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Figure 1. Probabilistically correct object pose estimation. Given (a) an input image and heatmap detections of the object semantic
keypoints, our method first conformalizes the heatmaps into (b) circular or elliptical prediction sets that guarantee probabilistic coverage
of the groundtruth keypoints (e.g., 90%). Our method then propagates the uncertainty in the keypoints to the object pose, forming (c) a
Pose UnceRtainty SEt (PURSE) that contains the groundtruth pose with the same probability. We develop RANdom SAmple averaGing
(RANSAG) to sample from PURSE and generate (d) an average pose, and apply semidefinite relaxation to compute (e) worst-case error
bounds: the blue duck attains the worst rotation error w.r.t. the (average pose) yellow duck; the red duck attains the worst translation error.
Code available: https://github.com/NVlabs/ConformalKeypoint.

Abstract

The two-stage object pose estimation paradigm first de-

tects semantic keypoints on the image and then estimates

the 6D pose by minimizing reprojection errors. Despite per-

forming well on standard benchmarks, existing techniques

offer no provable guarantees on the quality and uncertainty

of the estimation. In this paper, we inject two fundamental

changes, namely conformal keypoint detection and geomet-
ric uncertainty propagation, into the two-stage paradigm

and propose the first pose estimator that endows an estima-

tion with provable and computable worst-case error bounds.

On one hand, conformal keypoint detection applies the sta-

tistical machinery of inductive conformal prediction to con-

vert heuristic keypoint detections into circular or elliptical

prediction sets that cover the groundtruth keypoints with a

user-specified marginal probability (e.g., 90%). Geometric

uncertainty propagation, on the other, propagates the ge-

ometric constraints on the keypoints to the 6D object pose,

leading to a Pose UnceRtainty SEt (PURSE) that guarantees

coverage of the groundtruth pose with the same probabil-

ity. The PURSE, however, is a nonconvex set that does not

directly lead to estimated poses and uncertainties. There-

fore, we develop RANdom SAmple averaGing (RANSAG)
to compute an average pose and apply semidefinite relax-

ation to upper bound the worst-case errors between the

average pose and the groundtruth. On the LineMOD Oc-

clusion dataset we demonstrate: (i) the PURSE covers the

groundtruth with valid probabilities; (ii) the worst-case er-

ror bounds provide correct uncertainty quantification; and

(iii) the average pose achieves better or similar accuracy as

representative methods based on sparse keypoints.

1. Introduction

Estimating object poses from images is a fundamental
problem in computer vision and finds extensive applications
in augmented reality [42], autonomous driving [80], robotic
manipulation [60], and space robotics [19]. One of the most
popular paradigms for object pose estimation is a two-stage

pipeline [20,71,72,79,81,85,89,101], where the first stage
detects (semantic) keypoints of the objects on the image,
and the second stage computes the object pose by solving
an optimization known as Perspective-n-Points (PnP) that
minimizes reprojection errors of the detected keypoints.

Safety-critical applications call for provably correct

computer vision algorithms. Existing algorithms in the two-
stage paradigm (reviewed in Section 2), however, provide
few performance guarantees on the quality of the estimated
poses, due to three challenges. (C1) It is difficult to en-
sure the detected keypoints (typically from neural networks)
are close to the groundtruth keypoints. In practice, the
first stage often outputs keypoints that are arbitrarily wrong,
known as outliers. (C2) Robust estimation is employed in
the second stage to reject outliers, leading to nonconvex op-
timizations. Fast heuristics such as RANSAC [26] are widely
adopted to find an approximate solution but they cannot
guarantee global optimality and often fail without notice.
(C3) There is no provably correct uncertainty quantification

of the estimation, notably, a formal worst-case error bound

between the estimation and the groundtruth. Though recent
work [98] proposed convex relaxations to certify global op-
timality of RANSAC and addressed (C2), it cannot ensure
correct estimation as the optimal pose may be far away from
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the correct pose when the keypoints are unreliable.
Contributions. We propose a two-stage object pose es-

timation framework with statistical guarantees, illustrated
in Fig. 1. Given an input image, we assume a neural net-
work [71] is available to generate heatmap predictions of
the object keypoints (Fig. 1(a)). Our framework then pro-
ceeds in two stages, namely conformal keypoint detection

(Section 4) and geometric uncertainty propagation (Sec-
tion 5). We first apply the statistical machinery of induc-
tive conformal prediction (introduced in Section 3), with
nonconformity functions inspired by the design of resid-
ual functions in classical geometric vision [39], to con-
formalize the heatmaps into circular or elliptical predic-
tion sets –one for each keypoint– that guarantee coverage
of the groundtruth keypoints with a user-specified marginal

probability (Fig. 1(b)). This provides a simple and general
methodology to bound the keypoint prediction errors (i.e.,
addressing (C1)). Given the keypoint prediction sets, we
reformulate the constraints (enforced by the prediction sets)
on the keypoints as constraints on the object pose, leading to
a Pose UnceRtainty SEt (PURSE) that guarantees coverage
of the groundtruth pose with the same probability. Fig. 1(c)
plots the boundary of an example PURSE (roll, pitch, raw
angles for the rotation, and Euclidean coordinates for the
translation). The PURSE, however, is an abstract nonconvex
set that does not directly admit estimated poses and uncer-
tainty. Therefore, we develop RANdom SAmple averaGing

(RANSAG) to compute an average pose (Fig. 1(d)) and em-
ploy semidefinite relaxations to upper bound the worst-case
rotation and translation errors between the average pose and
the groundtruth (Fig. 1(e)). This gives rise to the first kind of
computable worst-case probabilistic error bounds for object
pose estimation (i.e., addressing (C3)). Our PURSE method-
ology has connections to the framework of unknown-but-

bounded noise estimation in control theory [63], with spe-
cial provisions to derive the bounds in a statistically princi-
pled way and enable efficient computation.

