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Figure 1. Illustration of the free view synthesis task. Free view synthesis aims at synthesizing photo-realistic images on both interpolation
and extrapolation setting. In this paper, we propose a novel method, NeRFVS, based on the neural radiance field (NeRF) [12] to achieve
indoor scene free view synthesis. Our NeRFVS significantly reduces the distortions and floaters (as also evidenced by the PSNR numbers),
producing high-quality images on interpolation and extrapolation setting.

Abstract

We present NeRFVS, a novel neural radiance fields
(NeRF) based method to enable free navigation in a room.
NeRF achieves impressive performance in rendering im-
ages for novel views similar to the input views while suffer-
ing for novel views that are significantly different from the
training views. To address this issue, we utilize the holis-
tic priors, including pseudo depth maps and view coverage
information, from neural reconstruction to guide the learn-
ing of implicit neural representations of 3D indoor scenes.
Concretely, an off-the-shelf neural reconstruction method is
leveraged to generate a geometry scaffold. Then, two loss
functions based on the holistic priors are proposed to im-
prove the learning of NeRF: 1) A robust depth loss that can
tolerate the error of the pseudo depth map to guide the ge-
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ometry learning of NeRF; 2) A variance loss to regularize
the variance of implicit neural representations to reduce the
geometry and color ambiguity in the learning procedure.
These two loss functions are modulated during NeRF op-
timization according to the view coverage information to
reduce the negative influence brought by the view coverage
imbalance. Extensive results demonstrate that our NeRFVS
outperforms state-of-the-art view synthesis methods quanti-
tatively and qualitatively on indoor scenes, achieving high-
fidelity free navigation results.

1. Introduction
Reconstructing an indoor scene from a collection of im-

ages and enabling users to navigate inside it freely is a core
component for many downstream applications. It is the
most challenging novel-view-synthesis (NVS) task, since it
requires high fidelity synthesis from any view, including not
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only views similar to the training views (interpolation), but
also views that are significantly different from input views
(extrapolation), as shown in Fig. 1. To clarify its differ-
ence to other NVS tasks, we term it as free-view-synthesis
(FVS). The difficulties of FVS lie in not only the common
obstacles in scene reconstruction, including low-texture ar-
eas, complex scene geometry, and illumination change, but
also view imbalance, e.g., casual photos usually cover the
scene unevenly, with hundreds of frames for one table and
a few for the floor and wall, as shown in Fig. 3.

Recently, NeRF has emerged as a promising technique
for 3D reconstruction and novel view synthesis. Although
NeRF can achieve impressive interpolation performance, its
extrapolation ability is relatively poor [35], especially for
low-texture and few-shot regions. In contrast, some neural
reconstruction methods can recover the holistic scene ge-
ometry successfully with various priors [9,22,25,34], while
the synthesized images from these methods contain plenty
of artifacts and are over-smoothed. Inspired by the phe-
nomena, we demonstrate that equipping the NeRF with the
scene priors of the geometry captured from neural recon-
struction is a potential solution for indoor FVS.

Extending NeRF to enable FVS with geometry from
neural reconstruction methods is a non-trivial task with two
main challenges. 1) Depth error. The reconstructed ge-
ometry might contain some failures, including holes, depth
shifting, and floaters. The optimization of NeRF relies on
the multi-view color consistency, while these failures may
conflict with the multi-view color consistency, resulting in
artifacts. 2) Distribution ambiguity. The depth from NeRF
is a weighted sum of sampling distance. Merely supervis-
ing the depth expectation leads to arbitrary radiance distri-
bution, especially in low-texture and few-shot regions. This
ambiguous distribution leads to floaters and blur among ren-
dered images, as shown in Fig. 5.

