
POEM: Reconstructing Hand in a Point Embedded Multi-view Stereo

Lixin Yang1,2 Jian Xu3 Licheng Zhong1 Xinyu Zhan1 Zhicheng Wang3 Kejian Wu3 Cewu Lu1,2†

1Shanghai Jiao Tong University 2Shanghai Qi Zhi Institute 3Nreal

{siriusyang, zlicheng, kelvin34501, lucewu}@sjtu.edu.cn
{jianxu, kejian}@nreal.ai chgggo@gmail.com

Abstract

Enable neural networks to capture 3D geometrical-
aware features is essential in multi-view based vision tasks.
Previous methods usually encode the 3D information of
multi-view stereo into the 2D features. In contrast, we
present a novel method, named POEM, that directly oper-
ates on the 3D POints Embedded in the Multi-view stereo
for reconstructing hand mesh in it. Point is a natural form
of 3D information and an ideal medium for fusing fea-
tures across views, as it has different projections on dif-
ferent views. Our method is thus in light of a simple yet
effective idea, that a complex 3D hand mesh can be rep-
resented by a set of 3D points that 1) are embedded in
the multi-view stereo, 2) carry features from the multi-view
images, and 3) encircle the hand. To leverage the power
of points, we design two operations: point-based feature
fusion and cross-set point attention mechanism. Evalua-
tion on three challenging multi-view datasets shows that
POEM outperforms the state-of-the-art in hand mesh re-
construction. Code and models are available for research
at github.com/lixiny/POEM

1. Introduction
Hand mesh reconstruction plays a central role in the field

of augmented and mixed reality, as it can not only deliver
realistic experiences for the users in gaming but also sup-
port applications involving teleoperation, communication,
education, and fitness outside of gaming. Many significant
efforts have been made for the monocular 3D hand mesh
reconstruction [1, 5, 7, 9, 31, 32]. However, it still strug-
gles to produce applicable results, mainly for these three
reasons. (1) Depth ambiguity. Recovery of the absolute
position in a monocular camera system is an ill-posed prob-
lem. Hence, previous methods [9, 31, 54] only recovered
the hand vertices relative to the wrist (i.e. root-relative).
(2) Unknown perspectives. The shape of the hand’s 2D
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Figure 1. Intersection area of N cameras’ frustum spaces. The
gray dots represent the point cloud P aggregated from N frustums.
Our method: POEM, standing for the point embedded multi-view
stereo, focuses on the dark area scatted with gray dots.

projection is highly dependent on the camera’s perspec-
tive model (i.e. camera intrinsic matrix). However, the
monocular-based methods usually suggest a weak perspec-
tive projection [1, 27], which is not accurate enough to re-
cover the hand’s 3D structure. (3) Occlusion. The occlu-
sion between the hand and its interacting objects also chal-
lenges the accuracy of the reconstruction [32]. These issues
limit monocular-based methods from practical application,
in which the absolute and accurate position of the hand sur-
face is required for interacting with our surroundings.

Our paper is thus focusing on reconstructing hands from
multi-view images. Motivation comes from two aspects.
First, the issues mentioned above can be alleviated by lever-
aging the geometrical consistency among multi-view im-
ages. Second, the prospered multi-view hand-object track-
ing setups [2, 4, 49, 55] and VR headsets bring us an urgent
demand and direct application of multi-view hand recon-
struction in real-time. A common practice of multi-view 3D
pose estimation follows a two-stage design. It first estimates
the 2D key points of the skeleton in each view and then
back-project them to 3D space through several 2D-to-3D
lifting methods, e.g. algebraic triangulation [17,18,39], Pic-
torial Structures Model (PSM) [33, 38], 3D CNN [18, 43],
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plane sweep [26], etc. However, these two-stage methods
are not capable of reconstructing an animatable hand mesh
that contains both skeleton and surface. It was not until re-
cently that a one-stage multi-view mesh regression model
was proposed [45].

