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Abstract

Existing few-shot segmentation methods are based on
the meta-learning strategy and extract instance knowledge
from a support set and then apply the knowledge to seg-
ment target objects in a query set. However, the extracted
knowledge is insufficient to cope with the variable intra-
class differences since the knowledge is obtained from a
few samples in the support set. To address the problem,
we propose a multi-information aggregation network (MI-
ANet) that effectively leverages the general knowledge, i.e.,
semantic word embeddings, and instance information for
accurate segmentation. Specifically, in MIANet, a general
information module (GIM) is proposed to extract a general
class prototype from word embeddings as a supplement to
instance information. To this end, we design a triplet loss
that treats the general class prototype as an anchor and
samples positive-negative pairs from local features in the
support set. The calculated triplet loss can transfer seman-
tic similarities among language identities from a word em-
bedding space to a visual representation space. To alle-
viate the model biasing towards the seen training classes
and to obtain multi-scale information, we then introduce a
non-parametric hierarchical prior module (HPM) to gener-
ate unbiased instance-level information via calculating the
pixel-level similarity between the support and query image
features. Finally, an information fusion module (IFM) com-
bines the general and instance information to make pre-
dictions for the query image. Extensive experiments on
PASCAL-5i and COCO-20i show that MIANet yields supe-
rior performance and set a new state-of-the-art. Code is
available at github.com/Aldrich2y/MIANet.

1. Introduction
The challenge of few-shot semantic segmentation (FSS)

is how to effectively use one or five labeled samples to seg-
ment a novel class. Existing few-shot segmentation meth-
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Figure 1. Comparison between (a) existing FSS methods and (b)
proposed MIANet. (a) Existing methods extract instance-level
knowledge from the support images, which is not able to cope with
large intra-class variation. (b) our MIANet extracts instance-level
knowledge from the support images and obtains general class in-
formation from word embeddings. These two types of information
benefit the final segmentation.

ods [28, 30, 33, 37] adopt the metric-based meta-learning
strategy [26, 29]. The strategy is typically composed of
two stages: meta-training and meta-testing. In the meta-
training stage, models are trained by plenty of independent
few-shot segmentation tasks. In meta-testing, models can
thus quickly adapt and extrapolate to new few-shot tasks of
unseen classes and segment the novel categories since each
training task involves a different seen class.

As shown in Figure 2, natural images of same categories
have semantic differences and perspective distortion, which
leads to intra-class differences. Current FSS approaches
segment a query image by matching the guidance informa-
tion from the support set with the query features (Figure 1
(a)). Unfortunately, the correlation between the support im-
age and the query image is not enough to support the match-
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Chair Bird Bird Aeroplane

(a) (b)  Perspective distortionSemantic differences

Figure 2. We define two types of intra-class variation. (a) The
object in each column has the same semantic label but belongs to
different fine-grained categories. (b) The object belonging to the
same category differs greatly in appearance due to the existence of
perspective distortion.

ing strategy in some support-query pairs due to the diversity
of intra-class differences, which affects the generalization
performance of the models. On the other hand, modules
with numerous learnable parameters are devised by FSS
methods to better use the limited instance information. And
lots of few-shot segmentation tasks of seen classes are used
to train the models in the meta-training stage. Although cur-
rent methods freeze the backbone, the rest parameters will
inevitably fit the feature distribution of the training data and
make the trained models misclassify the seen training class
to the unseen testing class.

To address the above issues, a multi-information ag-
gregation network is proposed for accurate segmentation.
Specifically, we first design a general information module
(GIM) to produce a general class prototype by leveraging
class-based word embeddings. This prototype represents
general information for the class, which is beyond the sup-
port information and can supplement some missing class
information due to intra-class differences. As shown in Fig-
ure 1 (b), the semantic word vectors for each class can be
obtained by a pre-trained language model, i.e., word2vec.
Then, GIM takes the word vector and a support prototype
as input to get the general prototype. Next, a well-designed
triplet loss [25] is applied to achieve the alignment be-
tween the semantic prototype and the visual features. The
triplet loss extracts positive-negative pairs from local fea-
tures which distinguishes our method from other improved
triplets [3,4,11]. The semantic similarity between the word
embeddings in a word embedding space can therefore be
transferred to a visual embedding space. Finally, the pro-
jected prototype is supplemented into the main branch as
the general information of the category for information fu-
sion to alleviate the intra-class variance problem.