In this paper, we propose a novel method which exploits
the holistic priors, including pseudo depth maps and view
coverage information, outputted from a geometry scaffold
to guide NeRF optimization, significantly improving qual-
ity on low-texture and few-shot regions. Specifically, to ad-
dress the depth error, we propose a robust depth loss that
can tolerate the error from the pseudo depth maps, reduc-
ing the negative impact of inaccurate geometry. As for the
distribution ambiguity, it mainly happens in the low-texture
and rarely observed areas, e.g. ceilings. We propose a vari-
ance loss to regularize the variance of the density and color
distribution to decrease the ambiguity of these areas. The
weights of these two losses are further adjusted according
to the view coverage sufficiency to reduce the negative in-
fluence brought by the view imbalance. With the geometry
priors and variance regularization, our method can signifi-
cantly reduce the floaters and distortions among low-texture
and few-shot regions, achieving high-fidelity extrapolation

performance.
Experiments on synthetic and real-world datasets

demonstrate that our method performs high-fidelity extrap-
olation by removing the distortions and floaters, signifi-
cantly outperforming other view synthesis methods. Con-
sidering the rendering quality and 3D consistency among
interpolation and extrapolation, our NeRFVS achieves new
state-of-the-art performance on indoor scene FVS.

In conclusion, our contribution can be summarized as
follows:

• A novel approach enabling neural radiance fields to
perform free view synthesis on real-world scenes at
room scale.

• A robust depth loss to address the inaccuracy of the
neural-reconstructed geometry.

• A flexible variance loss with view coverage based ad-
justment to improve the rendering quality among low-
texture and few-shot regions.

2 Related Work
Indoor Scene Rendering A classical type of method is
image-based rendering (IBR) [3], which fuses multi-view
images to output a target view image. FVS [16] and
SVS [17] created a coarse geometric scaffold via Structure
from Motion (SfM) [20] and applied an encoder-decoder
structure to extract features and map them to target views
for synthesis. However, these methods fail when few views
are provided. SIBRNet [23] proposed to recover geome-
try from sparse depth by depth completion. Some methods
focus on indoor lighting. Given a 3D mesh obtained by
multi-view stereo (MVS) reconstruction, Philip et al. [15]
employed an implicit representation of scene materials and
illumination to enable relighting and free-viewpoint naviga-
tion. PhotoScene [32] inferred spatially-varying procedural
materials and scene illumination from source images. DSR-
Net [31] extracted a global mesh from input images and
used a two-layer geometric representation to encode RGB-
D and reflection information. Recently, some methods com-
bined volume rendering into their pipeline. IBRNet [26]
fed features from source images into an MLP backbone and
produced point-wise color and density values for volume
rendering. Scalable neural scene [29] allocated tiles on a
global mesh proxy. Each tile encoded surface and reflection
representations, which were summed via volume rendering
to produce the final rendering results. Compared with pre-
vious methods, our method achieves indoor scene free nav-
igation without ground truth mesh nor RGB-D sensors.
NeRF with Depth and Regularization

NeRF [12] generates accurate geometry under dense
multi-view supervision, but struggles with sparse views and
unbounded regions, leading to inaccurate depth values and
“floaters” in renderings. Previous methods have proposed
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Figure 2. Overview of NeRFVS. From left to right, we first generate a geometry scaffold via an off-the-shelf neural reconstruction method,
then we get the pseudo depth and view coverage map from the scaffold. From right to left, we optimize a NeRF with regularization from
color, depth, and variance distribution along with adjustments based on view coverage.

regularization strategies to address this issue, such as ex-
plicit density constraints in InfoNeRF [11] and weight con-
solidation in Mip-NeRF 360 [2], or depth priors in RegN-
eRF [14], SinNeRF [30], DS-NeRF [6], and Dense Depth
Priors [18]. Our method constrains both depth expectation
and density distribution for more consistent visual effects.

3 Preliminaries
We make a quick review of NeRF’s rendering pipeline.

A NeRF, optimized by multi-view consistency, represents a
3D scene as the volume density and the directional emitted
radiance for any point in space. Given a camera ray param-
eterized as r(t) = o+ td that passes through the 3D scene,
the color and depth are rendered as follows:

Ĉ(r) =

∫ tf

tn

w(r(t))c(r(t),d)dt, (1)

D̂(r) =

∫ tf

tn

w(r(t))tdt, (2)

where w(r(t)) = T (t)σ(r(t)), tn and tf represent the
near and far bounds, respectively. The weights w(t) are
computed by the accumulation of transmittance T (t) =

exp (−
∫ t

tn
σ(r(s))ds), which stands for the accumulated

transmittance from tn to t. σ and c represent the volume
density and emitted color respectively. We refer to the loss
function used by NeRF as the photometric loss Lcolor:

Lcolor(r) = ∥Ĉ(r)−C(r)∥22, (3)

where the C(r) represents the color of the ray r.
Recently, instant-NGP [13] proposed to represent the

whole 3D space with multi-resolution grids stored in a hash

View Coverage MapRaw Image

90

0

Figure 3. Imbalanced view coverage for an indoor scene. The
table is captured far more times than the floor and wall.

table. Volume rendering is also applied to sum discrete val-
ues in each ray and generate the rendering results. Thanks
to this efficient structure, instant-NGP accelerates the train-
ing and inference stage of NeRF by a large margin without
obvious performance degradation. Our method can be eas-
ily integrated into instant-NGP and boost its extrapolation
performance on indoor scene rendering as well.

4 Method

Our method facilitates room-scale free view synthesis
from a human captured collection of RGB images {Ii}N−1

i=0 ,
along with cameras’ intrinsic parameters Ki ∈ R3×3 and
poses pi ∈ R6. We first generate a geometry scaffold from
off-the-shelf geometry reconstruction methods [9] using the
images and camera parameters (Sec. 4.1). Then the scene
priors from the scaffold are integrated into the optimization
of a neural radiance field with a robust depth loss to allevi-
ate the influence of scaffold error (Sec. 4.2). To decrease the
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Figure 4. Effectiveness of our robust depth loss. Using the pro-
posed robust loss, our method can recover more accurate geometry
even when the depth map is inaccurate, e.g., it helps to recover the
ceiling lamp from the wrong geometry scaffold.

ambiguity of low-texture areas, we regularize the variance
of predicted density distribution and color values along per
ray (Sec. 4.3). Finally, we propose a training strategy based
on the view coverage of each input view to adjust the inten-
sity of the depth and variance loss accordingly (Sec. 4.4).
Fig. 2 shows an overview of our method.

4.1. Geometry Scaffold and View Coverage

Our method applies a 3D geometric scaffold to guid-
ing the optimization of Nerf. To construct this scaffold,
we use the geometry from neural geometry reconstruction
methods [9, 21, 37] as they can reconstruct a complete and
smooth global mesh containing holistic priors. Specifically,
we apply the geometry produced by [9] which incorporates
Manhattan world assumptions on the structure of the scene
into the optimization process. [9] achieves smooth and co-
herent geometry reconstruction with semantic information,
especially in planar regions.

We can render depth maps and compute the view cov-
erage information with the geometry scaffold. We convert
the scene priors from the scaffold into the depth priors by
rendering distance maps {Di}N−1

i=0 ,Di ∈ RH×W×1
+ . Every

pixel’s value in the distance map represents the distance,
rather than depth, to the camera. Besides, we generate view
coverage maps {Vi}N−1

i=0 ,Vi ∈ [1, N ]H×W×1 by ray cast-
ing and shadow mapping. Concretely, we cast rays among
test views and get the corresponding positions. Then we re-
project these points into training views and use the shadow
mapping technique to consider occlusion. In this manner,
every pixel’s value of Vi represents the observed times of
this pixel among the training set.

4.2. Robust Depth Loss

In contrast to sparse and confident depth priors, we op-
timize NeRF with dense while inaccurate depth maps. If
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Figure 5. Variance regularization. We show that even with the
same expected depth and color, the density and color distribution
can vary significantly. This arbitrary distribution may not incur
errors among interpolation tasks, while causing notable artifacts in
extrapolation. Our NeRFVS uses variance regularization to reduce
this ambiguity and produces significantly better visual quality.

we directly adopt the optimization strategy from previous
methods combining NeRF and geometry, the geometry er-
ror would degrade the extrapolation performance, as shown
in Fig. 4. Inspired by [8,10], we propose a robust depth loss
to address this issue. Given a ray r(t) = o + td and its
distance value D(r) from the geometry scaffold, our robust
loss is defined as:

Lrobust(r) =

{
0.5∆D(r)2, if ∆D(r) < β

β2(0.5 + log(∆D(r)
β )), otherwise

(4)

where ∆D(r) =
∣∣∣D̂(r)−D(r)

∣∣∣ represents the absolute
depth difference, β is a constant set to 0.1 throughout the
experiments, and D̂(r) is the depth expectation along the
camera axis of r(t).