How to effectively fuse the features from different im-
ages is a key component in the multi-view setting. Ac-
cordingly, previous methods can be categorized into three
types. (1) Fusing in 2D. The features are directly fused
in the 2D domain using explicit epipolar transform [17, 38]
or implicit representations that encode the camera transfor-
mation (i.e. camera intrinsic and extrinsic matrix) into 2D
features, e.g. feature transform layer (FTL) [14, 39] and 3D
position embedding (RayConv) [45]; (2) Fusing in 3D. The
features are fused in a 3D voxel space via PSM [33, 38] or
3D CNNs [18, 43]; (3) Fusing via 3D-2D projection. The
features are fused by first projecting the 3D keypoints’ ini-
tial guess into each 2D plane and then fusing multi-view
features near those 2D locations [45];

The fusion mode in type 1 is considered as holistic,
since it indiscriminately fuses all the features from differ-
ent views. Consequentially, it ignores the structure of the
underlying hand model that we are interested in. On the
contrary, the fusion mode in type 3 is considered as lo-
cal. However, only the features around the 2D keypoints
are hard to capture the consistent geometrical features from
a global view. Besides, the 3D keypoints initial guess may
not be accurate enough, resulting in the fusion being unsta-
ble. The fusion mode in type 2 is not in our consideration
as it tends to be computationally expensive and suffers from
quantization error.

Based on the above discussion, we aim to seek a fea-
ture representation and a fusion mode between type 1 and
type 3 for both holistically and locally fusing the features
in multi-views, and to explore a framework for robust and
accurate hand mesh reconstruction. Our method is called
POEM, standing for POint Embedded Multi-view Stereo.
We draw inspiration from the Basis Point Set (BPS) [34],
which bases on a simple yet effective idea that a complex
3D shape can be represented by a fixed set of points (BPS)
that wraps the shape in it. If we consider the intersection of
different cameras’ frustum spaces as a point cloud, and the
hand’s vertices as another point cloud, then the intersected
space is the basis point set for hand vertices (see Fig. 1).
Once we assign the multi-view image features to the point
cloud in the intersected space, fusing image features across
different views becomes fusing the point features from dif-
ferent camera frustums. The advantages of this representa-
tion are two-fold: (i) The hand is wrapped in a dense point
cloud (set) that carries dense image features collected from
different views, which is more holistic and robust than the
local fusion mode in type 3. (ii) For each vertex on the hand
surface, it interacts with basis points in its local neighbor-

hood (i.e. k nearest neighbor), which is more selective than
the holistic fusion mode in type 1.

Fig. 2 shows our model’s architecture. POEM consists
of two stages. In the first stage (Sec. 3.2), POEM takes the
multi-view images as input and predicts the 2D keypoints
of the hand skeleton in each view. Then, the 3D keypoints
are recovered by an algebraic triangulation module. In the
second stage, POEM fuses the features from different views
in a space embedded by points and predicts the hand mesh
in this space (Sec. 3.3). The point feature on hand vertices
will iteratively interact with the features of the embedded
points through a cross-set attention mechanism, and the up-
dated vertex features are further used by POEM to predict
the vertex’s refined position (Sec. 3.3.3).

We conduct extensive experiments on three multi-view
datasets for hand mesh reconstruction under the object’s oc-
clusion, namely HO3D [12], DexYCB [4], and OakInk [49].
With the proposed fusion mode and attention mechanism,
POEM achieves state-of-the-art on all three datasets.

Our contributions are in three-fold:
• We investigate the multi-view pose and shape recon-

struction problem from a new perspective, that is, the
interaction between a target point set (i.e. mesh vertices)
and a basis point set (i.e. point cloud in the camera frus-
tum spaces).

• According to that, we propose an end-to-end learning
framework: POEM for reconstructing hand mesh from
multi-view images through a point embedded multi-view
stereo. To encourage interaction between two point sets,
POEM introduces two new operations: a point-based
feature fusion strategy and a cross-set point attention.

• We conduct extensive experiments to demonstrate the
efficacy of the architecture in POEM. As a regression
model targeting mesh reconstruction, POEM achieves
significant improvement compared to the previous state-
of-the-art.

