones

and windows). In comparison, the HDRev-Net effectively

fuses the two modalities of visual information and success-

fully recovers the lost details, with no need to balance the

exposure ratio for varying scenes captured by videos.

4.2. Evaluation on real data

Fig. 6 shows the reconstructed HDR frames on real-

world scenarios captured by a hybrid-camera system. We

build the hybrid camera system by using a beam-splitter

to divide the incident light equivalently into two sensors,

i.e., an event camera (DAVIS346 Color) and an industrial

camera (FLIR Chameleon 3 Color). Both of them share a

similar field of view (FoV). To achieve spatial alignment

between the two sensors, we crop the corresponding part of

RGB frames w.r.t. the event sensor. With synchronized trig-

gering, the hybrid camera system is able to capture aligned

LDR frames and events simultaneously.

As shown in the HDR frame reconstruction results of

1We provide results of one method per category due to the space limit.

Please refer to the supplementary materials to complete reconstruction re-

sults on synthetic data.
2The detailed analysis to exposure ratios are shown in supplementary

materials.
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OursLDR frame Han et al. [23]Ground truth E2VID [55]Liu et al. [41]Events

9.162 7.798 8.241 5.181

9.504 7.636 5.684 3.710

Li et al. [40]
Figure 5. Visual quality comparisons on synthetic data. The Q-scores (higher the better) of VDP metrics are labeled in each image.

LDR frame Han et al. [23] Liu et al. [41] E2VID [55] eSL-Net [64]OursEvents
Figure 6. Visual quality comparisons on real-world data. The test samples here are under- and over-exposure cases respectively.

real-world data in Fig. 6, HDRev-Net can reconstruct HDR

frames with a wider dynamic range and more details.

4.3. Results of HDR video reconstruction
The information lost in over/under-exposed regions of

LDR frames is recorded in events. However, it is unsta-

ble for HDR video reconstruction since events are triggered

with irradiance changes, rather than absolute values as in

LDR frames. HDR video reconstruction in a frame-by-

frame manner suffers from flickering effects since tempo-

ral connections between consecutive frames are not consid-

ered. In the proposed method, recurrent architectures are

utilized in the encoders to better maintain the model tem-

poral correlation between frames. Thanks to these compo-

nents, the proposed HDRev-Net effectively suppresses the

flickering effects in the reconstructed HDR videos3.

3Please refer to the supplementary video for details.

4.4. Ablation study
To validate the effectiveness and necessity of the three

components of the proposed HDRev-Net, we compare

it with its three variants. The quantitative results are

shown in Table 2, and the qualitative results are shown

in Fig. 3, Fig. 7, Fig. 8, respectively.

Effectiveness of multimodal representation alignment
technique. We compare the proposed multimodal rep-

resentation alignment strategy with joint training the

pipeline Eq. (6) in an end-to-end manner, which is denoted

by “Joint training” in Table 2. It can be seen that a per-

formance drop occurs when the three networks are jointly

trained, especially in terms of PSNR. As shown in Fig. 7 ,

there are severe halo artifacts in over-exposed regions of the

LDR in the results of “Joint” training, especially the con-

tours of the cables and the pylons. Due to the domain gap

between LDR frames and stacked events, jointly training
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Table 2. Results of ablation study. ↑ (↓) means higher (lower) is

better.

Setting PSNR↑ SSIM↑ LPIPS↓ VDP↑ VQM↓
Joint training 22.185 0.911 0.162 7.871 0.120

W/o fusion 19.436 0.867 0.214 7.024 0.175

W/o LSTM 21.463 0.891 0.197 7.166 0.173

Complete model 24.071 0.928 0.110 8.108 0.103

Figure 7. Comparisons between “Joint” training and “Complete”

model. HL (HE) denotes the network output with encoder FE

(FL) disabled by setting input to zero.
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Figure 8. Comparison between “W/o LSTM” and “Complete”

model. The results of consecutive frames are shown in eight

columns. The animations are shown on our project page.

the whole pipeline cannot well utilize the HDR information

in events, which is recorded in a different way from the in-

tensity values in LDR frames.

Effectiveness of the confidence guided multimodal fu-
sion module. To verify the effectiveness of the proposed

confidence guided multimodal fusion module, we replace

the fusion module with a convolution layer with kernel size

3×3 and “relu” activation fed by concatenated FL, FE in the

“W/o fusion” variant. As shown in Table 2, its performance

is worse than the proposed one in terms of all metrics. As

shown in Fig. 3, the proposed module can better leverage

the information from both modalities and reconstruct HDR

images with more details (e.g., the details of the shrub at the

lower-left and the texture of the mountain) and less artifact

(e.g., the top-left corner). In comparison, the lost details in

over-exposed regions cannot be well restored without the

fusion module. The convolution layer lacks the ability to

dynamically highlight local regions and feature maps that

provide more information from one of the two modalities,

which makes the recovering of global characteristics such

as color and brightness worse than the proposed one.

Effectiveness of the temporal context encoding module.
We evaluate the contribution of the recurrent connections in

the proposed temporal context encoders by removing them

in a “W/o LSTM” variant. As shown in Table 2, it performs

the worst due to the absence of recurrent connections, es-

pecially in terms of VQM that reflects the temporal quality

of the reconstructed HDR videos. As shown in Fig. 8, in-

formation lost in the over-exposed switch (e.g., the flicker-

ing effects pointed out by the yellow arrows) can hardly be

restored since there is no event at this timestamp. How-

ever, the complete model with recurrent connections can

recover fine details and textures from the previous frame,

which suppresses flickering effects effectively.

5. Conclusion
In this paper, we present a multimodal learning frame-

work for reconstructing HDR videos from hybrid inputs of

LDR videos and events. There are three components in the

proposed method: a multimodal representation alignment

strategy for aligning LDR frames and events in a learned

shared latent space, a confidence guided multimodal fu-

sion module for adaptively integrating complementary in-

formation from the two modalities, and a temporal con-

text encoding module for suppressing the flickering effects

by exploiting the temporal correlation between consecutive

frames and stacked events. The effectiveness of the pro-

posed method in the task of event guided HDR video re-

construction is verified by extensive experiments on both

synthetic and real-world data.

Limitations. The proposed method aims at HDR video

reconstruction under the guidance of HDR information pro-

vided by events. However, events contain inherent noise

distributed differently from that of frames, which can lead

to artifacts in the reconstructed HDR video, especially in

low-light conditions. Moreover, due to the requirement of

aligned spatial resolution of the hybrid inputs and low res-

olution of the chosen event camera (DAVIS346C), the pro-

posed method has a limited ability for high-resolution HDR

video reconstruction. Replacing the chosen event cam-

era with a higher resolution one(e.g., Prophesee EVK4-HD

with a spatial resolution of 720×1280) and better low-light

perception might further improve the performance.
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