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Figure 1. Real-World Deployment: We deploy our policy in real-world environments with Stones, Stairs, Stages, Obstacles, and Unstruc-

tured Terrain. Our robot utilizes the volumetric memory of the surrounding 3D structure to successfully traverse complex environments.

Abstract

Legged robots have the potential to expand the reach of

autonomy beyond paved roads. In this work, we consider

the difficult problem of locomotion on challenging terrains

using a single forward-facing depth camera. Due to the

partial observability of the problem, the robot has to rely

on past observations to infer the terrain currently beneath

it. To solve this problem, we follow the paradigm in com-

puter vision that explicitly models the 3D geometry of the

scene and propose Neural Volumetric Memory (NVM), a ge-

ometric memory architecture that explicitly accounts for the

SE(3) equivariance of the 3D world. NVM aggregates fea-

ture volumes from multiple camera views by first bringing

them back to the ego-centric frame of the robot. We test the

learned visual-locomotion policy on a physical robot and

show that our approach, which explicitly introduces geo-

metric priors during training, offers superior performance

than more naı̈ve methods. We also include ablation studies

and show that the representations stored in the neural vol-

umetric memory capture sufficient geometric information

to reconstruct the scene. Our project page with videos is

https://rchalyang.github.io/NVM

1. Introduction

Consider difficult locomotion tasks such as walking up and

down a flight of stairs and stepping over gaps (Figure 1).

The control of such behaviors requires tight coupling with

perception because vision is needed to provide details of

the terrain right beneath the robot and the 3D scene imme-

diately around it. This problem is also partially-observable.

Immediately relevant terrain information is often occluded

from the robot’s current frame of observation, forcing it to

rely on past observations for control decisions. For this rea-

son, while blind controllers that are learned in simulation

using reinforcement learning have achieved impressive re-

sults in agility and robustness [33, 36, 38], there are clear

limitations on how much they can do. How to incorporate

perception into the pipeline to produce an integrated visuo-

motor controller thus remains an open problem.

A recent line of work combines perception with loco-

motion using ego-centric cameras mounted on the robot.

The predominant approach for addressing partial observ-

ability is to do frame-stacking, where the robot maintains

a visual buffer of recent images. This naı̈ve heuristic suf-

fers from two major problems: first, frame-stacking on a

moving robot ignores the equivariance structure of the 3D

environment, making learning a lot more difficult as pol-

icy success now relies on being able to learn to account for

spurious changes in camera poses. A second but subtler is-

sue is that biological systems do not have the ability to save

detailed visual observations pixel-by-pixel. These concerns

motivate the creation of an intermediary, short-term mem-

ory mechanism to functionally aggregate streams of obser-
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Figure 2. Overview of Simulated Environment & Real World Environment: Our simulated environments are shown on the left and

real-world environments are shown on the right. For the real-world environment, the corresponding visual observations for each real-world

environment are shown in the bottom row. All policies are trained in the simulation and transferred into the real world without fine-tuning.

vation into a single, coherent representation of the world.

Motivated by these observations, we introduce a novel

volumetric memory architecture for legged locomotion con-

trol. Our architecture consists of a 2D to 3D feature volume

encoder, and a pose estimator that can estimate the relative

camera poses given two input images. When combined,

the two networks constitute a Neural Volumetric Memory

(NVM) that takes as input a sequence of depth images taken

by a forward-looking, ego-centric camera and fuses them

together into a coherent latent representation for locomo-

tion control. We encourage the memory space to be SE(3)
equivariant to changes in the camera pose of the robot by in-

corporating translation and rotation operations based on es-

timated relative poses from the pose network. This inverse

transformation allows NVM to align feature volumes from

the past to the present ego-centric frame, making both inte-

grating over multiple timesteps into a coherent scene repre-

sentation and learning a policy, less difficult.