2. Related Work
Multi-view Feature Processing. Representing the obser-
vations from different camera systems in a unified way
while fusing multi-view features accordingly is a common
problem in multi-view stereo (MVS) reconstruction and
pose estimation. This literature review focuses on address-
ing this key challenge. From this perspective, previous
methods - in which the camera transformation (extrinsic)
is typically encoded differently - can be seen as different
types of Position Embedding (PE). For example, the method
based on epipolar transform [17] can be classified as a line-
formed PE, as pixels in one camera are encoded as epipolar
lines in others. Additionally, there are point-formed posi-
tion embeddings such as FTL in [14, 39], RayConv in [45],
and 3D Position Encoder in PETR [29], which apply cam-
era extrinsic directly to point-shaped features (FTL) or add
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camera ray vectors channel-wise to the features (RayConv,
PETR). These two point-formed PEs use point-formed fea-
tures solely in 2D format because 2D convolution or image-
based self-attention cannot capture 3D structure. Therefore
they are considered implicit. In contrast, 3D CNN and point
cloud network can preserve 3D structure. SurfaceNet [19]
and LSM [20] associate features from different views by
forming a cost volume and rely on 3D CNNs to perform
voxel-wise reconstruction. To address the drawback of the
final volumetric output, MVSNet [51] predicts the depth-
map instead of voxels. These methods are classified as
voxel-formed PEs. Finally, the explicit point-formed PE
directly uses a set of 3D points in the MVS scene. For in-
stance, PointMVS [6] unprojects the predicted depth-map to
a point cloud and aggregates features from different views
using project-and-fetch. Our method also belongs to this
type. In our task, preserving the topology of the hand ver-
tex points is crucial, but this can be challenging with Point-
MVS, which indiscriminately treats points. Instead, our ap-
proach, POEM, represents the common-view scene as an
unstructured point cloud for feature aggregation and em-
ploys a structure-aware vertex query to initialize and up-
date hand vertices. POEM’s structured vertices interact with
unstructured frustum points through cross-attention, which
effectively removes object occlusion and accurately recon-
structs the hand mesh.

Monocular Hand Reconstruction. Monocular hand re-
construction has been a long-studied topic. A series
of works [1, 16, 23, 54] were built upon the deformable
hand mesh with a differentiable skinning function, e.g.
MANO [40]. However, the difficulty of regressing the non-
Euclidean rotations hinders the performance of these meth-
ods. There have been emerging works exploring the di-
rect reconstruction of the hand surface. As vertices natu-
rally lie in 3D Euclidean space, [7, 9, 22, 24] leveraged the
mesh structure of MANO with the graph-based convolution
networks (GCN). Besides, the voxels [31], UV positional
maps [5], and signed distance function [8, 21] were also
competent choices. Recently, Transformers [27, 28] have
been deployed to fuse the features on the hand surface by
self-attention mechanism. In this work, we follow the path
of direct mesh reconstruction with Transformer and propose
to model hand mesh as a point set in the multi-view stereo.

Point Cloud Processing. Qi et al. [35] proposed Point-
Net, the first deep model utilizing the permutation-invariant
structure of point cloud data. A subsequent work, Point-
Net++, was proposed in [36] thereafter. PointNet++ intro-
duced ball query and hierarchical grouping, enabling the
model to reason form local structures of point clouds. There
were a number of successive works [25,42,48] trying to de-
fine local convolution operators on point clouds to extract
local information. The recent application of transformers
on point cloud data has been proven a success. Zhao et

al. proposed Point Transformer [53], which adopts a vec-
tor attention mechanism to perform attention in the local
neighborhood. Guo et al. proposed the Point Cloud Trans-
former [10], which used an analogy of the Laplacian matrix
on point clouds to fuse long-range relationships in the point
cloud. Our method follows the design in Point Transformer,
but selectively fuses the points from different cameras to a
hand vertex through a cross-set vector attention.