We test our framework on the LineMOD Occlusion (LM-

O) dataset [11] to verify the correctness of the theory (Sec-
tion 6). First, we empirically show that the PURSE in-
deed contains the groundtruth pose according to the user-
specified probability. Second, we demonstrate the correct-
ness of the worst-case error bounds: when the PURSE con-
tains the groundtruth, our bounds are always larger than,
and in many cases close to, the actual errors between the av-
erage pose and the groundtruth pose. Third, we benchmark
the accuracy of the average pose (coming from RANSAG)
with representative two-stage pipelines based on sparse key-
points (e.g., PVNet [72]) and show that the average pose
achieves better or similar accuracy.

Limitations. A drawback of our approach, and confor-
mal prediction in general, is that the size of the prediction
sets depends on the nonconformity function (whose design

can be an art) and may be conservative. Our experiments
suggest the bounds are loose when the keypoint prediction
sets are large (e.g., giving 180� rotation bound). We discuss
challenges and opportunities in tightening the bounds.

2. Related Work

Image-based object pose estimation. We categorize
object pose estimation into two paradigms: single-stage

and two-stage. The latter first detects 2D-3D correspon-
dences and then estimates the object pose via solving a PnP

problem, while the former produces poses without inter-
mediate correspondences. (i) Single-stage. Early meth-
ods perform pose estimation via template matching [29,
32, 36]. Recently, deep learning-based approaches such
as PoseNet [41] and PoseCNN [95] applied CNNs to di-
rectly regress poses. A major challenge of pose regres-
sion is the nonlinearity of 3D rotations, and motivated
formulating regression as classification [84, 87, 90] or de-
signing better rotation representations [47, 102]. It is also
popular to predict multiple pose hypotheses followed by
voting [55, 62, 86]. (ii) Two-stage. Early research used
handcrafted features [50, 56, 78] to establish 2D-3D corre-
spondences and focused on developing algorithms for solv-
ing PnP. Notable algorithms include the minimal solver
P3P [27,46] and variants of the nonminimal solver PnP [45,
51, 68, 97]. Outliers (i.e., wrong correspondences) moti-
vated robust estimation based on RANSAC [26], graduated
non-convexity [9, 10, 96], branch-and-bound [16, 38, 52], or
semidefinite relaxations [98]. Unreliable correspondences
soon became the bottleneck and learned correspondences
have been predominant. Learned correspondences can be
sparse or dense. Sparse methods define a handful of key-
points and predict locations of the keypoints via direct re-
gression [74, 89], probabilistic heatmap [67, 71], or vot-
ing [72]. Dense methods [12, 34, 54, 70, 93, 101] regress
for each object pixel the coordinates of its corresponding
3D point. Recent literature focus on end-to-end training via
differentiating PnP [13, 15, 20, 21, 37]. Both single-stage
and two-stage methods perform well on standard bench-
marks [35], but a crucial feature that is missing, espe-
cially when deploying computer vision algorithms in safety-
critical applications, is that these methods do not provide
provably correct uncertainty quantification and formal er-
ror bounds w.r.t. the groundtruth (for either the correspon-
dences or the poses). In this paper, we provide rigorous
guarantees by applying conformal prediction to an existing
keypoint detection method (the heatmap [71]) and leverag-
ing old and new techniques in computer vision to derive
formal error bounds.

Conformal prediction in computer vision. Conformal
prediction [92] is a statistical machinery that offers provably
correct finite-sample uncertainty quantification without as-
sumptions on the data distribution or the prediction model
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(i.e., offering a set prediction, instead of a point prediction,
that guarantees probabilistic coverage of the groundtruth).
Inductive conformal prediction [69] is the most popular
variant of conformal prediction because it does not require
retraining of the prediction models [1, 2, 49]. Applying
conformal prediction to computer vision, however, is still
in its infancy. Existing works focus on image classifi-
cation [1, 76], tumor segmentation [3, 8, 94], and bound-
ing box detection [2, 23, 53], which are classification or
low-dimensional regression problems. Inspired by these
works, our unique contributions in this paper are: (i) we
apply conformal prediction to keypoints detection, a high-
dimensional regression problem; (ii) we design new non-
conformity functions and discuss their connections with
classical geometric vision; and (iii) we develop algorithms
that propagate the uncertainty after conformal prediction to
form prediction sets of 6D poses, which are nonlinear and
nonconvex manifold objects.