Our training pipeline follows a two-step teacher-student

process where the primary goal of the first stage is to pro-

duce behaviors in the form of a policy. After training com-

pletes, this policy can traverse these difficult terrains ro-

bustly, but it relies on privileged sensory information such

as an elevation map and ground-truth velocity. Elevation

maps obtained in the real world are often biased, incom-

plete, and full of errors [40], whereas ground-truth velocity

information is typically only available in instrumented en-

vironments. Hence in the visuomotor distillation stage of

the pipeline, which still runs in the simulator, we feed the

stream of ego-centric views from the forward depth cam-

era into the neural volumetric memory. We feed the content

of this memory into a small policy network and train ev-

erything end-to-end including the two network components

of the NVM using a behavior cloning loss where the state-

only policy acts as the teacher. For completeness, we offer

an additional self-supervised learning objective (Figure 4)

that relies on novel-view consistency for learning. The end

product of this visuomotor distillation pipeline is a memory-

equipped visuomotor policy that can operate directly on the

UniTree A1 robot hardware (see Figure 1). A single policy

is used to handle all environments covered by this paper.

We provide comprehensive experiment and ablation studies

in both simulation and the real world, and show that our

method outperforms all baselines by a large margin. It is

thus essential to model the 3D structure of the environment.

2. Related Work

Blind Locomotion Controllers: Legged locomotion us-

ing the proprioception of the robot has been studied for

decades [3, 16, 42, 51, 61, 68]. Traditionally, controllers

are developed with model-based methods [2, 4, 5, 9, 10, 15,

17, 59]. However, most model-based methods fail to gen-

eralize to unseen environments in the real world. In or-

der to attain better generalization and robustness, recent

works [22, 24, 25, 32, 33, 36, 48, 60, 65] utilize model-free

reinforcement learning to train neural network controllers

in simulation and directly transfer the learned policies to

the real robot. These methods are able to achieve high lev-

els of agility and adapt over diverse terrains using just the

proprioceptive state of the robot. The real-world utility of

these robots, however, is also limited, since these blind con-

trollers are unable to perceive the surrounding. In this paper,

we propose to integrate perception to facilitate control, with

a focus on a better 3D understanding of the environments.

Locomotion with Exteroceptive Perception: The ele-

vation map [12, 13, 34, 46] around the robot has been

used to perform optimization and planning for foot place-

ment [8, 11, 47, 63, 66, 71]. Recent RL controller [40, 53]

also uses elevation maps in an end-to-end manner. Using

the elevation map to represent the surrounding is straight-

forward for foot placement optimization, but the elevation

map obtained in the real world is either noisy or requires

a complicated hardware pipeline. Another option is using

depth or RGB images to provide visual observation for the

controller. Hierarchical control systems [26, 39, 55, 58, 69]

are proposed to utilize depth reading while the low-level
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Figure 3. Neural Volumetric Memory (NVM): Our NVM module extracts 3D feature volumes from every visual observation in the near

past, transform them with corresponding estimated transformation into present robot frame, and fuse the transformed feature volumes into

a neural volumetric memory for decision-making.

controllers still rely on only the proprioceptive state of the

robot. To get the most out of the depth image, Yang et

al. [67] and Imai et al. [23] propose to learn visual RL pol-

icy to output the raw joint angles and enable the robot to

maneuver in the wild avoiding different kinds of obstacles.

Agarwal et al. [1] and Loquercioo et al. [37] train a pol-

icy using RL to traverse a large variety of terrains. Though

these works show encouraging results in specific tasks, they

have not fully exploited the 3D structure of the environment.

On the other hand, we propose to train a novel neural volu-

metric memory together with policy learning, which allows

our robot to walk through more challenging terrains.

Volumetric Cognitive Map: How to represent and un-

derstand the 3D scene has been studied by the computer

vision community for a long time. Hartley et al. [20] and

Wiles et al. [64] provide representation built on geometry

principles and camera motions. Learning-based approaches

are proposed [21, 28, 29, 35, 52, 62, 64, 70] to learn 3D

representation from 2D inputs. Neural 3D representations

[14, 19, 41, 44, 45, 56, 57] has also shown great result in

multiple computer vision tasks [14, 18, 19]. Our work is

closely related to Lai et al. [35] where the deep voxel fea-

ture representing the entire scene and the camera trajectory

are learned from video clips without odometry in a self-

supervised manner. Instead of focusing on view synthesis,

we aggregate the 3D feature volume to form a short-term

memory representation for decision-making.