3. Method
3.1. Formulation

The general purpose of this paper is to model the joint
distribution of hand skeleton and surface under multi-view
observations. Given N cameras with different positions and
orientations, we first define the 3D coordinates of the hand’s
skeleton and surface inside a shared 3D world space: W .
Accordingly, their coordinates inside each camera frame
can be retrieved by applying extrinsic transformation. Let
X ∈ R21×3 denotes the 3D keypoints on the hand skele-
ton, and let V ∈ R778×3 denotes the 3D vertices on the
hand surface mesh, given a image set I = {Iv}Nv=1 from
total N views, the proposed model predicts a distribution
P (X,V|I). However, directly model this joint distribu-
tion is hard and suffers from inferior performance (see Exp.
Sec. 4.2-B). Hence, based on the chain rule, we decompose
the joint distribution as follows:

P (X,V|I) = Pω(V|X,I)Pϕ(X|I). (1)

This equation expresses POEM’s architecture (shown in
Fig. 2), which consists of two stages. The training process
is to fit the learnable parameters ϕ,ω on the training data,
i.e. for each input I , the model maximizes its probability at
the ground-truth X̂, V̂. We represent these two stages: Pϕ

and Pω as two neural networks: fϕ(I) and fω(X,I). The
fitting objective are set to the standard l1 loss:

L =
∣∣V̂ − fω(X,I)

∣∣+ ∣∣X̂− fϕ(I)
∣∣. (2)

Having outlined the problem decomposition and learn-
ing objectives, we now move on to discuss details of the
network design.

3.2. Keypoints from M.v. Images

The first stage of POEM is to predict the 3D keypoints X
conditioned on the multi-view (m.v.) images I . To achieve
this, we first estimate the x’s 2D location in each view Ii
and then lift them to the 3D space through algebraic trian-
gulation. To increase 2D keypoints’ robustness against oc-
clusion, we leverage 2D likelihood heatmap [47] and soft-
argmax operation [41] for x’s 2D location. Inside the first
stage, we suppose that the 2D keypoints from each view’s
prediction have independent contribution to X. Hence we
can apply the direct linear transformation (DLT, [15, p.312])
for fast triangulation. Formally, POEM’s first stage fϕ(I)
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Figure 2. POEM’s architecture contains two stages: (a) hand’s keypoints prediction conditioned on multi-view images, and (b) hand’s
vertices prediction conditioned on the predicted keypoints and multi-view images features.

can be expressed as:

fϕ :X = DLT(h1∼N ,K1∼N ,T1∼N ),

where hi = soft-argmax (Fϕ(Ii)),
(3)

in which Fϕ is a backbone network with weights ϕ, Ki, Ti

is the camera intrinsic and extrinsic matrix of i-th camera,
respectively.

3.3. Vertices from Keypoints and M.v. Images

In the previous stage, we built a model that can robustly
retrieve the hand’s keypoints X from multi-view images.
However, only the keypoints X is deficient for our task in
two aspects: (1) keypoints are not on the surface, which
can hardly reflect the shape of hand; (2) the keypoints are
retrieved independently from the backbone model, lacking
the information fused from different views; Based on (2),
the keypoints may not be accurate enough.

Given such deficiencies, inside the second stage, we
want the latent embeddings of hand vertices V can fully
interact with the features from all views before reaching its
outputs: V. We start by reviewing the problem setting that
each image observes a frustum space in front of a camera.
As shown in Fig. 1, the common views among all N cam-
eras reflect the intersection area of N frustum spaces. The
hand that we are interested in lies in it.

To enable the network to operate on the frustum space,
we discretize it into a 3D meshgrid. Each cell in the mesh-
grid store a 3D coordinate of a point. With the camera ex-
trinsic, we can transform all the points from total N cam-
era frustums into the shared world space W (details in
Sec. 3.3.1). Therefore, the hand is surrounded by a point
cloud P aggregated from N frustums. Now let us revisit the
form of V. If we consider the 778 vertices of V as another

point cloud in W , the goal of the second stage becomes
encouraging the interaction between two point clouds: One
from N camera frustums, the other from the surface of hand.

Representing the camera frustum and hand vertices in
point cloud has two advantages. (1) Point cloud is invariant
to the permutation of points. It only subject to the relative
distance between points. Hence, points from different cam-
era frustums can be easily fused to the points in V if they
are spatially close; (2) Point cloud is a set of 3D points with
its coordinates as a natural positional encoding, which is
quite suitable for the mechanism of self and cross-attention;
Given these advantages, we design a cross-set point Trans-
former to fuse features in point cloud (Sec. 3.3.3).