Performance guarantees. Pose estimation from 2D-
2D, 2D-3D, and 3D-3D correspondences are foundational
problems in computer vision textbooks [6, 31, 58, 88] and
typically boil down to formulating and solving mathemat-
ical optimization problems. Benchmarking on simulated
and real datasets has been a widely adopted standard for
testing different formulations and solvers. However, em-
pirical performance can be misleading without theoretical
guarantees. A striking fact is that, though error analysis
is an important topic in applied math [17, 24, 43] and con-
trol theory [61, 63, 82], there is very limited literature in
computer vision that reason about worst-case estimation

errors between the optimal solution and the groundtruth.
A popular heuristic relies on the inverse of the Hessian at
an optimal solution, which provides the Cramer-Rao lower

bound on the covariance of the solution (for linear regres-
sion this coincides with the covariance) [88, Section B.6]
and thus cannot upper bound the estimation errors. Re-
cent works [18, 77, 100] derived error bounds for a few
geometric vision problems. However, the bounds either
depend on uncheckable assumptions and cannot be com-
puted [77,100], or build on machinery (e.g., sum-of-squares
proof [5, 64]) that only applies to estimators based on mo-
ment relaxations [18], which are still computationally ex-
pensive in practice [99]. In this paper, we develop the first
kind of efficiently computable error bounds that only re-
quire the assumption of exchangeability (which comes from
conformal prediction). We justify this assumption on our
test dataset and numerically show our bounds can be tight
for a subset of the test problems.

3. Inductive Conformal Prediction

Given a set {zi = (xi, yi)}li=1
with observation xi 2 X

and label yi 2 Y such that each zi 2 Z := X ⇥ Y is drawn
i.i.d. from an unknown distribution on Z , inductive confor-

mal prediction (ICP) provides a set prediction F ✏(x) ✓ Y ,
parameterized by an error rate 0 < ✏ < 1, such that given
a new sample zl+1 = (xl+1, yl+1) satisfying an exchange-

ability condition (elaborated in Theorem 1), we have

P [yl+1 2 F ✏(xl+1)] � 1� ✏, (1)

i.e., the prediction set F ✏ guarantees to contain the true label
yl+1 with probability at least 1� ✏.

Training. We start by dividing the dataset into a
proper training set {z1, . . . , zm} and a calibration set

{zm+1, . . . , zl}. We shorthand n = l�m as the size of the
calibration set. We learn a prediction function f : X ! Ỹ
from the proper training set using any architecture, which
allows us to fully exploit the power of modern deep learn-
ing. The prediction space Ỹ can be the same as the label
space Y , or can contain auxiliary information such as a
heuristic notion of uncertainty (e.g., softmax scores in clas-
sification or a heatmap in the case of keypoint detection).

Conformal calibration. We define a nonconformity

function S : Zm ⇥ Z ! R to measure how well a given
sample z = (x, y) conforms to the proper training set. A
popular instance of S leverages the learned prediction f :

S ({z1, . . . , zm} , (x, y)) e.g.

= r(y, f(x)), (2)

where r : Y ⇥ Ỹ ! R is a measure of disagreement
between the label y and the prediction f(x). For exam-
ple, consider Y = Ỹ = R, one can design r(y, f(x)) =
|y � f(x)|: if (x, y) poorly conforms to the training set,
f will incur large errors. While the function S can be
arbitrary (e.g., a learnable neural network [83]), (2) is a
convenient definition since f is implicitly dependent on
{zi}mi=1

and r can incorporate domain-specific knowledge.
We then compute the nonconformity scores on the calibra-
tion set as ↵i = r(yi, f(xi)), i = m + 1, . . . , l, and sort
them in nonincreasing order ↵⇡(1) � · · · � ↵⇡(n), where
⇡(i) 2 {m+ 1, . . . , l} is an index permutation.

Conformal prediction. Given a new observation xl+1

(with an unknown yl+1) and a user-specified ✏ 2 (0, 1), we
compute the inductive conformal prediction (ICP) set as

F ✏ (xl+1) =
�
y 2 Y | ↵y  ↵⇡(b(n+1)✏c)

 
, (3)

where ↵y = r(y, f(xl+1)) is the nonconformity score of
the new sample when fixing the true label to be y. In other
words, the ICP set (3) outputs the set of all labels that make
the nonconformity score of the new sample no greater than
↵⇡(b(n+1)✏c) – the b(n+1)✏c-th largest nonconformity score
in the calibration set. We have the following result stating
the probabilistic coverage of the ICP set (3).