Teacher-Student Training: To accelerate training and

utilize the privileged information in simulation, Miki et al.

[40] follow a teacher-student training framework, where the

teacher policy is trained with privileged information and

then distilled into student policy where the privileged infor-

mation is not available. Multiple works in different research

domains [6, 7, 27, 30, 31, 43, 50] follow this framework as

well. We share a similar pipeline as [1,39] where elevation-

map-based policies are trained first and the elevation-map-

based policies are distilled visual policies afterward.

3. Volumetric Memory for Legged Locomotion

Legged locomotion using ego-centric camera views is in-

trinsically a partially-observed problem. To make the con-

trol problem tangible, our robot needs to aggregate infor-

mation from previous frames and correctly infer the oc-

cluded terrain underneath it. During locomotion, the cam-

era mounted directly on the robot chassis undergo large

and spurious changes in pose, making integrating individ-

ual frames to a coherent representation non-trivial.

To account for these camera pose changes, we propose

neural volumetric memory (NVM) — a 3D representation

format for scene features. It takes as input a sequence of

visual observations and outputs a single 3D feature volume

representing the surrounding 3D structure.

3.1. Baking­in SE(3) Equivariance in NVM

Our training procedure encourages the learned memory

space to be SE(3) equivariant by applying translation and

rotation transformations on the feature volume before ag-

gregating additional information from new observations.

As the first step (Figure 3), an encoder network receives a

sequence of consecutive observations Ot..Ot−n+1. Instead

of generating a compact feature embedding in the shape of

a tuple, the 3D encoder Enc3D extracts feature volumes

Vt..Vt−n+1. A second network Encpose estimates the rel-

ative changes in camera pose between the present frame

Ov
t and frames Ov

t ..O
v
t−n+1 from the past. This sequence

of estimate allows NVM to transform the feature volume

Vt..Vt−n+1 from the past to the present frame using the

transformations T t
t ..T

t
t−n+1. We annotate the transformed

feature volume as V̂t..V̂t−n+1. These canonicalized vol-

umes can now be aggregated together by element-wise sum

to produce a fused feature volume V̂ m
t for the surround-
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ing 3D structure. This scheme allows NVM to disentangle

the symmetry structure of the ambient 3D space from the

“content” specific to the scene. By doing so, we encourage

SE(3) equivariance in the memory space.

We provide a detailed description of all components in

our NVM module in the remaining section.

3D Encoder: Our 3D encoder Enc3D takes a 2D depth

image as input and outputs a 3D feature volume. We pa-

rameterize this encoder with a set of 2D convolution layers

followed by 3D convolution layers. Specifically, we gen-

erate a 2D feature map with the shape (C,H,W ) using 2D

convolution, then reshape the feature map channel-wise into

a volume tensor with the shape (C/D,D,H,W ). We chose

a voxel-grid size of D = 12, H = 6,W = 6. The 3D con-

volution layers are added, to further refine the 3D features.

Vi = Enc3D(Ov
i ) i = t..t− n+ 1

Pose Encoder: Our pose encoder Encpose takes two depth

images and estimates the transformation in the latent space

between two frames. Specifically, our pose encoder outputs

6D vectors representing the camera pose (rotation and trans-

lation) and we parameterize the pose encoder with a set of

2D convs. When constructing the NVM, the pose encoder

is used to estimate the transformation T t
t ..T

t
t−n+1 between

previous frames and the present frame by comparing previ-

ous visual observation Ov
t ..O

v
t−n+1 and present Ov

t .

T j
i = Encpose(O

v
i , O

v
j ) ∈ SE(3)

Fusing 3D feature: Given feature volumes from differ-

ent frames and the estimated transformation from differ-

ent frames to the present frame. We transform the feature

volume Vt..Vt−n+1 with the corresponding transformation

T t
t ..T

t
t−n+1. Particularly, for each position p = (i, j, k)T in

3D deep voxel, we transform it to p̂ = (̂i, ĵ, k̂)T with:

p̂ = Rp+ t

where R is a 3x3 rotation matrix from T t
t ..T

t
t−n+1 and t

is the translation vector from T t
t ..T

t
t−n+1, and we note the

transformation function as f .