One last issue is how to embed features into the point
clouds P and V, since currently they are just a set of 3D
coordinates. We investigate two ways in the Sec. 3.3.2. We
start by introducing a Position Embedded Aggregation and
followed by a more powerful Projective Aggregation.

3.3.1 Embedding Points to Camera Frustum Space

To associate each camera frustum into a shared world space
W , we propose to first embed discrete points along the cam-
era ray direction in the frustum and then transform the em-
bedded points to W . A camera ray can be represented by
a 3D vector r = (u, v, d), where u, v are the pixel coordi-
nates in the image plane, and d is a depth value. Accord-
ingly, all the camera ray vectors constitute a meshgrid of
size W ×H ×D, where W,H are the width and height of
the image, and D is the number of discrete depth values.
Finally, given the camera intrinsic matrix K and extrinsic
matrix T (from camera to W), we can transfer the points in
each camera’s meshgrid to W through firstly back project-
ing the ray vector r into a 3D point in camera space using
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Figure 3. Illustration of the (a) position embedded ag-
gregation and (b) projective aggregation for embed-
ding image features into point cloud.
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Figure 4. Architecture of G: bottleneck
embedded dot-product module for fus-
ing features from different views.

Figure 5. Vector attention: in each de-
coder layer, the VC’s position will be
updated by the attention between VC
and VC’s k nearest neighbors in PC.
Accordingly, VC’s k nearest neigh-
bors will be updated based on refined
position of VC.

K, and then transform the point to W using T. After aggre-
gating points from all N cameras, we obtain the final point
cloud P of size M = N ×W ×H ×D, which represents
a wide range of points surrounding the hand V.

However, only points that are spatially close to V are rel-
evant. Ideally, we aim for the number of relevant points (S)
to be greater than the number of vertices of hand (S > 778),
while still being considerably smaller thanM (S ≪M ). To
achieve this, we need to determine the initial position of the
surface vertex, V, based on the predicted skeleton joints, X.
While MANO’s formulation provides a pretrained mapping
from V to X, mapping X to V is not straightforward. A
basic approach for this inverse mapping is to learn a neural
network fm : X 7→ V. However, we found that the initial
V = fm(X) may deviate significantly from X, resulting in
unstable training. Therefore, instead of learning the abso-
lute position of V, we choose to learn V as an offset of the
wrist (root) joint Xw, as follows: V = Xw + fm(X), where
Xw is the wrist joint in the world system. Once V is ob-
tained, we can retrieve its relevant points from P using the
ball query [36] operation. These relevant points lie within a
certain radius of V and are a subset of P. We refer to them
as P̄.

3.3.2 Embeding Features to Points
In this section, we discuss the approaches for embedding
image features to camera frustum points (P/ P̄, Sec. 3.3.2-
A) and hand surface points (V, Sec. 3.3.2-B), respectively.

A. Embedding Features to Camera Frustum Points (P)

Position Embedded Aggregation. Recall in Sec. 3.3.1,
we use a meshgrid of 3D points to represent the camera
ray vectors inside the camera frustum. This meshgrid M3d

is a tensor of shape: (W,H,D, 3). Meantime, the image
feature F2d extracted from the backbone model is a tensor
with different shape: (C,H,W ), where C is the numbers

of channel. A basic design to assign the features in F2d to
the points in M3d is through embedding the M3d’s posi-
tions into F2d, as shown in Fig. 3(a). Specifically, we first
reshape the F2d to F′

2d: (W,H,D, CD ), where the last di-
mension (of size C

D ) stores F2d’s 3D position-aware com-
ponents. Then, we add the M3d’s positional encoding and
F′

2d up for the position embedded feature: F3d:

F3d = fM(M3d) + F′
2d, (4)

where fM is a series of sinusoids and MLP functions to ob-
tain M3d’ s positional encoding. The F3d has an identi-
cal spatial arrangement to M3d. Each cell in F3d stores a
feature corresponding to the point at the same position in
M3d. Therefore, the underlying idea for embedding im-
age features into frustum points involves associating each
point in M3d with its corresponding feature in F3d. Subse-
quently, following the application of ball query, P̄ gathers
points with different image features from different view-
points, leading to effective feature aggregation. This ap-
proach is akin to previous methods such as PETR [29] (re-
ferred to as ”3D Positional Encoder”) and MVP [45] (re-
ferred to as ”Ray Convolution”), which also rely on similar
feature embedding strategy.