Theorem 1 (Validity of ICP Coverage [48, 91, 92]). If

zm+1, . . . , zl, zl+1 = (xl+1, yl+1) are exchangeable, i.e.,

their distribution is invariant under permutation, then

1� ✏  P [yl+1 2 F ✏(xl+1)]  1� ✏+ 1/(n+ 1) (4)
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Figure 2. Beta distribution of the conditional coverage in (5) with
✏ = 0.1 and different n. Notice how the conditional probability
becomes more concentrated around 1� ✏ when n increases.
for any ✏ 2 (0, 1). Furthermore, when conditioned on the

calibration set, calling h = b(n+ 1)✏c, we have

P [yl+12F ✏(xl+1) |{zm+1, . . . , zl}]⇠Beta(n+1�h, h). (5)

A few remarks are in order about Theorem 1. First, ask-
ing zm+1, . . . , zl, zl+1 to be exchangeable is weaker than
asking them to be independent. However, this assumption
typically fails when the calibration set is a single video se-
quence, where the image frames {zm+1, . . . , zl} are tempo-
rally correlated [57]. Fortunately, as we detail in Section 6,
the way the LineMOD Occlusion dataset [11] was collected
makes the exchangeability condition easily satisfied, which
also suggests best practices to make the exchangeability
condition hold in computer vision. Second, the lower bound
in (4) can be intuitively proved because under exchange-
ability, ↵l+1 := r(yl+1, f(xl+1)) –the nonconformity score
of the new sample with the true label– is exchangeable

with the nonconformity scores of the calibration samples,
and hence equally likely to fall in anywhere between the
scores {↵⇡(i)}ni=1

. Consequently, P [yl+1 2 F ✏(xl+1)] =
P
⇥
↵l+1  ↵⇡(b(n+1)✏c)

⇤
= 1�b(n+1)✏c/(n+1) � 1�✏.

The upper bound in (4) states that 1�✏ is not overly conser-
vative (indeed tight if n is large). Lastly, the probabilistic
guarantee in (4) is marginal over the randomness of the cal-
ibration set, meaning if one chooses an infinite number of
calibration sets, the average empirical coverage will con-
verge to 1 � ✏. This, however, implies that the empirical
coverage given one calibration set is a random variable that
fluctuates as the Beta distribution (5). Fig. 2 plots the Beta
distribution at ✏ = 0.1 with different sizes of the calibration
set. We observe that as n increases the empirical coverage
becomes more concentrated at 1� ✏. Our experiments show
that even with a small (n = 200) calibration set, the empir-
ical coverage is close to, and mostly higher than, 1� ✏.

4. Conformal Keypoint Detection

In this section, we apply the ICP framework in Section 3
to the problem of semantic keypoint detection.

Setup. Denote by x 2 RH⇥W⇥3 an RGB image pictur-
ing an object, by y = (y1, . . . , yK) 2 R2 ⇥ · · ·⇥ R2 := Y

the groundtruth locations of K semantic keypoints of the
object. We partition a given dataset {zi := (xi,yi)}li=1

into
a proper training set (of size m) and a calibration set (of size
n). We follow the three steps in Section 3 to perform ICP.

Training. We choose the heatmap approach in [71, 79]
as the prediction function: given an image x, [79] outputs
a set of heatmaps f(x) = (f(x)1, . . . , f(x)K), where each
f(x)k 2 �HW := {v 2 RHW

+
|
P

HW

i
vi = 1} predicts

the probability distribution of the k-th keypoint lying on
each pixel of the image.1 For convenience, we use qj 2 R2

to denote the j-th pixel location in x and f(x)j
k
2 R+ to

denote the probability of the k-th keypoint lying on qj . Let
�k be the index permutation that sorts f(x)k in nonincreas-
ing order, i.e., f(x)�k(1)

k
� · · · � f(x)�k(HW )

k
. As we will

soon show, choosing the heatmap approach leads to simple
and intuitive designs of the nonconformity function.

Conformal calibration. We design the following non-
conformity function

r(y,f(x)) = max{�(yk, f(x)k)}Kk=1
(6)

that uses � to score each keypoint and then selects the maxi-
mum score. This design considers the worst keypoint detec-
tion performance of f . We provide two designs of � below.

(a) Peak. Shorthand pk = f(x)�k(1)

k
as the peak prob-

ability in the k-th heatmap and qk = q�k(1) as the pixel
location attaining the peak probability, we design

�peak(yk, f(x)k) = pkkyk � qkk (peak)

which computes the error between the true keypoint loca-
tion yk and the most probable keypoint location qk and
scales the error by the peak probability pk. �peak describes
nonconformity because it becomes larger when the network
f is confidently wrong (both kyk � qkk and pk are large),
implying the sample is highly nonconforming.

(b) Covariance. Let q̄k =
P

J

j=1
f(x)�k(j)

k
q�k(j) be the

expected location of the top-J most likely detections for
the k-th keypoint, and ⌃k =

P
J

j=1
f(x)�k(j)

k
· (q�k(j) �

q̄k)(q�k(j) � q̄k)T as the covariance, we design

�cov(yk, f(x)k) = (yk � q̄k)
T⌃�1

k
(yk � q̄k) (cov)

which computes the squared Mahalanobis distance [59]
from the groundtruth yk to the top-J keypoint detections
(represented by the mean q̄k and covariance ⌃k).2 A larger
Mahalanobis distance indicates more abnormality of the
heatmap f(x)k (compared to the groundtruth yk) [28], and
hence implies higher nonconformity.

1The heatmap in the original paper [71] is not a valid probability dis-
tribution as it contains negative values and do not sum up to 1. We remove
the negative values and normalize it to be a valid probability distribution.

2We only choose the top-J (J = 100) most likely detections on the
heatmap because the heatmap can be quite noisy in practice.
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Using the nonconformity function (6) with (peak) or
(cov), we compute the nonconformity scores of the calibra-
tion set and sort them as: ↵⇡(1) � · · · � ↵⇡(n).