V̂i = f(Vi, T
t
i ) i = t..t− n+ 1

Since directly performing transformation in latent space

might cause misalignment due to the coarse of voxel rep-

resentation, we use two additional 3D conv layers to refine

the transformed feature volume. We then aggregate trans-

formed feature volumes to get Neural Volumetric Memory

V̂ m
t representing the surrounding 3D structure in the present

frame by computing the mean over feature volumes:

V̂ m
t =

1

n

t∑

i=t−n+1

V̂i
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Figure 4. Self-Supervised Learning: we train a separate decoder

to predict the visual observation in the different frames given one

visual observation and the estimated transformation between two

frames, similar to Lai et al. [35].

3.2. Learning NVM via Self­Supervision

Although the behavior cloning objective is sufficient in pro-

ducing a good policy, being equivariant to translation and

rotation automatically offers a standalone, self-supervised

learning objective just for the neural volumetric memory.

Shown in Figure 4, one can assume that the surrounding 3D

scene remains static between frames. Because the camera

is forward-looking, we can canonicalized feature volume

from earlier frames, and use it to predict a camera image

taken at later steps. This self-consistency loss, computed as

the pixel reconstruction error, encourages the memory to be

SE(3) equivariant.

For given visual observation history over a short span

of time Ov
t ..O

v
t−n+1, we use the most dated visual ob-

servation Ov
t−n+1 in the visual history and predict all

frames. We extract a 3D feature volume from Ov
t−n+1:

Vt−n+1 = Enc3D(Ov
t−n+1), estimate the relative camera

pose T t−n+1
t ..T t−n+1

t−n+1 between Ov
t ..O

v
t−n+1 and the most

dated Ov
t−n+1. We transform the extracted 3D feature vol-

ume Vt−n+1 into different frames with the corresponding

transformations and then use a decoder Dec to predict the

visual observation Ôv
t..t−n+1 rendered in different frames.

The Decoder Dec takes a deep 3D feature volume as in-

put and outputs a 2D image. The decoder first reshapes

the deep 3D feature volume with shape (C,D,H,W ) into

shape (C ∗D,H,W ) and applies a set of 2D conv layers to

map the reshaped features to images. Given the predicted

visual observation Ôv
t..t−n+1 and the original visual obser-

vation Ov
t ..O

v
t−n+1 in different frames, we compute the pre-

diction loss with pixel-wise L1 loss. The 3D feature encoder

and the pose encoder are both trained in this predictive self-

supervised training task. Specifically, we can formulate this

3D representation learning task as follows:

Vt−n+1 = Enc3D(Ov
t−n+1)

Ôv
i = Dec(f(Vt−n+1, T

t−n+1

i )) i = t..t− n+ 1

Lrec =
1

n

t−n+1∑

i=t

|Ov
i − Ôv

i |
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where Lrec represents the L1 loss. Since the information

contained in different visual observations is naturally differ-

ent, perfect prediction in our task is not feasible. However,

such a predictive learning task could still improve the 3D

structural understanding of the surrounding and encourages

the SE(3) equivariance over the learned 3D latent space, for

this reconstruction loss encourages the disentanglement be-

tween the surrounding 3D structure and the camera pose.

3.3. Teacher Policy and Visuomotor Distillation

Image observations introduce additional overhead and slow

training down as much as 40 times1. For this reason, we

bootstrap learning the visuomotor policy by first training a

state-space policy that depends on the elevation map.

Learning a state-only policy We use proximal policy op-

timization (PPO [54]) to train a single teacher policy π̂ in

all four environments. We parameterize the teacher policy

as a 4-layer ReLU network with [256, 128, 128, 64] latent

neurons. To provide terrain information, we include two el-

evation maps, one larger and coarser than the other. Overall,

the observation space for the teacher policy include:

• proprioceptive state - R63 A 63-dimension vector con-

sists of the gravity vector in the body frame gt, joint rota-

tions qt, joint velocity q̇t, and previous actions at−1.