Moreover, to capture the instance-level details and allevi-

ate the model biasing towards the seen classes, we propose
a non-parametric hierarchical prior module (HPM). HPM
works in two aspects. (1) HPM is class-agnostic since it
does not require training. (2) HPM can generate hierarchi-
cal activation maps for the query image by digging out the
relationship between high-level features for accurate seg-
mentation of unseen classes. In addition, we build informa-
tion channels between different scales to preserve discrim-
inative information in query features. Finally, the unbiased
instance-level information and the general information are
aggregated by an information fusion module (IFM) to seg-
ment the query image. Our main contributions are summa-
rized as follows:
(1) We propose a multi-information aggregation network

(MIANet) to aggregate general information and unbi-
ased instance-level information for accurate segmenta-
tion.

(2) To the best of our knowledge, this is the first time to
use word embeddings in FSS, and we design a general
information module (GIM) to obtain the general class
information from word embeddings for each class.
The module is optimized through a well-designed
triplet loss and can provide general class information
to alleviate intra-class differences.

(3) A non-parametric hierarchical prior module (HPM) is
proposed to supply MIANet with unbiased instance-
level segmentation knowledge, which provides the
prior information of the query image on multi-scales
and alleviates the bias problem in testing.

(4) Our MIANet achieves state-of-the-art results on two
few-shot segmentation benchmarks, i.e., PASCAL-5i

and COCO-20i. Extensive experiments validate the ef-
fectiveness of each component in our MIANet.

2. Related work

Few-Shot Semantic Segmentation. Few-shot semantic
segmentation (FSS) is proposed to address the dependence
of semantic segmentation models on a large amount of an-
notated data. Current FSS methods are based on metric-
based meta-learning and can be largely grouped into two
types: prototype-based methods [5, 15, 30, 34, 39, 40] and
parameter-based methods [14, 18, 31, 32, 36, 38]. The
prototype-based methods use a non-parametric metric tool,
e.g., cosine similarity or euclidean distance, to calculate
segmentation guidance. And non-parametric metric tools
alleviate overfitting. The parameter-based FSS methods
employ learnable metric tools to explore the relationship be-
tween the support and query features. For instance, BAM
[14] proposes a base learner to avoid the interference of base
classes in testing and achieve the state-of-the-art perfor-
mance. Current methods can effectively segment the target
area of novel classes when samples of the classes are lim-
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ited. However, these methods only extract instance knowl-
edge from the limited support set, and cannot segment some
support-query pairs with large intra-class differences as de-
tailed in Figure 2. For this problem, we propose a multi-
information aggregation network, which extracts instance
information and learns general class prototypes from word
embeddings to alleviate the intra-class differences.

Intra-Class Differences. The intra-class differences prob-
lem is a key factor affecting the performance of the few-shot
segmentation. Previous methods try to mine more support
information to alleviate this issue. [21] dynamically trans-
forms a classifier trained on the support set to each query
image. [7, 20] produce a pseudo query mask based on the
support information to capture more self-attention informa-
tion of the query image. But the performance gain is re-
stricted since the support set is limited. In zero-shot learn-
ing (ZSL), semantic information is used to generate visual
features for unseen classes [1, 2, 8, 12, 35], so that the mod-
els recognize the unseen classes. The achievement in ZSL
demonstrates that word embeddings contain the general se-
mantic information of categories, which inspires us to inte-
grate class-based semantic information [13, 22] to supple-
ment the missing information when the features in the sup-
port set and in the query set don’t match.