The region where the absolute depth difference is larger
than β makes the robust loss less sensitive to outliers than
L2, with corresponding gradient gradually decreasing to
zero. The Lrobust encourages NeRF to terminate rays around
the pseudo depth. At the same time, NeRF can retain some
freedom for inaccurate geometry since the gradient gets
negligible when the absolute depth difference is approach-
ing zero or very large.
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4.3. Variance Regularization

To decrease the ambiguity of low-texture and few-shot
regions, we introduce the regularization on the variance
of weight distribution w(r) and color distribution c(r,d).
D̂(r) from volume rendering is a weighted sum of sample
distance t. Thus, without sufficient constraint signal, even
if the D̂(r) is identical, the weight distribution can vary
significantly, as shown in Fig. 5. Unfortunately, low tex-
ture and few-shot regions are common in indoor scene data.
Thus, we propose to further regularize the variance of den-
sity and color distribution to inhibit the ambiguity of these
regions. Our variance regularization on weights is defined
as follows:

Lw
var(r) =

∫ tf

tn

w(r(t))
(
t− D̂(r)

)2

dt (5)

With the same weight distribution w(r) and rendered pixel
color Ĉ(r), the color of each discrete point can still vary
significantly. This issue has little influence on the interpo-
lation performance since the rays emitted at similar angles
of the training set result in similar RGB values. However,
when the novel view is significantly different from the train-
ing views, the derived color value c(r(t),d) is messy and
will cause unexpected artifacts, as shown in Fig. 5. To ad-
dress this issue, we design a variance loss on color termed
Lc

var(r), which is defined as follows:

Lc
var(r) =

∫ tf

tn

K(w(r(t)))
(
c(r(t),d)− Ĉ(r)

)2

dt (6)

where K(·) means stopping gradient.

4.4. View Coverage Adjustment

Performing indoor scene FVS encounters various re-
gions with different attributes including texture, trans-
parency, reflection and view coverage. For instance, when
modeling the ceiling which is low texture, Lambertian sur-
face and with few observations, we ought to rely more on
the pseudo depth from the geometry scaffold and increase
the variance constraint to reduce the ambiguity under pho-
tometric loss.

To address the view imbalance, we design an optimizing
strategy based on the view coverage to adjust the intensity
of the depth and variance loss. Specifically, we first use ray
tracing and shadow mapping to obtain the view coverage
map of each image from the geometry scaffold. Then we
apply different regularization weights accordingly based on
the view coverage. The optimizing strategy is defined as
follows:

λ(r) =

{
1, if V (r) > α

1 + λmax−1
α−1 (α− V (r)), otherwise

(7)

where V (r) is the view coverage of the ray r, λ(r) repre-
sents the loss term of the depth and variance regularization,
α and λmax are constants for view coverage adjustment. We
strongly regularize the depth and variance on areas whose
number of observations is less than α, serving as a powerful
supplement to the photometric loss (Eq. 3).

In summary, the total loss for optimizing each ray is:

L(r) = Lcolor(r)

+ λ(r)(λdLdepth(r) + λwLw
var(r) + λcLc

var(r))
(8)

which is a linear combination of all losses presented above
with loss weights λd, λw and λc.

5 Experiments
We conduct a series of experiments to evaluate our

method and to test whether the proposed modules enable
better FVS performance among indoor scenes.

5.1. Datasets

Barbershop. Our FVS task aims to enable 6-DOF naviga-
tion in indoor scenes, but evaluating FVS requires consid-
ering all candidate view directions and positions, which is
difficult to achieve with real-world scenes. To address this,
we created the Barbershop [1] FVS dataset using Blender’s
Cycles pathtracer [4], including interpolation and extrapo-
lation views to enable evaluation. Barbershop consists of
543 images captured in a human-like trajectory. For inter-
polation, we used one frame from every six frames. For ex-
trapolation, we grid-sampled camera positions and assigned
24 evenly distributed directions to each position.
ScanNet. ScanNet [5] is a large-scale indoor dataset with
1613 scenes, including ground truth camera intrinsics and
camera poses. We choose the scenes chosen in [9] for ex-
periments. In particular, we select the middle frames be-
tween training frames as nvs frames, which can be seen as
interpolations of the training set. For our extrapolation set-
ting, we select several trajectories different from that in the
training set to build up a more difficult test set. The ratio
of the training, interpolation and extrapolation is 2:1:1. We
show a real trajectory from “scene0050 00” in Fig .7 (b) for
further illustration.