Although the above design seems reasonable, it suffers
from two drawbacks. Firstly, we select P̄ instead of P,
which results in only a small portion of feature cells in F3d

being assigned to the point cloud P̄. Secondly, since each
point in P̄ only carries features from one camera frustum,
the features in P̄ lack consistency across different views

Projective Aggregation. To overcome the aforemen-
tioned drawbacks and facilitate more effective feature ag-
gregation, we propose fusing features of points in P̄ from
different views. As shown in Fig. 3(b), the key concept
is to collect the features sampled at the 2D projection of a
specific point in P̄ across N views, and combine the N in-
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dependently sampled features into a single geometry-aware
feature for that point. We refer to this operation as projec-
tive aggregation. To sample feature at projected location
in F3d, we use bilinear interpolation. To fuse the features
sampled from different camera views, we modify an origi-
nal non-local network [46] with bottleneck embedded dot-
product design. As shown in Fig. 4, we choose the feature
of one camera as reference, and the remainN−1 as sources.
In the beginning, all the N sampled features are downsam-
pled by an embedding projection (a MLP function). Then
the features of sources and reference are completely mixed
through dot-product, and up-sampled back by another em-
bedding projection. At last, the mixed features are added
to the reference for the final fused feature. Formally, the
projective aggregation can be expressed as:

F = G(f1, ..., fN ), where fi = F3d

(
π(P̄)

)
i

(5)

where F3d(·)i is bilinear interpolation on the i-th F3d, π
is the camera projection, and G is the bottleneck embedded
dot-product module.

Compared to features of position embedded aggrega-
tion, the feature produced by projective aggregation is
geometrical-aware. For example, two points from differ-
ent camera frustums will have similar fused features if they
are spatially close. On the other hand, two points that are
close in one image plane will still have the fused features of
significant difference, if they are spatially far away.

B. Embedding Features to Hand Surface Points (V)
Similar to the features of P̄, we gather the V’s multi-view
image feature by projective aggregation. In addition, since
we are using V as the token in the Transformer, providing
positional encoding for V is crucial. Following the prac-
tices of several vision-based Transformers, such as Key-
point Transformer [13], Mesh Transformer [27], and MVP
[45], we utilize a set of learnable parameters: S ∈ RNV ×Z ,
as the position encoding for V, where number of vertex:
NV = 778, and dimension of the encoding: Z = 256. We
explore three different strategies for constructing S.

(1) J-emb (SJ). Similar to Keypoint Transformer [13], the
SJ is initialized as the joint-level embedding vectors:
J ∈ RNV ×Z . Hence, SJ = J.

(2) G-emb (SG). Similar to the Mesh Transformer [27],
the SG is initialized as the concatenation (⊕) of an
input-dependent global image feature: G ∈ RZ and
vertex-specified position: V†

i (i for i-th vertex) ex-
tracted from a zero-posed and mean-shape MANO
hand template (†). Therefore, Si = G ⊕ V†

i . Here,
G is the average of the N final-layer features from the
N -views’ image backbones (Fϕ in Eq. (3)).

(3) G&J-emb (S+). Similar to the MVP [45], the S+ is
initialized as the sum of the global image feature, G,
and joint-level embedding vectors, J, as S+

i = G+Ji.

We empirically find that the J-emb achieve the best perfor-
mance (see Sec. 4.2-G). Therefore, The feature of V con-
sists of two terms, namely (1) feature from projective ag-
gregation, F (obtained via substituting V for P̄ in Eq. (5))
and (2) SJ as the positional encoding of V. Following the
convention used by [13, 27, 45], we refer to this positional
encoded feature as query of V (denoted as Q). Formally,
we have Q = F+ SJ.