3. Methodology

3.1. Problem Definition

We define two datasets, Dtrain and Dtest, with the cat-
egory set Ctrain and Ctest respectively, where Ctrain ∩
Ctest = ∅. The model trained on Dtrain is directly trans-
ferred to evaluate on Dtest for testing. Besides, each cate-
gory c ∈ Ctrain ∪ Ctest is mapped through the word em-
bedding to a vector representation W [c] ∈ Rd, where d
is the dimension of W [c]. In line with previous works
[28], we train the model in an episode manner. Each
episode contains a support set S, a query set Q and a
word embedding map W . Under the K-shot setting, each
support set S =

{
Xi

s,M
i
s

}K

i=1
, includes K support im-

ages Xs and corresponding masks Ms, and each query set
Q = {Xq,Mq}, includes a query image Xq and a corre-
sponding mask Mq . The training set Dtrain and test set
Dtest are represented by Dtrain = {(Si, Qi,W )}Ntrain

i=1

and Dtest = {(Si, Qi,W )}Ntest

i=1 , where Ntrain and Ntest

is the number of episodes for training and test set. During
training, the support masks Ms and query masks Mq are
available, and the Mq is not accessible during testing.

3.2. Method Overview

As shown in Figure 3, our multi-information aggrega-
tion network includes three modules, i.e., hierarchical prior
module (HPM), general information module (GIM), and

information fusion module (IFM). Specifically, given the
support and query images Xs and Xq , a common back-
bone with shared weights is used to extract both middle-
level [37] and high-level features [28]. We then employ
HPM whose task is to produce unbiased instance-level in-
formation Mins of the query image by using labeled sup-
port instances. Meanwhile, GIM is introduced to generate
general class information which aims to make up for the
insufficiency of instance information. At last, we pass the
instance information and general information to an infor-
mation fusion module to aggregate into the final guidance
information and then make predictions for the query image.

3.3. Hierarchical Prior Module

Few-shot semantic segmentation models are trained on
labeled data of seen classes, which makes it inclined for
trained models to misjudge seen training categories as un-
seen target categories. Moreover, current approaches usu-
ally resort to well-designed modules with numerous learn-
able parameters in order to maximize the use of limited
support information. Inspired by [28], we propose a non-
parametric hierarchical prior module (HPM) to capture the
unbiased instance information from a few labeled samples
in an efficient way. HPM leverages the high-level features
(e.g., layer 4 of ResNet50) from the support set and query
set to generate prior information, which is a rough localiza-
tion map of the target object in the query image. Moreover,
we compute prior information at multiple different scales
that provide rich guidance for objects of varying sizes and
shapes. In order to avoid the loss of discriminative infor-
mation when the query features are extended to different
scales, we establish information channels between different
scales.

Specifically, HPM takes as input the high-level sup-
port features fh

s ∈ Rc×h×w, the corresponding binary
mask Ms ∈ RH×W , and the high-level query features
fh
q ∈ Rc×h×w, where c is the channel dimension, h (H),

w (W) are the height and width of the features and the
mask. Empirically [28], we define the instance-level infor-
mation as Mins =

{
mi

ins

}4

i=1
, mi

ins ∈ Rc×hi×wi , and
hi > hj , wi > wj , when i < j, h1 = h,w1 = w.

To obtain the m1
ins, we first filter out the background

elements in the support features via

fh
s = fh

s ⊗ I(Ms, f
h
s ) (1)

where I(Ms, f
h
s ) down- or up-samples the Ms to a spa-

tial size as the fh
s by interpolation, ⊗ means the Hadamard

product. Next, we reshape the fh
s and fh

q to a size of
(c × hw). The pixel-wise cosine similarity Aq between fh

s

and fh
q is calculated as

Aq =
(fh

q )
T fh

s

||fh
q || ||fh

s ||
∈ Rh1w1×h1w1 (2)
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Figure 3. The overall architecture of our proposed multi-information aggregation network.