5.2. Implementation Details and Metrics

Our implementation is based on nerf-pytorch [33] and
torch-NGP. The training is performed on one NVIDIA
RTX3090 GPU. In experiments, we normalize all cameras
to be inside a unit sphere so that the scene is bounded within
[−1, 1]

3. The image resolution in ScanNet is 468×624 af-
ter resizing and cropping dark borders, following [19]. We
train our model using Adam optimizer with an initial learn-
ing rate of 1e-3 and train the network with batches of 1024
rays for 20k iterations. α is set to 9, and λmax is set to 5
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Figure 6. Qualitative results. From top to bottom, we show the ground truth and extrapolation rendering results obtained by different
methods on the ScanNet and Barbershop datasets.

16554



Scene0050 00 Scene0084 00 Scene0580 00 Scene0616 00

Extrapolation setting ↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS

NeRF [12] 21.625 0.741 0.450 20.017 0.870 0.426 22.421 0.773 0.466 18.967 0.781 0.481
Instant-NGP [13] 20.930 0.584 0.425 15.176 0.691 0.534 19.525 0.579 0.480 18.073 0.620 0.487
DS-NeRF [7] 22.848 0.764 0.429 20.220 0.858 0.455 22.665 0.778 0.466 19.796 0.794 0.483
Dense Depth Priors [19] 22.800 0.614 0.426 19.232 0.781 0.418 22.399 0.634 0.460 19.986 0.684 0.442
NerfingMVS [28] 16.893 0.613 0.600 13.975 0.699 0.645 18.106 0.662 0.606 14.569 0.645 0.663
SVS [17] 21.231 0.732 0.314 16.878 0.859 0.367 21.575 0.783 0.319 17.530 0.795 0.406
Ours(NGP) 22.479 0.623 0.357 20.553 0.723 0.451 22.043 0.634 0.390 19.352 0.636 0.473
Ours(NeRF) 24.261 0.788 0.388 24.452 0.899 0.401 23.964 0.798 0.434 22.180 0.832 0.433

Interpolation setting ↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS

NeRF [12] 25.215 0.818 0.370 26.953 0.927 0.356 25.672 0.828 0.430 23.278 0.840 0.407
Instant-NGP [13] 24.505 0.675 0.318 21.742 0.800 0.378 23.657 0.677 0.379 21.718 0.681 0.391
DS-NeRF [7] 25.678 0.822 0.368 27.879 0.927 0.365 26.129 0.832 0.431 24.124 0.839 0.428
Dense Depth Priors [19] 24.971 0.668 0.371 22.580 0.820 0.384 24.995 0.682 0.432 21.322 0.697 0.415
NerfingMVS [28] 22.020 0.751 0.459 22.789 0.856 0.486 22.384 0.766 0.511 19.824 0.754 0.530
SVS [17] 23.937 0.830 0.239 18.899 0.901 0.302 24.308 0.844 0.252 19.443 0.829 0.341
Ours(NGP) 25.319 0.699 0.286 25.705 0.820 0.347 25.303 0.709 0.336 22.960 0.702 0.374
Ours(NeRF) 25.840 0.828 0.347 28.004 0.929 0.360 26.157 0.835 0.412 24.362 0.850 0.407

Table 1. Quantitative results on ScanNet dataset. We compare our method with NeRF-like and other rendering methods. Our method
can significantly improve the performance of both NeRF and instant-NGP.