3.3.3 Cross-set Point Transformer
Given two pointclouds:
• PC = (P̄,F), representing the frustum points’ position
P̄ and feature F aggregated from multi-view images;

• VC = (V,Q), representing the hand vertices’ position
V and feature Q,

we want a set operator to progressively extract the inter-
set relationship and update VC’s prediction. The atten-
tion mechanism [44] is quite a natural and powerful choice
for this task. Inspired by the recent success of the self-
attentive Point Transformer [53], we construct a cross-set
Point Transformer to effectively capture relevant point fea-
tures across different point clouds.

Our Transformer only contains one decoder with mul-
tiple decoder layers in it. As shown in Fig. 2-(b), each
decoder layer consists of three sequential modules: a self-
attention to perform point-wise interaction in VC, a vector
cross-attention to perform point-to-set interaction from VC
to PC, and a feed-forward network to regress a offset on
VC’s position (V). This offset will be used to refine the
input V from the previous layer. When the Transformer
reaches its final output stage, the VC’s position will also
reaches its convergence based on the learnable weights in
the second stage. The recursive form of each decoder layer
is: VCl = Dl(PC,VCl−1), where Dl is the l-th decoder
layer. The point attention between VC and PC is vector
attention [52, 53], in which the attention will be applied in
a local neighbor (i.e. the k nearest neighbor) of each query
point (see Fig. 5). We formulate the three modules in each
Dl as:

Q⋆ = self-attention(Q),

Q̃i =
∑

Fj∈Xi

SM
(
γ(α(Q⋆

i )− β(Fj)) + δ)
)
⊙ (ψ(Fj) + δ),

Ṽi = Vi + FFN(Q̃i),
(6)

where Xi is a subset of PC, which collect points in the
k nearest neighbor of the i-th hand vertex: Vi. The δ is
the position encoding for point cloud, δ = θ(Vi − P̄j).
The α, β, γ, ψ, θ are learnable functions (e.g. MLP), ⊙ is
the Hadamard product, FFN is the feed-forward network,
and SM is the softmax operation. Through collecting all
the Ṽi and Q̃i, we can get the output VCl of the current
decoder layer Dl.
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Methods Hand vertices Hand keypoints
MPVPE↓ RR-V↓ PA-V↓ AUC-V↑ MPJPE↓ RR-J↓ PA-J↓ AUC-J↑

D
ex

Y
C

B
-M

V

1 ours POEM 6.13 7.21 4.00 0.70 6.06 7.30 3.93 0.68
2

A
MVP [45] 9.77 12.18 8.14 0.53 6.23 9.47 4.26 0.69

3 PE-Mesh-TR 7.41 8.67 4.70 0.64 7.49 8.87 4.76 0.64
4 FTL-Mesh-TR 8.75 9.80 5.75 0.59 8.66 9.81 5.51 0.59
8 C POEM w/o pt. 7.63 8.94 5.48 0.63 7.20 8.58 4.89 0.65
9 D POEM w/o Proj. 6.57 7.69 4.42 0.68 6.54 7.82 4.37 0.67
10 F Multi-view Fit. 7.33 8.71 5.29 0.65 7.22 8.77 5.19 0.65

H
O

3D
-M

V

11 ours POEM 17.2 21.45 9.97 0.66 17.28 21.94 9.60 0.63
12

A
MVP [45] 20.95 27.08 10.04 0.59 18.72 24.90 10.44 0.60

13 PE-Mesh-TR 23.49 29.19 11.31 0.55 23.94 30.23 11.67 0.54
14 FTL-Mesh-TR 24.15 33.53 10.56 0.53 24.66 34.74 10.76 0.52
15 C POEM w/o pt. 19.26 24.32 12.45 0.62 18.20 23.80 10.56 0.63
16 D POEM w/o proj. 18.83 22.26 10.83 0.63 18.48 22.73 10.39 0.63
17 E POEM w/o ∆v 19.34 24.27 11.18 0.62 19.42 25.00 10.71 0.60