We then take the mean similarity in the support (second)
dimension as the activation value and pass the Aq into a
min-max normalization (Fnorm) to get the m1

ins.

m1
ins = Fnorm(mean(Aq)) ∈ Rh1×w1 (3)

In order to extend to the next scale, i.e., (h2, w2), the
pooling operation is needed to down-sample the fh

q . We
use the weighted average pooling to add information chan-
nels between different scales since discriminative details are
prone to be ignored by the average pooling

fh
q = Fpool(f

h
q ⊗m1

ins) ∈ Rc×h2×w2 (4)

where Fpool is the average pooling. Then the high-level
support features in the next stage can be computed by

fh
s = I(fh

s , f
h
q ) ∈ Rc×h2×w2 (5)

Finally, prior information m2
ins can be obtained by using

equation 1 - 3, and
{
mi

ins

}4

i=1
can be calculated after four

stages.

3.4. General Information Module

One of the main challenges of few-shot semantic seg-
mentation is the intra-class differences as shown in Figure
2. Current methods aim to address this problem by thor-
oughly excavating the relationship between instance sam-
ples and the query image, i.e., digging out the instance-level
information. But this can only solve some highly correlated
support-query pairs. For instance, in the case of Figure 2
(1st and 2nd columns), objects in the support image and the
query image have similar local features despite belonging
to different fine-grained categories, such as the legs of the

chair, the feathers, and the body of the bird. But in Figure
2 (b), due to the existence of perspective distortion, some
local features (the part in the red box) are lost, and it is dif-
ficult for the model to segment the query image according
to the incomplete support sample.

To counter this, a general information module (GIM) is
used to extract language information from word embed-
dings to generate a general class prototype, and a triplet
loss is designed to optimize this module. GIM contains two
components: general information generator (GIG) and lo-
cal feature generator (LFG). GIG takes the foreground pro-
totype obtained from the support set and the category se-
mantic vector obtained from the semantic label as input,
and generates a general class prototype. LFG takes the
mid-level support features as input and generates region-
related local features to collect positive-negative pairs to
form triplets.

Specifically, we input the category word (e.g., aero-
plane) to the pre-trained word2vec to obtain a vector rep-
resentation w ∈ R1×d.

w = Fword2vec(word) (6)

where Fword2vec(.) represents generating vector represen-
tation from the word embeddings according to word.

Next, masked average pooling is applied on the support
features fs ∈ Rc×h×w to get a foreground class prototype
p ∈ R1×c as

p = Fpool(fs ⊗ I(Ms, fs)) (7)

Then, we input the foreground class prototype p and the
word vector w into GIG to produce a general class prototype
pgen ∈ R1×c

pgen = FGIG(w ⊕ p) (8)

7134



where ⊕ is the concatenation operation in channel dimen-
sion, FGIG(.) means producing the general information,
GIG consists of two fully connected layers.

The obtained prototype pgen represents the general and
complete information for a specific category, which is ex-
pected to distinguish whether a local feature belongs to
the category. To achieve this, we set pgen as the anchor,
and then sample pairs of positive and negative from local
features to calculate the triplet loss. Different from pixel-
level features, local features are region-related and repre-
sent part of the semantic information of categories, such as
the tail, head, torso, and other features. We design a local
feature generator (LFG) which consists of three convolu-
tional blocks and reduces the size of the support features by
a factor of 4 to obtain regional features. A regional vector
v ∈ R1×c in the regional features freg can represent an area
in the original image, i.e., a local feature representation.

freg = Fhw×c
reshape(FLFG(fs)) ∈ Rhw×c (9)

where FLFG(.) indicates generating the local information,
and Fhw×c

reshape(.) means reshaping the input to a spatial size
of (hw × c). We then use support mask Ms ∈ RH×W for
feature selection, which separates the foreground and back-
ground regional vectors into two different sets, i.e., Vfg ={
vifg

}n1

i=1
, Vbg =

{
vibg

}n2

i=1
, vbg, vfg ∈ R1×c, n1 + n2 =

hw.