Extrapolation Interpolation

Barbershop ↑PSNR ↑SSIM ↓LPIPS ↑PSNR ↑SSIM ↓LPIPS

NeRF [12] 24.367 0.868 0.294 32.416 0.957 0.149
Instant-NGP [13] 19.712 0.753 0.397 36.121 0.964 0.056
DS-NeRF [7] 24.105 0.866 0.313 32.081 0.952 0.174
Dense Depth Priors [19] 20.700 0.723 0.470 29.074 0.837 0.284
NerfingMVS [28] 15.577 0.616 0.635 27.265 0.897 0.247
SVS [17] 21.725 0.878 0.210 32.997 0.988 0.019
Ours(NGP) 24.276 0.833 0.235 33.756 0.959 0.052
Ours(NeRF) 26.946 0.891 0.268 32.766 0.958 0.146

Table 2. Quantitative results on Barbershop dataset.

throughout all the experiments except for relative ablation.
Besides, we prepare a relaxing stage which occupies 10%
of training iterations to fine-tune the model. For further im-
plementation details, please refer to the supplementary.

We use visual quality assessment metrics to evaluate the
performance of Free View Synthesis, including the PSNR,
the SSIM [27], and the LPIPS [36].

5.3. Comparisons with the State-of-the-art Methods

We construct our NeRFVS based on vanilla NeRF [12],
term as Ours(NeRF) and instant-NGP [13], term as
Ours(NGP) and make comparisons with NeRF-like and
other rendering methods, including a) Neural volume ren-
dering methods: NeRF and instant-NGP; b) a method with
sparse depth input: DS-NeRF [7] which uses colmap [20] to
acquire sparse depth priors; c) methods with depth comple-
tion: Dense Depth Priors [19] and NerfingMVS [28], which
get dense depth priors from sparse point clouds with com-
pletion networks; d) a method with on-surface image fea-
ture aggregation: Stable View Synthesis (SVS) [17], which
maps view-dependent features extracted from input images
to surfaces and generates images from surface features.

In Table 1 and Table 2, we report the interpolation

and extrapolation results across the test images in two
datasets. Qualitative results are shown in Figure 6. Com-
paring the baselines and ours, our method significantly im-
proves the extrapolation ability of both NeRF and instant-
NGP. Ours(NeRF) can synthesize high-fidelity images with
a consistent 3D layout compared to the baseline. Inte-
grating holistic priors and regularization on radiance dis-
tribution into the learning of a neural radiance field effi-
ciently reduces the floaters and distortions, which is a com-
mon problem in applying NeRF with indoor scenes, re-
sulting in clean and reasonable FVS performances. Con-
sidering Ours(NeRF) produces competitive performances
among interpolation settings and significantly outperforms
other methods among extrapolation settings considering
both PSNR and SSIM, our method achieves new state-of-
art performance among indoor scene FVS tasks. The ex-
trapolation ability of instant-NGP is weaker than NeRF, as
shown in Table 1, while Ours(NGP) still achieves competi-
tive performance. Considering Ours(NGP) trains and infer-
ences significantly faster than NeRF, about 8× speedup, a
spend-quality trade-off exists.

DS-NeRF leverages sparse depth with re-projection er-
ror as confidence, which is error-prone compared with the
holistic priors since the sparse depth may omit components
that rarely appear in training views (example 4, 5, Fig. 6).
NerfingMVS and Dense leverage depth completion network
to generate per-frame depth maps, which are not 3D con-
sistent compared with our geometry scaffold. Besides, the
view imbalance property makes the depth-completion per-
formance vary dramatically, leading to unstable optimiza-
tion (example 1, 2, Fig. 6). Our method takes the view im-
balance and ray regularization into consideration, resulting
in better performance on few-shot regions.
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Figure 7. Left(a): Performance along the view coverage. Right(b):
Trajectory with train, interpolation, and extrapolation viewpoints.

SVS performs well on LPIPS while synthesizing notice-
able artifacts and distortions (example 3, 4, 5, Fig. 6), which
significantly degrades the experience of indoor roaming.
The superior LPIPS performance may be attributed to the
direct supervision of an LPIPS-like perceptual loss, as dis-
cussed in [2], while our method only minimizes per-pixel
loss. SVS heavily relies on the quality of the geometry scaf-
fold. When the geometry scaffold is inaccurate, the render-
ings will be distorted. Besides, SVS runs COLMAP MVS
on training and testing images together to get their geometry
scaffold, which gives them an advantage. Our method only
relies on training images and applies a robust depth loss to
alleviate the influence of the inaccurate geometry, leading
to more consistent and high-fidelity results.