Conformal prediction. Given an error rate ✏ 2 (0, 1),
we first find ↵⇡(b(n+1)✏c). Then, according to the ICP set
definition (3) and our nonconformity function (6), we out-
put the ICP set for a new xl+1 as

F ✏(xl+1)

={y 2 Y | max{�(yk, f(xl+1))}Kk=1
 ↵⇡(b(n+1)✏c)}

= {y 2 Y | �(yk, f(xl+1))  ↵⇡(b(n+1)✏c), 8k}, (7)

where we used max{�1, . . . ,�K}  ↵ if and only if �k 
↵ for any k. Insert (peak) into (7), we have F ✏

ball
(xl+1) as

⇢
y 2 Y | kyk � ql+1,kk 

↵⇡(b(n+1)✏c)

pl+1,k

, 8k
�
, (ball)

which defines –for the k-th keypoint– a ball centered at
ql+1,k (the most likely detection) with a radius inversely
proportional to pl+1,k and proportional to ↵⇡(b(n+1)✏c).
Similarly, insert (cov) into (7), we have F ✏

ellipse
(xl+1) as

(
y 2 Y | (yk � q̄l+1,k)

T
⌃�1

l+1,k

↵⇡(b(n+1)✏c)
(yk � q̄l+1,k)  1, 8k

)
,

(ellipse)
which defines –for the k-th keypoint– an ellipse centered
at q̄l+1,k (the expected location of the top-J detections)
with an area proportional to det(⌃l+1,k) and ↵⇡(b(n+1)✏c).3
From (ball) and (ellipse), we observe that the prediction sets
become larger when (i) the heatmaps are uncertain, i.e., the
peak probability is low or the covariance matrix has large
determinant; and (ii) the heatmaps perform poorly on the
calibration set, leading to a large ↵⇡(b(n+1)✏c).

Connections to geometric vision. Our nonconformity
function bears similarity to the residual function in ge-
ometric vision [4, 22, 31]. For example, the (peak) and
(cov) functions are similar to the (weighted) reprojection er-
ror [31], and the “max” in (6) can be connected to seminal
work on optimizing the `1 norm [39].

Outlier-robust nonconformity? One potential issue of
the nonconformity function (6) is that a single outlier can
inflate the score and the calibration quantile ↵⇡(b(n+1)✏c)
and lead to conservative prediction sets (e.g., when f pre-
dicts K � 1 keypoints perfectly but misses one keypoint).
A potential remedy in geometric vision is to use robust cost
functions [7,9,96]. Therefore, a natural question is whether
“robustifying” the nonconformity function (6) can lead to
better prediction sets. Here we focus on only robustifying �
in (6) and provide a negative answer.

3The area of (x� µ)TA(x� µ)  1 is proportional to det(A�1).

Proposition 2 (Invariance of ICP). Let ⇢ : R+ 7! R+ be

any monotonically increasing function. Fixing the calibra-

tion set and error rate ✏, the nonconformity function

r⇢(y,f(x)) = max{⇢(�(yk, f(x)k))}Kk=1
(8)

leads to the same ICP set as (6).

The proof of Proposition 2 is presented in Supplemen-
tary Material. We conclude that common robust costs, such
as `1, Huber, Geman-McClure, and Barron’s adaptive ker-
nel [7, 9] (which are monotonically increasing on [0,+1])
cannot change the ICP sets by robustifying the individual
score �. However, it remains an open question whether
changing the “max” operation in (6) can give rise to bet-
ter ICP sets. For instance, replacing “max” with “

P
” in (6)

and using the Geman-McClure robust cost ⇢(�) = �
2

1+�2

with � = �peak results in the following ICP set
(
y 2 Y |

KX

k=1

p2
k
kyk � qkk2

1 + p2
k
kyk � qkk2

 ↵⇡(b(n+1)✏c)

)
(9)

that does not admit a geometric interpretation that is as sim-
ple and intuitive as the (ball) and (ellipse) sets introduced
before. In fact, it is indeed the simplicity of (ball) and
(ellipse) that enables us to propagate the uncertainty in key-
points to the object pose, as we will show in the next section.

5. Geometric Uncertainty Propagation

Conformalizing the heatmaps gives us prediction sets
that guarantee probabilistic coverage of the true keypoints.
We unify the prediction sets (ball) and (ellipse) as

F ✏(x) =
�
y 2 Y | (yk � µk)

T⇤k(yk � µk)  1, 8k
 
, (10)

where µk = ql+1,k,⇤k =
p
2
l+1,k

↵
2
⇡(b(n+1)✏c)

I2 for (ball), µk =

q̄l+1,k,⇤k =
⌃

�1
l+1,k

↵⇡(b(n+1)✏c)
for (ellipse), and we omit the sub-

script l + 1 for simplicity.
Why not uncertainty-aware PnP? A popular way to es-

timate pose from (10) is to solve an uncertainty-aware PnP

min
(R,t)2SE(3)

KX

k=1

(yk � µk)
T⇤k(yk � µk)

subject to yk = ⇧(RYk + t), k = 1, . . . ,K (11)

where Yk 2 R3, k = 1, . . . ,K are the 3D object keypoints
and ⇧(·) denotes the camera projection. We challenge this
approach and point out its two drawbacks. First, it is dif-
ficult to solve (11) to global optimality due to (i) the non-
convex SE(3) constraint and (ii) the rational polynomial ap-
pearing in ⇧(·). The best known approach to solve (11) re-
lies on either branch-and-bound [68] or local optimization.
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Second, solving (11) typically outputs a single optimal pose
without uncertainty quantification. Are there other poses
that attain similar costs as the optimal pose? How close is
the optimal pose to the groundtruth pose? These questions
remain not answered in the literature.