M̂s = Fhw×1
reshape(I(Ms, freg)) ∈ Rhw×1 (10)

Vfg = Findex(M̂
k
s == 1, fk

reg) k ∈ {1, 2, ..., hw} (11)

Vbg = Findex(M̂
k
s == 0, fk

reg) k ∈ {1, 2, ..., hw} (12)

where Findex(M̂
k
s , f

k
reg) indicates that when M̂k

s is 1, add
the corresponding vector fk

reg to Vfg , otherwise, add it to
Vbg . Next, we average the Vbg to get negative sample since
the elements in the background of the support images are
very complex and are hard to use [30].

negative =

∑n2

i (vibg)

n2
, vibg ∈ Vbg (13)

The positive samples are the foreground regional vectors
in Vfg . Similar to [11], we calculate the hardest sample,
which has the farthest distance from the anchor, to obtain
the positive vector for better optimization.

positive = argmax
vi
fg

(Fd(pgen, v
i
fg)), vifg ∈ Vfg (14)

where Fd is the l2 distance function. The triplet loss Ltriplet

is

Ltriplet = max(Fd(pgen, positive) +margin

−Fd(pgen, negative), 0)
(15)

where margin is a fixed value (0.5) to keep negative samples
far apart.

By calculating the distance among triplets (anchor, fore-
ground local features, background local features), the se-
mantic information of the anchor and the visual information
of local features are aligned, and the relationship among dif-
ferent word vectors can also be converted to visual embed-
ding space to provide additional general information to alle-
viate the intra-class differences even some features are lost
due to perspective distortion in Figure 2 (b). In addition, the
triplet loss encourages the GIG to learn better general pro-
totypes (anchor) to distinguish fine-grained local features
(positive) of the same category from background features
(negative).

3.5. Prediction and Training Loss

The instance-level information Mins and general in-
formation pgen are aggregated as guidance information
through the information fusion module (IFM) to supervise
the segmentation of query images. In order to seek more
contextual cues, we utilize the FEM [28] structure as our
information fusion module. As shown in Figure 3, the mid-
level query feature fq , instance information Mins and gen-
eral class information pgen are input to IFM. The fq and
pgen are first expanded to four scales

{
pigen

}4

i=1
,
{
f i
q

}4

i=1
,

according to the size of Mins.

f i
q = I(fq,mi

ins) ∈ Rc×hi×wi , i = {1, 2, 3, 4} (16)

pigen = Fexpand(I(pgen,mi
ins)) ∈ Rc×hi×wi (17)

where Fexpand(.) means expanding the in-
put in channel dimension. We then input the{
mi

ins

}4

i=1
,
{
pigen

}4

i=1
,
{
f i
q

}4

i=1
to FEM to compute

the binary intermediate predictions Yinter =
{
yi
}4

i=1
and

final prediction Y , where Y, yi ∈ RH×W .
The training loss has two parts, namely the segmentation

loss and the triplet loss. The segmentation loss is calculated
using multiple cross-entropy functions, with Lseg1 on the
intermediate predictions Yinter and Lseg2 on the final pre-
diction Y . The triplet loss is computed from the hardest
triplet, as shown in equation 15. The final loss is

L = Lseg1 + Lseg2 + Ltriplet (18)

3.6. Extending to K-Shot Setting

The above discussions focus on the 1-shot setting. For
the K-shot setting, K support samples

{
Xi

s,M
i
s

}K

i=1
are

available. Our method can be easily extended to the K-shot
setting. First, K sets of instance information

{
M i

ins

}K

i=1
are

computed respectively using the K samples. We then aver-
age the instance information separately at different scales to

get M̂ins =
{
m̂j

ins

}4

j=1
for the subsequent process.
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m̂j
ins =

1

K

K∑
i=1

mj;i
ins (19)

In addition, the K prototypes obtained by Equation 7 are
also averaged. Finally, the local feature freg will be ob-
tained from the union of K support features through equa-
tion 9.