• privileged information - R14 A 14-dimension vector in-

cluding linear velocity vt and angular velocity ωt of the

robot, and environment parameters et.

• a dense elevation map mdense - R21×26 with 5cm spac-

ing between the grid points, which is only slightly bigger

than the robot.

• a sparse elevation map msparse - R
10×19 with 10cm

spacing. This covers a much larger area.

We provide a more detailed description of the observation

in the appendix.

Reward function : We use the same reward function for

teacher’s training in all environments. The reward contains

the following terms: 1) Reward for moving forward at a

target velocity (in our experiment: 0.4m/s). 2) an energy

penalty to encourage the robot to use as little torque as

possible. 3) Height tracking reward encouraging the robot

to walk while maintaining a specific relative height to the

ground (in our experiment: 0.265m). 4) AMP reward [49]

encouraging the agent to produce natural gaits.

R = αforward ∗Rforward + αenergy ∗Renergy

+ αheight ∗Rheight + αamp ∗Ramp

1We are able to achieve 40k fps using just elevation map. Using 64×64

images, it slows down to 1k fps.

Table 1. Comparison between observation spaces. State-only

policy (w/ elevation-map) vs. vision policy

Joint

states
Velocity

Elevation

map

Depth

map

Teacher policy ! ! ! %

Visual policy ! % % !

We include the details of each reward term and the corre-

sponding weights in the appendix

Visuomotor distillation: Given the privileged teacher

policy from stage one, we then distill the privileged teacher

policy π̂ into the visual policy π without privileged infor-

mation. Our visual policy utilizes proprioceptive state and

visual observation for decision-making. The propriocep-

tive state Oprop is the same as we used to train privileged

elevation-based policy in stage one while the visual obser-

vation contains a sequence of depth images (Ov
t ..O

v
t−n+1,

n=5 in our experiment) with a shape 64 × 64 from a depth

camera mounted on the head of the robot. The observation

space comparison between the privileged teacher policy and

the visual policy is provided in Table 1, and the specific po-

sition of the camera is provided in Figure 2.

As shown in Figure 3, our visual policy first processes

the sequential visual observation with our proposed NVM

module. After obtaining NVM with shape (C,D,H,W ),
our visual policy flattens the NVM into a 2D feature map

with shape (C×D,H,W ) and utilizes a set of 2D conv lay-

ers and a single linear layer to get a 1D visual feature. Our

visual policy encodes the proprioceptive state with a neural

network and gets the proprioceptive feature. The proprio-

ceptive feature and visual feature are then concatenated and

fed into a final network to get the actual action for the robot.

The visual policy is trained with behavior cloning by

minimizing the L1 distance between actions from teacher

policy π̂ and visual policy π,

LBC = |π̂(p)− π(o)|

where p is the privileged observation (including elevation

maps), and o is the observation (including visual observa-

tions). Combined with our proposed self-supervised task,

the overall training loss for our NVM is given by:

L = λBCLBC + λrecLrec

In our experiment, we use λBC = 1 and λrec = 0.01.

4. Experiments

4.1. Simulation Environments

We evaluate NVM on four challenging terrains shown in

Figure 2. Our intention is to evaluate the global and lo-

cal perception ability of agents, as well as the robustness of
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Table 2. Evaluation of All Policies: We evaluate all methods in all four environments and show their Traversing Rate and Success Rate.

The privileged elevation-map-based policy is noted as Teacher, and its performance is regarded as the upper bound for the rest methods.

Traversing Rate (%) ↑ Success Rate (%) ↑

Scenarios Stages Stairs Stones Obstacles Stages Stairs Stones Obstacles

Teacher 97.9±2.0 94.5±1.8 89.6±3.1 92.8±1.8 95.6±2.3 86.6±2.7 70.6±5.2 87.8±2.7

NaiveCNN 76.4±26.9 81.5±28.6 29.4±10.6 63.3±22.5 53.9±19.7 71.3±25.4 0.5±0.8 45.2±16.4

NaiveCNN-MS 72.1±25.4 84.5±29.7 26.4±9.3 63.7±22.7 48.9±18.9 73.1±26.2 0.0±0.0 48.1±18.3