Pose UnceRtainty SEt (PURSE). We propose to, instead
of solving a PnP problem similar to (11), directly propagate
the uncertainty in the ICP sets to the object pose.

Proposition 3 (PURSE). Let sgt = [vec (Rgt)
T ; tT

gt
]T be

the groundtruth object pose (that lies in front of the camera).

Then, the groundtruth keypoints y = (y1, . . . , yK) belong

to the ICP set F ✏(x) in (10) if and only if sgt belongs to the

following pose uncertainty set

S✏ =

⇢
s 2 SE(3)

����
sTAks  0, k = 1, . . . ,K
bT
k
s > 0, k = 1, . . . ,K

�
, (PURSE)

where Ak 2 S12, bk 2 R12, k = 1, . . . ,K are constant

matrices dependent on µk,⇤k, Yk and camera intrinsics.

The detailed proof for Proposition 3 is algebraically in-
volved and postponed to the Supplementary Material. The
high-level intuition is, however, straightforward: we plug
in yk = ⇧(RYk + t) into (10) and obtain K quadratic in-
equalities of the form sTAks  0. The linear inequalities
bT
k
s > 0 are added to enforce the (transformed) 3D key-

points lie in front of the camera. Proposition 3 implies, if
we are 1 � ✏ confident the groundtruth keypoints can be
anywhere inside F ✏(x), then we should also be confident
any pose in (PURSE) can be the groundtruth. Viewing pose
estimation as a set estimation with guaranteed probabilis-
tic coverage of the groundtruth is fundamentally different
from viewing it as computing a single pose from (11) that
is (hopefully) close enough to the groundtruth.

RANdom SAmple averaGing (RANSAG). Verifying if
a given pose belongs to the PURSE is straightforward via
checking the inequalities in (PURSE). However, the PURSE

does not directly give us estimated poses. Therefore,
we propose an efficient sampling algorithm called RAN-

dom SAmple averaGing (RANSAG) that is analogous to
RANSAC [26] and leverages the minimal solver P3P [27],
presented in Algorithm 1. The intuition is that, though it is
difficult to sample directly in PURSE due to the (nonconvex)
constraints, it is easy to sample from the keypoint predic-
tion set (10) due to its simple geometry (balls and ellipses).
Thus, at each iteration (line 3) RANSAG samples three key-
points (line 4-5), solves the P3P inverse problem, and ac-
cept the poses that belong to the (PURSE) (line 6). RANSAG

typically returns around 100 valid samples with T = 1000
trials. However, in difficult cases (e.g., when S✏ is small or
even empty) it is possible to obtain zero samples (S = ;). In
this situation, RANSAG samples bT/20c (default 50) poses
without checking if they belong to the PURSE, via sampling

Algorithm 1: RANdom SAmple averaGing
1 Input: an ICP set F ✏(x) (10) and its corresponding

(PURSE) S✏; maximum trials T ; initial Ŝ = ;;
2 Output: sample poses S ⇢ SE(3) in PURSE, and an

average pose s̄ 2 SE(3);
3 for ⌧  1 to T do

4 Sample {k1, k2, k3} from [K] (k1 6= k2 6= k3);
5 Sample ŷki , i = 1, 2, 3 from

{y 2 R2 | (y � µki)
T⇤ki(y � µki)  1};

6 Ŝ  Ŝ [ (S✏ \ P3P({ŷki $ Yki}3i=1
));

7 end

8 S = Ŝ;
9 if Ŝ = ; then

10 for ⌧  1 to bT/20c do

11 Sample ŷk, k = 1, . . . ,K from F ✏(x);
12 Ŝ  Ŝ [ PnP({ŷk $ Yk}Kk=1

);
13 end

14 end

15 R̄ = proj
SO(3)

(
P

(Rj ,⇤)2Ŝ
Rj);

16 t̄ = 1

|Ŝ|

P
(⇤,tj)2Ŝ

tj ;

17 return: S, s̄ = (R̄, t̄)

K keypoints and solving PnP (line 9-12).4 After obtaining a
set of poses, RANSAG performs rotation averaging (line 14)
and translation averaging (line 15) to obtain an average pose
s̄.5 Note that RANSAG does not check if s̄ lies in the PURSE.