4. Experiments

4.1. Experimental Settings

Datasets. Experiments are conducted on two commonly
used few-shot segmentation datasets, PASCAL-5i and
COCO-20i, to evaluate our method. PASCAL-5i is created
from PASCAL VOC 2012 [6] with additional annotations
from SBD [9]. The total 20 classes in the dataset are evenly
divided into 4 folds i ∈ {0, 1, 2, 3} and each fold contains
5 classes. The COCO-20i is proposed by [24], which is
conducted from MSCOCO [16]. Similar to PASCAL-5i, 80
classes in COCO-20i are partitioned into 4 folds and each
fold contains 20 classes.
Metric and Evaluation. We follow the previous meth-
ods and adopt the mean intersection-over-union (mIoU)
and foreground-background IoU (FB-IoU) as the evaluation
metrics. The FB-IoU results are listed in the supplementary
material. During testing, we follow the settings of PFENet
to make the experimental results more accurate. Specifi-
cally, five different random seeds are set for five tests in
each experiment. In each test, 1000 and 5000 support-query
pairs are sampled for PASCAL-5i and COCO-20i respec-
tively. We then average the results of five tests for each
experiment.
Implementation Details. Following [14, 21], we first
train the PSPNet [40] to obtain a feature extractor (back-
bone) based on the seen training classes for each fold, i.e.,
16/61 training classes (including background) for PASCAL-
5i/COCO-20i. Next, we fix the parameters of the trained
feature extractor and use a meta-learning strategy to train
the remaining structures. These structures are optimized us-
ing the SGD optimizer, trained for 200 epochs on PASCAL-
5i and 50 on COCO-20i. The learning rate and batch size
are 5e-3 and 4, respectively. And we use the word2vec
model learned on google news to obtain d (300) dimen-
sional word vector representations. The word embeddings
of categories that contain multiple words are obtained by
averaging the embeddings of each individual word.
Baseline. As shown in Figure 3, we first remove the HPM
and GIM from the MIANet. Then we replace the gen-
eral class information pgen in the information fusion mod-
ule with the instance prototype p to establish the baseline.
The rest of the experimental settings are consistent with MI-
ANet.

4.2. Comparison with State-of-the-Arts

PASCAL-5i. Table 1 shows the mIoU performance com-
parison on PASCAL-5i between our method and several
representative models. It can be seen that (1) MIANet
achieves state-of-the-art performance under the 1-shot and
5-shot settings. Especially for the VGG16 [27] backbone,
we surpass BAM [14], which holds the previous state-of-
the-art results, by 2.69% and 3.23%. (2) MIANet outper-
forms the baseline with a large margin. For example, when
VGG16 is the backbone, MIANet and the baseline model
achieve 67.10% and 61.11% respectively. Compared with
ResNet50 [10], VGG16 provides less information that is
useful for segmentation, so the extra information is more
valuable. After adding the detailed general and instance
information generated by the GIM and HPM to the base-
line model, better performance improvement occurs than
ResNet50.
COCO-20i. COCO-20i is a more challenging dataset that
contains multiple objects and shows greater variance. Ta-
ble 2 shows the mIoU performance comparison. Over-
all, MIANet surpasses all the previous methods under 1-
shot and 5-shot settings. Under the 1-shot setting, MI-
ANet leads BAM by 2.19% and 1.43% on VGG16 and
ResNet50. Meanwhile, our method outperforms the base-
line by 9.45%, and 7.76%, which demonstrate the superior-
ity of our method, despite the challenging scenarios.
Qualitative Results. We report some qualitative results
generated from our MIANet and baseline model on the
PASCAL-5i and COCO-20i benchmarks. Compared with
the baseline, MIANet exhibits the following advantages as
shown in Figure 4. (1) MIANet can more accurately seg-
ment the target class, while the baseline incorrectly seg-
ments the seen classes as the target classes (1st to 3rd
columns). (2) MIANet can mine similar local features for
different fine-grained categories to address the intra-class
variance problem caused by semantic differences, i.e., sail-
boat/small boat, chair/sofa chair, and eagle/owl in the 4th,
5th and 6th columns respectively. (3) MIANet can provide
general information that is missing in the support image (7th
to 9th columns), i.e., the intra-class variance caused by per-
spective distortion.

4.3. Ablation study

We conduct extensive ablation studies on PASCAL-5i

under the 1-shot setting to validate the effectiveness of our
proposed key modules, i.e., HPM, and GIM. Note that the
experiments in this section are performed on PASCAL-5i

dataset using VGG16 backbone. Moreover, we provide ex-
periment details and extra experiments in Supplementary
Materials.
Components Analysis. Table 3 shows the impact of each
component on the model performance. Overall, using the
two components proposed in this paper improves the base-
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Table 1. Performance comparison on PASCAL-5i in terms of mIoU. The best and second best results are highlighted with bold and
underline, respectively.