NaiveCNN-RNN 68.3±24.1 82.4±29.7 26.3±9.3 67.9±23.9 48.9±18.0 79.1±28.9 2.2±1.5 49.8±17.9

LocoTransformer 74.0±26.5 85.5±29.9 25.2±8.9 65.2±22.9 53.3±19.3 75.8±26.8 0.9±1.1 46.7±16.9

NVM 79.9±28.1 85.5±30.0 47.4±16.7 74.1±26.0 65.0±23.2 79.8±28.2 14.4±6.0 61.6±21.9

the learned locomotion skills. Our environments consist of

Stages including multiple separate stages with gaps of dif-

ferent sizes between stages; Obstacles including multiple

tall cuboids for the agent to avoid; Stairs including stairs

with different heights and widths; Stones including numer-

ous small stones of different shapes for the agent to step

over. Stages, Stairs, and Stones environments evaluate the

agent’s ability to reason about the nearby surrounding and

perform precise foot placement. Obstacle environment re-

quires the agent to be able to perform long-term planning

and avoid obstacles beforehand.

4.2. Baselines

We compare our method against baselines that do not con-

tain SE(3) equivariance priors:

• NaiveCNN which learns visual features with a 2D CNN

encoder followed by a linear projection. Visual features

and proprioceptive features are concatenated. The action

is then computed from the concatenated feature.

• NaiveCNN-RNN which shares a similar structure with

NaiveCNN, but before computing action from the con-

catenated feature, NaiveCNN-RNN baseline utilizes a 2-

layer GRU to provide memory mechanism for the agent

• LocoTransformer which utilizes a shared transformer

model to perform cross-modal reasoning between visual

tokens from 2D visual feature map and proprioceptive

features, instead of directly concatenating visual feature

and proprioceptive feature.

• Multi-Step NaiveCNN (NaiveCNN-MS) which use a

2D CNN to extract visual feature from each depth image

and fuse them together to get the overall visual feature,

instead of stacking multiple depth images and processing

the stacked visual observation with a 2D CNN.

For NaiveCNN and LocoTransformer, the visual obser-

vations in the near past are stacked in the channel dimen-

sion and serve as input for 2D encoder. All these baselines

and our method share the same 2D CNN encoder structure

for a fair comparison.

4.3. Simulated Results

Evaluation metrics: We evaluate the final policies of

all methods for 640 episodes in each simulated environ-

ment and compare the performance. We evaluate different

methods by two metrics: traversing rate(%) and success

rate(%). The traversing rate is defined by the distance the

robot moves dividing the reachable distance (the distance

between the end of the environment and starting position),

and the Success Rate is defined by the ratio of the robot

reaching the end of the environment.

We evaluated all methods including the privileged

teacher policy (noted as Teacher) across all environments

and the results are provided in Table 2. Since in stage

two of our pipeline, visual policies are trained by imita-

tion learning (our method with self-supervised learning as

well), the performance of the privileged teacher policy can

be regarded as the upper bound for the performance of vi-

sual policies. We can see that our NVM outperforms all

the baselines in all the environments, especially the Stones

environment which requires the agent to estimate the 3D

structure of the surroundings from visual observations and

provide accurate foot placement. Surprisingly, it turns out

our method traversed a longer distance in the obstacle en-

vironment, where the understanding of 3D structure is not

required since it’s possible to avoid the obstacles with only

the latest visual observation. In this case, we conjecture that

the 3D understanding of the environment helps the agent to

keep closer to the trajectory of the teacher policy would take

since the teacher could exploit the 3D structure of the sur-

roundings to find the optimal path.

We find that though NaiveCNN-MS introduces the mech-

anism of processing each frame of visual observation sepa-

rately, there is no improvement compared with NaiveCNN.

This comparison indicates that the improvement brought by

our NVM is actually from explicitly modeling the 3D trans-

formation instead of introducing more computation. Com-

pared with NaiveCNN, the memory-enabled NaiveCNN-

RNN also shows no improvement, which indicates that the

memory mechanism provided by RNN is not better than, if
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Table 3. Ablation study. We scale the grid resolution of the neural volumetric memory and the horizon of the past kept in memory. By

default, our NVM uses use D = 12, H = W = 6, n = 5.