5.4. Analysis

We show that each proposed module is of critical impor-
tance to the final rendering performance in Table 3. We also
discuss the influence of different geometry scaffold sources.
Without Depth Loss. In this experiment, we replace our
robust depth loss in Eq. (4) with L2 loss. As aforemen-
tioned in Sec. 4.2, our robust depth loss can alleviate the
influence of pseudo depth error. L2 loss struggles to deal
with the inaccuracy of geometry, causing artifacts and dis-
appearance of objects, e.g., lamps, as shown in Fig. 4.
Without Var Loss. We omit the variance loss, including
the Lw

var(r) and Lc
var(r) (Eq. (5), Eq. (6)). Even with con-

sistent and dense depth priors, only depending on the depth
expectation to guide the optimization of a NeRF over poorly
textured regions or few-shot regions (e.g. ceiling) is partic-
ularly challenging since the density and color distribution is
arbitrary. This results in various artifacts when performing
extrapolation, as shown in Fig 5.
Without Adjustment. We remove the view coverage ad-
justment in this experiment, which means we treat all areas
as fully observed and apply weak depth and variance regu-
larization. In Table 3, the quantitative results show the de-
graded performance because of unbalanced regularization.
Performance Gain with View Coverage. We evaluated
the effectiveness of NeRFVS in terms of view coverage, as
shown in Fig. 7(a). The results demonstrate improvement
over all extrapolation results, particularly in regions with
insufficient view coverage, compared to NeRF.
Improvement over the scaffold. Experiments in Table.
3 shows that NeRFVS significantly outperforms DS-NeRF

↑PSNR ↑SSIM ↓LPIPS

ManhattanSDF [9] 19.776 0.775 0.570
NeRF [12] 20.758 0.791 0.456
w/o Depth Loss 23.187 0.821 0.428
w/o Var Loss 23.435 0.822 0.431
w/o Adjustment 23.172 0.821 0.429

DS-NeRF [7] + Colmap MVS 20.906 0.790 0.485
DS-NeRF + Our depth 21.385 0.800 0.464
Ours + Colmap MVS 22.771 0.817 0.439
Full model 23.714 0.829 0.414

Table 3. Ablation studies on ScanNet. We report the mean image
quality metrics among extrapolation setting with Ours(NeRF).

with our depth. Besides, DS-NeRF gains minor improve-
ment by replacing the depth from Colmap MVS with our
depth. These results prove that the improvement over prior
work mainly depends on the method, rather than the choice
of the scaffold. Though Colmap MVS is not suitable for
our NeRFVS, ours with Colmap MVS still outperforms
DS-NeRF with Colmap MVS, showing that our method is
generic and can be applied to different scaffolds.

6 Conclusion
In this study, we introduce NeRFVS, a novel method en-

abling NeRF to perform free navigation for indoor scenes.
Our method utilizes the holistic prior from a neural-
reconstructed geometric scaffold to guide the optimization
of NeRF and boosts the rendering accuracy by introducing
the depth and variance constraints with dynamical adjust-
ment. We show that the inaccuracy of the geometry scaffold
degrades the extrapolation performance and propose a ro-
bust depth loss to address this issue. Variance regularization
and view coverage-based training strategy improve the ren-
dering quality on the few shot regions. Experiments show
that NeRFVS significantly improves the extrapolation abil-
ity of NeRF-based methods. We believe our method leaps a
meaningful step toward extending NeRF to free navigation.
Limitations. NeRFVS reduces geometry errors in regions
with sufficient observations but relies on pseudo depth in
few-shot regions. This may result in poor extrapolation if
the geometry is exceptionally poor. The way we gener-
ate the view coverage map is an adequate approximation
in plainer regions. While in some extreme cases, such
as holes and thin objects, this could result in errors. Be-
sides, our view coverage only considers the number of ob-
servations, regardless of the emitting directions, which may
cause degradation in view-dependent appearance.
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