1-shot 5-shotBackbone Methods Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean
PFENet(TPAMI’20) [28] 56.90 68.20 54.40 52.40 58.00 59.00 69.10 54.80 52.90 59.00

HSNet(ICCV’21) [23] 59.60 65.70 59.60 54.00 59.70 64.90 69.00 64.10 58.60 64.10
DPCN(CVPR’22) [17] 58.90 69.10 63.20 55.70 61.70 63.40 70.70 68.10 59.00 65.30

VGG16 BAM(CVPR’22) [14] 63.18 70.77 66.14 57.53 64.41 67.36 73.05 70.61 64.00 68.76
NTRENet(CVPR’22) [19] 57.70 67.60 57.10 53.70 59.00 60.30 68.00 55.20 57.10 60.20

Baseline 56.12 70.86 63.10 54.36 61.11 59.92 72.03 64.69 57.16 63.45
MIANet 65.42 73.58 67.76 61.65 67.10 69.01 76.14 73.24 69.55 71.99

PFENet(TPAMI’20) [28] 61.70 69.50 55.40 56.30 60.80 63.10 70.70 55.80 57.90 61.90
HSNet(ICCV’21) [23] 64.30 70.70 60.30 60.50 64.00 70.30 73.20 67.40 67.10 69.50
DPCN(CVPR’22) [17] 65.70 71.60 69.10 60.60 66.70 70.00 73.20 70.90 65.50 69.90

ResNet50 BAM(CVPR’22) [14] 68.97 73.59 67.55 61.13 67.81 70.59 75.05 70.79 67.20 70.91
NTRENet(CVPR’22) [19] 65.40 72.30 59.40 59.80 64.20 66.20 72.80 61.70 62.20 65.70

SSP(ECCV’22) [7] 60.50 67.80 66.40 51.00 61.40 67.50 72.30 75.20 62.10 69.30
Baseline 61.87 72.78 64.10 55.17 63.48 63.36 73.87 66.50 59.34 65.77
MIANet 68.51 75.76 67.46 63.15 68.72 70.20 77.38 70.02 68.77 71.59

Table 2. Performance comparison on COCO-20i in terms of mIoU.The best and second best results are highlighted with bold and underline,
respectively.

1-shot 5-shotBackbone Methods Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean
PFENet(TPAMI’20) [28] 35.40 38.10 36.80 34.70 36.30 38.20 42.50 41.80 38.90 40.40
DPCN(CVPR’22) [17] 38.50 43.70 38.20 37.70 39.50 42.70 51.60 45.70 44.60 46.20

VGG16 BAM(CVPR’22) [14] 38.96 47.04 46.41 41.57 43.50 47.02 52.62 48.59 49.11 49.34
Baseline 33.55 41.45 35.49 34.46 36.24 38.11 49.57 41.94 41.53 42.79
MIANet 40.56 50.53 46.50 45.18 45.69 46.18 56.09 52.33 49.54 51.03

HSNet(ICCV’21) [23] 36.30 43.10 38.70 38.70 39.20 43.30 51.30 48.20 45.00 46.90
DPCN(CVPR’22) [17] 42.00 47.00 43.20 39.70 43.00 46.00 54.90 50.80 47.40 49.80

ResNet50 BAM(CVPR’22) [14] 43.41 50.59 47.49 43.42 46.23 49.26 54.20 51.63 49.55 51.16
NTRENet(CVPR’22) [19] 36.80 42.60 39.90 37.90 39.30 38.20 44.10 40.40 38.40 40.30