Traversing Rate (%) ↑ Success Rate (%) ↑

Scenarios Stages Stairs Stones Obstacles Stages Stairs Stones Obstacles

NVM 79.9±28.1 85.5±30.0 47.4±16.7 74.1±26.0 65.0±23.2 79.8±28.2 14.4±6.0 61.6±21.9

NVM(D=3) 65.4±23.7 68.0±25.3 38.6±14.5 46.5±17.0 52.8±19.4 52.2±19.7 5.9±4.1 36.1±13.5

NVM(D=6) 79.3±27.8 83.1±29.2 49.8±17.6 66.2±23.6 64.2±23.0 74.7±26.4 14.7±6.2 50.2±19.3

NVM(D=4x4) 72.8±26.5 70.1±25.9 39.1±14.4 66.4±24.0 54.8±21.4 62.8±23.7 11.3±6.0 48.6±18.4

NVM(D=8x8) 78.9±27.8 73.4±26.3 41.8±15.0 64.5±22.9 61.4±22.3 64.8±23.9 12.2±4.8 50.0±18.3

NVM(n=3) 70.1±24.8 76.6±26.9 37.6±13.3 64.3±23.0 43.9±16.8 67.0±23.9 0.6±0.8 48.9±18.1

NVM(n=9) 78.4±27.6 85.9±30.1 39.8±14.1 69.8±24.6 61.6±22.0 80.0±28.5 5.8±3.2 56.1±19.9

not worse, naively stacking the visual observations in the

near past.

4.4. Real World Results

To validate the performance of our method beyond simula-

tion, we constructed multiple real-world experiment scenes

as shown on the right of Figure 2. We evaluated our method

in three scenes: Stages: we build 4 discrete stages with

15 cm / 20 cm / 30 cm between stages. Stairs: We build

a stair consisting of 3 ladders with heights of 3 cm / 6 cm
/ 10 cm. Obstacles: We place multiple cuboid obstacles

in the narrow hallway for the robot to avoid. We deploy

the policies in real-world scenes and record the distance

robot moved for each episode. We terminate the episode

after a certain amount of time or until the robot reaches

the end of the environment or the robot falls. We re-

peat the experiment for each method and environment five

times. Real-world trajectories are also provided in Figure 1.

Since NaiveCNN, NaiveCNN-RNN, LocoTransformer show

similar performance in simulation and LocoTransformer is

known to be more robust in unseen scenarios and objects

in the real world, we compared our NVM with LocoTrans-

former in these three scenarios. The quantitative results are

shown in Table 4. We find that our NVM moved signif-

icantly further in Stages and Stairs while slightly further

in Obstacles. This is because Stages and Stairs environ-

ment require the robot to understand the surrounding 3D

structure to place the foot while Obstacles only requires

the ability to perform high-level planning with visual ob-

servation. We observe that in Stages and Stairs environ-

ment, agents trained with LocoTransformer can place the

front leg across the stage or over the ladder, but not the rear

legs when the gap between stages is large or the ladder is

tall, which demonstrates that lack of understanding of the

surrounding 3D structure. We also found that even though

LocoTransformer agent could move a reasonable distance

in simulation in Stairs and Stages environment, it fails in

Table 4. Evaluating the visual policy in the real world

Distance Moved (m) ↑

Scenarios Stages Stairs Obstacles

NVM 5.4±0.3 4.0±0.0 7.3±0.1

LocoTransformer 3.4±0.1 2.1±0.8 6.7±0.4

the real world. The real-world results indicate that the un-

derstanding of the surrounding 3D structures is essential for

legged robots to traverse complex terrains in the real world

and our NVM module provides a high-quality volumetric

memory of the surrounding 3D structure.