Worst-case error bounds. To upper bound the errors
between the average pose s̄ and the groundtruth (Rgt, tgt),
we maximize the squared pose-to-PURSE distance:

d2
✏,�

= max
(R,t)2S✏

�kR� R̄k2
F
+ (1� �)kt� t̄k2 (12)

given � 2 [0, 1]. Particularly, we compute two cases � = 1
(the maximum rotation distance) and � = 0 (the maximum
translation distance). Proposition 3 states the groundtruth
(Rgt, tgt) lies in S✏ with 1� ✏ probability, hence

kR̄�RgtkF  d✏,1, kt̄� tgtk  d✏,0 (13)

holds with probability 1� ✏.
Computing the bounds. Problem (12) is nonconvex

due to the constraints of the (PURSE) S✏. We relax the
nonconvex problem (12) into a convex semidefinite pro-
gram (SDP) and employ off-the-shelf solvers to optimize

4Here we switch from P3P to PnP because PnP uses all K keypoints
and there is less ambiguity in its solution.

5In Algorithm 1 we use rotation averaging with the Chordal distance
metric. The user is free to choose other single rotation averaging algo-
rithms with different distance metrics [30].
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the SDP [14, 40, 98].6 Two possible outcomes can happen:
(i) the optimal SDP value coincides with the optimal value
of (12). The relaxation is said to be exact and one can ex-
tract an optimal solution of (12) from the SDP, or (ii) the
relaxation is not exact, but the optimal SDP value still pro-
vides an upper bound for the optimal value of (12). There-
fore, we either exactly compute d2

✏,�
or find an upper bound,

both can bound the worst-case error (cf . (13)).7
We end with a remark about computing tighter bounds.

Remark 4 (Best Worst-case Error Bounds). (12) can be

used to bound errors for all possible pose estimators (e.g.,

from PnP (11)). What is the best estimator that attains the

smallest error bounds? This boils down to solving

min
(R̄,t̄)2SE(3)


max

(R,t)2S✏
�kR� R̄k2

F
+ (1� �)kt� t̄k2

�
(14)

whose solution is known as the Chebyshev center [25, 63]

of the PURSE S✏
. Unfortunately, problem (14) is more chal-

lenging than (12) and there is no efficient algorithm to solve

it to global optimality. In the Supplementary Material, we

evaluate the worst-case error bounds for multiple (R̄, t̄)
samples, select the smallest bounds, and compare them with

those of the average pose. An interesting future research

direction is to explore differentiable optimization [73] or

bilevel polynomial optimization [66] to solve (14).

6. Experiments

We test our approach on the LineMOD Occlusion (LM-

O) dataset [11] to (i) justify the exchangeability assumption
(Theorem 1) and suggest best practices for applying con-
formal prediction; (ii) evaluate the empirical coverage of
the PURSE and verify the correctness of Theorem 1, and (iii)
compute the worst-case error bounds and demonstrate tight-
ness or looseness. We also (iv) show that the average pose
achieves better or similar accuracy as other approaches.

Implementation and runtime. We set T = 1000 in
RANSAG; use OpenGV [44] for P3P and PnP; and add a
redundant ktk  5 in (PURSE) to ensure bounded trans-
lation. All procedures are implemented in Python except
SDP relaxations are implemented in Matlab. The runtime
of RANSAG is comparable to RANSAC and below one sec-
ond. The runtime of computing (12) via SDPs is around 8
seconds on a workstation with 2.2GHz AMD CPUs. The
(second-order) SDP relaxations are almost always exact.

6We omit the technical details and refer the interested reader to [98,
Section 2] for a pragmatic introduction to SDP relaxations. In practice,
we use the code provided by [98] in https://github.com/MIT-
SPARK/CertifiablyRobustPerception, apply a second-order
SDP relaxation to (12), and use MOSEK [65] to solve the SDP (in about
8 seconds). Solving a first-order SDP relaxation of (12) takes about 0.1
second but yields looser bounds.

7The PURSE can potentially be empty, leading to infeasibility of
problem (12). In such cases, empirically the SDP solver returns
“PRIMAL_INFEASIBLE” (red squares lying on the y-axis of Fig. 3).

Dataset and exchangeability. The LM-O dataset con-
tains 1214 test images capturing 8 different objects on a ta-
ble, of which 200 images were chosen by BOP19’20 [35].
We use the 200 images for calibration and the entire 1214
images for testing. As mentioned in Section 3, if the dataset
was collected as a single video sequence under natural mo-
tion (e.g., a straight line), then the exchangeability assump-
tion would fail. However, [33] described the data collection:

In order to guarantee a well distributed pose space
sampling of the dataset pictures, we uniformly di-
vided the upper hemisphere of the objects into
equally distant pieces and took at most one im-

age per piece. As a result, our sequences provide
uniformly distributed views ...

which indicates the 1214 images are independent (cf . [33,
Figs. 5-6]) and therefore exchangeable. This demonstrates
a good example for data collection –to equally divide the
parameter space and collect one observation per division–
so the guarantees offered by conformal prediction are valid.