SSP(ECCV’22) [7] 35.50 39.60 37.90 36.70 37.40 40.60 47.00 45.10 43.90 44.10
Baseline 36.07 43.97 40.23 39.34 39.90 42.79 49.42 47.41 46.08 46.43
MIANet 42.49 52.95 47.77 47.42 47.66 45.84 58.18 51.29 51.90 51.65

line by 5.99%. In the second row, HPM mines the multi-
scale instance-level information and improves the baseline
by 3.44%. Meanwhile, replacing the support prototype p
with the general prototype pgen, the baseline yields a 1.35%
performance gain. This is because GIM produces general
information, while HPM can discover pixel-level informa-
tion of instances, which is more helpful for the improve-
ment of segmentation performance. After the combination
of GIM and HPM, the instance information and general in-
formation are aggregated by IFM so that the model can alle-
viate the problem of intra-class differences, and effectively
improve the performance by 2.55% compared to the second
row.

Table 3. Ablation studies of main model components.

HPM GIM Fold-0 Fold-1 Fold-2 Fold-3 mIoU
56.12 70.86 63.10 54.36 61.11

✓ 61.58 71.80 67.06 57.75 64.55↑3.44
✓ 61.02 72.11 63.77 52.95 62.46↑1.35

✓ ✓ 65.42 73.58 67.76 61.65 67.10↑5.99

Hierarchical Prior Module. HPM uses multi-scale prior
information and establishes information channels with
weighted average pooling between different scales, which
provides instance-level prior information for MIANet. Ta-
ble 4 shows the impact of each element in HPM on the
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Figure 4. Qualitative results of our method MIANet and baseline on PASCAL-5i and COCO-20i benchmarks. Zoom in for details.

Table 4. Ablation studies of the main elements in HPM. The base-
line is equipped with GIM. ”OS” means the HPM employs the
one-scale prior information, ”MS” means the multi-scale method,
and ”IC” denotes the information channels.

OS MS IC Fold-0 Fold-1 Fold-2 Fold-3 mIoU
61.02 72.11 63.77 52.95 62.46

✓ 64.08 72.40 65.27 57.97 64.93↑2.47
✓ 64.52 73.07 67.75 61.13 66.62↑4.16
✓ ✓ 65.42 73.58 67.76 61.65 67.10↑4.64

model performance. We can see that using the proposed
multi-scale prior outperforms the one-scale method by
1.69%. This is because multi-scale instance information
can adapt to input objects of different sizes. In addition,
by establishing information paths between different scales,
the proposed weighted pooling method can also avoid los-
ing discriminative features and achieve a performance im-
provement of 0.48%.

General Information Module. Table 5 shows the impact
of main components in GIM, namely triplet loss, and word
embeddings. After removing the triplet loss, the perfor-
mance drops by 0.61%. This is because the triplet loss pulls
together similar local features and pushes away dissimilar
ones in l2 metric space, and learns better general informa-
tion representations for MIANet. Second, when we directly
remove the word embedding in Figure 3 and only use the
instance class prototype as the input of the general informa-
tion generator, the performance drops by 1.34%.

Table 5. Ablation studies of main components in GIM. The base-
line is equipped with HPM. ”TL” and ”WE” denotes the triplet
loss and word embeddings respectively.

TL WE Fold-0 Fold-1 Fold-2 Fold-3 mIoU
✓ ✓ 65.42 73.58 67.76 61.65 67.10

✓ 63.99 73.09 67.65 61.22 66.49↓0.61
✓ 63.64 71.47 67.72 60.20 65.76↓1.34

61.58 71.80 67.06 57.75 64.55↓2.55

5. Conclusion

We propose a multi-information aggregation network
(MIANet) with three major parts (i.e., HPM, GIM and
IFM) for the few-shot semantic segmentation. The non-
parametric HPM generates unbiased multi-scale instance
information at the pixel level while alleviating the predic-
tion bias problem of the model. The GIM obtains addi-
tional general class prototypes from word embeddings, as a
supplement to the instance information. A triplet loss is de-
signed to optimize the GIM to make the prototypes better al-
leviate the intra-class variance problem. The instance-level
information and general information are aggregated in IFM,
which is beneficial to more accurate segmentation results.
Comprehensive experiments show that MIANet achieves
state-of-the-art performance under all settings.
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