4.5. Visualization of SSL task

Aiming to gather insight into our learned 3D features vol-

ume, we visualized the synthesized visual observation Ôv
t

in our self-supervised learning task along with the present

visual observation Ov
t (the ground truth in our SSL task),

and most dated visual observation Ov
t−n+1 (the input in our

SSL task) in Figure 5. Even though we apply extensive data

augmentation over the raw visual observation (the second

image for every case), the synthesized visual observations

are clearly indicating the robustness of our model. In the

synthesized visual observation for Stair and Obstacle envi-

ronment, we can see the overall structure of the environment

is well-preserved. In Figure 5b, The obstacles in the pre-

vious frame are transformed to the position in the current

frame without much distortion. In Figure 5c, the bound-

ary of the nearest ladder is clear, and the second nearest

ladder is also observable in the present frame. We have to

note that the reason the decoder can not recover the details

away from the robot is in the input for SSL the large values

are clipped. For more complex Stages and Stones environ-

ments, we found that even though the terrain details are not

perfectly reconstructed, the essential regions for decision-

making are reconstructed which means the learned 3D voxel
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Input Synthesis Output Ground-TruthEnvironment

(a) Stages

Input Synthesis Output Ground-TruthEnvironment

(b) Obstacles

Input Synthesis Output Ground-TruthEnvironment

(c) Stairs

Input Synthesis Output Ground-TruthEnvironment

(d) Stones

Figure 5. Visual reconstruction from learned decoder. We visualize the synthesized visual observation in our self-supervised task.

For every tuple, the first image shows the robot moving in the environment, the second image is the input visual observation Ov

t−n+1,

the third image is the synthesized visual observation using 3D feature volume Vt−n+1 extracted from Ov

t−n+1 and the estimated relative

camera between Ov

t−n+1 and robot’s ego-centric frame, and the fourth image is the actual visual observation captured by the robot (the

ground-truth in our self-supervised task). For the input visual observation, we apply extensive data augmentation to the image to improve

the robustness of our model.

features capture the most important parts in the visual ob-

servations. In Figure 5a, we can see the gaps between stages

nearby are well reconstructed and in Figure 5d, we can see

the reconstructed stone in front of the robot.

4.6. Ablation Study

we perform multiple sets of ablation studies, and the results

are shown in Table 3, with the purpose of studying the in-

fluence of different components in our method.

The Resolution of NVM: We provide our NVM module

voxel features with different resolutions by slightly chang-

ing the structure of the 2D encoder, which resulting 2D fea-

ture maps in different shapes and use different depth param-

eter D. From Table 3, we find that the larger depth value D
generally provides better performance, since larger D con-

verts the 2D feature map into more fine-grained voxel fea-

ture which results in fine-grained neural volumetric mem-

ory, and it’s supposed to be easier for the agent to reason

about the foot placement over complex terrain with more

fine-grained neural volumetric memory. For H and W , we

found that 6x6 which provides enough detail horizontally

without introducing much noise vertically works best.

The Length of Visual History of NVM: We provide our

NVM model with different lengths of visual history by

changing the number of stored visual observation frames.

As shown in Table 3, the performance of NVM improves

when the length of visual history increases to 5 from 3,

we think this is because the longer visual history provides

longer 3D memory of the surrounding for the agent to safely

placing the rear feet. But when the length of visual history

increases to 9 from 5, the performance drops, we hypothe-

size that it is because when the visual history becomes too

long, it’s hard for the pose encoder to estimate the accu-

rate transformation between the oldest frame and the current

frame, and the surplus visual information might be redun-

dant for decision-making over terrains.

5. Conclusion

We propose a short-term memory mechanism, the Neural

Volumetric Memory (NVM), to enable legged robots to tra-

verse complex terrains with ease. NVM aggregates knowl-

edge from sequential visual observation in the near past

by explicitly modeling the translation and rotation between

previous frames and the present frame. The explicit model-

ing of the transformation and self-supervised task also en-

courage the SE(3) equivariance in the memory space. Our

neural volumetric memory module enables the legged robot

to traverse complex terrain in simulation and the real world

and achieve better sim-to-real generalization results. This

shows our neural volumetric memory provides reliable sur-

rounding 3D structure information for the robot to perform

decision-making and new possibility of utilizing visual ob-

servation for legged-robot.
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