Empirical coverage. Our approach conformalizes the
heatmaps [79] as (ball) or (ellipse). The implementation8

of [79] uses either groundtruth or Faster RCNN [75] bound-
ing boxes, giving four variants of our approach: groundtruth
box plus (ball) or (ellipse) (labels: gt-ball, gt-ellipse), and
Faster RCNN box plus (ball) or (ellipse) (labels: frcnn-ball,
frcnn-ellipse). Fig. 3 left column shows the empirical cover-
age (i.e., the percentage of images whose groundtruth poses
lie in (PURSE)) of all four variants with ✏ = 0.1 and ✏ = 0.4.
We see the empirical coverage is around 90% when ✏ = 0.1
and around 60% when ✏ = 0.4, for all 8 objects. Though the
empirical coverage can deviate from 1�✏, it generally stays
within ±5% and mostly goes above 1� ✏, which is encour-
aging given that our calibration set only has size n = 200.
Fig. 1 (b) plots examples of the prediction sets. More ex-
amples are shown in the Supplementary Material.

Worst-case error bounds. Fig. 3 middle column plots
the worst-case rotation error bound (x-axis) vs. the actual
rotation error between the average pose and the groundtruth
(y-axis) for our approach using the gt-ball setup (results for
gt-ellipse, frcnn-ball and frcnn-ellipse are similar and provided
in the Supplementary Material). First, when the PURSE cov-
ers the groundtruth (blue circles), the rotation error bound
is always larger than the actual error (i.e., the blue circles
never cross the y = x diagonal). Second, when the er-
ror rate is increased from ✏ = 0.1 to ✏ = 0.4, we observe
a shift of the blue circles towards y = x, indicating the
error bounds get tightened. Third, our bounds are reason-
ably tight for most test images (i.e., the bottom-left cluster
of blue circles) especially when ✏ = 0.4. However, they
can become overly conservative (i.e., the line of blue circles
on the right-side boundary) due to the keypoint prediction

8https://github.com/yufu-wang/6D_Pose
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Figure 3. Empirical coverage (left) and worst-case error bounds (middle: rotation, right: translation). Top: ✏ = 0.1, bottom: ✏ = 0.4. For
middle and right columns, x-axis represents the worst-case error bounds computed from (12), y-axis represents the actual error between
average pose and groundtruth pose. The area below the diagonal y = x indicates correctness of the bounds (i.e., bound � error), and points
that are closer to the diagonal from below indicate tighter bounds (perfect if precisely lie on the diagonal). Blue circles plot cases where
the PURSE covers the groundtruth pose and red squares plot cases were the PURSE does not cover the groundtruth. Notice that blue circles
never cross the diagonal and our bounds are correct when the PURSE contains the pose (which holds with 1� ✏ marginal probability).

Baselines (results adapted from [72]) Conformalized heatmap
Tekin PoseCNN Oberweger PVNet gt-ball gt-ellipse frcnn-ball frcnn-ellipse

objects [89] [95] [67] [72] ✏ = 0.1 ✏ = 0.4 ✏ = 0.1 ✏ = 0.4 ✏ = 0.1 ✏ = 0.4 ✏ = 0.1 ✏ = 0.4
ape 7.01 34.6 69.6 69.14 77.70 79.52 79.26 79.88 70.20 71.01 68.84 69.11
can 11.20 15.10 82.60 86.09 73.41 75.97 75.81 78.13 67.52 69.81 67.69 69.56
cat 3.62 10.40 65.10 65.12 87.36 90.59 89.54 90.11 74.95 80.23 68.98 78.57

duck 5.07 31.80 61.40 61.44 82.71 83.08 84.02 83.55 79.30 80.62 80.06 80.53
driller 1.40 7.40 73.80 73.06 79.32 82.54 81.22 82.04 58.48 65.92 58.06 65.67
eggbox - 1.90 13.10 8.43 0 0 0.09 0.18 0 0 0 0.14

glue 4.70 13.80 54.90 55.37 56.49 71.08 71.69 72.93 30.03 47.18 41.96 48.26
holepuncher 8.26 23.10 66.40 69.84 81.65 82.89 83.22 84.30 74.96 77.85 76.28 78.18

average 6.16 17.20 60.90 61.06 67.33 70.71 70.61 71.39 56.93 61.58 57.73 61.25

Table 1. Success rates of baseline methods and our conformalized heatmap (using the average pose) based on the 2D projection metric
(i.e., a pose estimation is considered successful if the average 2D reprojection error is below 5 pixels).

sets become too large. Fig. 3 right column plots similar re-
sults for the translation. The Supplementary Material gives
a more detailed analysis of this conservatism, wherein we
also solve (12) for multiple samples computed by RANSAG,
choose the minimum bound, and compare them with those
obtained for the average pose (cf . Remark 4).

Accuracy of the average pose. We compare the ac-
curacy of our average pose with other methods according
to the 2D projection metric (an estimation is correct if the
mean reprojection error is below 5 pixels). Table 1 shows:
(i) our average pose achieves significantly better success
rates when using groundtruth bounding boxes, and similar
success rates when using Faster RCNN; (ii) the accuracy of
the average pose increases when ✏ increases.

7. Conclusions

We applied inductive conformal prediction to conformal-
ize heatmap predictions as circular or elliptical prediction

sets that guarantee probabilistic coverage of the groundtruth
keypoints, propagated the uncertainty in keypoints to the
object pose to form a PURSE, designed RANSAG to sam-
ple from PURSE and compute an average pose, and used
SDP relaxations to bound worst-case estimation errors. We
validated our theory on the LineMOD Occlusion dataset.
Future research will investigate better nonconformity func-
tions, and applications to other vision problems.
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