O
ak

In
k-

M
V

18 ours POEM (SJ) 6.20 7.63 4.21 0.70 6.01 7.46 4.00 0.69
19

A
MVP [45] 9.69 11.75 7.74 0.53 7.32 9.99 4.97 0.64

20 PE-Mesh-TR 8.34 9.67 5.75 0.60 8.18 9.59 5.42 0.61
21 FTL-Mesh-TR 9.28 10.88 6.61 0.56 8.89 10.66 6.01 0.58
22 D POEM w/o proj 6.42 7.82 4.50 0.69 6.25 7.84 4.28 0.68
23 E POEM w/o ∆v 6.56 8.04 4.63 0.69 6.32 7.99 4.32 0.67
24 G S+ as pos-enc. 6.23 7.63 4.30 0.70 6.05 7.65 4.09 0.69
25 SG as pos-enc. 6.25 7.65 4.33 0.70 6.05 7.66 4.10 0.69

Table 1. Quantitative results (mm) of evaluations A to F. The AUC are computed on the evaluation metrics of MPVPE and MPJPE.
The thresholds of AUC vary from datasets. i.e. 0-20 mm for DexYCB-MV and OakInk-MV, and 0-50 mm for HO3D-MV.

4. Experiments and Results
4.1. Datasets
DexYCB. It contains 582K images of hand grasping ob-
jects [4]. These images consist of the observations from
8 cameras. To construct a split mode for multi-view task,
we follow its official ‘S0’ split on train/val/test sets and
filter out the frames on left hand. For each frame ID,
we collect 8 images from total 8 cameras. These 8 im-
ages, along with their annotations, consist of one multi-view
(m.v.) frame. We name the DexYCB with our multi-view
split as DexYCB-MV. In all, DexYCB-MV contains 25,387
m.v. frames (that is, 203,096 monocular frames) in training
set, 1,412 m.v. frames in validation and 4,951 in testing set.

HO3D. HO3D (version 3) [12] contains 103,462 images
capturing hand-object interaction from up-to 5 cameras.
Frames of same sequence but different cameras may be
scattered in different split sets. To enable HO3D sup-
porting multi-view task, we only select sequences with
full 5 camera observations, and construct a HO3D-MV
upon them. There are total 7 sequences in HO3D satisfy
multi-view requirements. We select sequences with serial:
‘ABF1’,‘BB1’, ‘GSF1’, ‘MDF1’ and ‘SiBF1’ as training
set, and the remain ‘GPMF1’ and ‘SB1’ as testing set. In
total, there are 9,087 m.v. frames (that is 45,435 monocular
frames) in training set and 2,706 in testing set.

OakInk. OakInk-Image [49] is a new dataset of hand ma-
nipulating objects. It contains 230K images from the ob-

servation of 4 cameras. We follow the official ‘SP2’ – ob-
jects split mode and construct the OakInk-MV. Each m.v.
frame in OakInk-MV contains the images from 4 cameras.
Nearly a quarter of sequences in OakInk contain two per-
son handing over an object (with two hands captured in im-
age). For these sequences, we train and test each hand sepa-
rately. OakInk-MV has 58,692 m.v. frames (that is, 234,768
monocular frames) in training set and 19,909 m.v. frames in
testing set.

4.2. Evaluation

We report the MPJPE and MPVPE (mm), standing for
the mean per keypoint (joint) and per vertex position er-
ror, respectively. Notably, since the MANO provides a
pre-trained mapping from V to X, The reported keypoints
X is a by-product of the final vertex V from the second
stage. Beside, we also inspect the MPVPE and MPVPE in
a root-relative (RR) system and under the Procrustes anal-
ysis (PA). Additionally, we evaluate the percentage of cor-
rect keypoints under a range of threshold by measuring the
area under the percentage curve (AUC), which tells us the
model’s discriminative ability on localizing keypoints.

A. POEM -vs- SOTA. POEM targets on single hand re-
construction under the multi-view RGB observations. We
find that the MVP [45], which directly regress mesh pa-
rameters catered to a skinning body model (SMPL [30] and
MANO [40]) using vision Transformer, is highly relevant
to our model. MVP also employs another module to as-
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sociate keypoints among different persons. In our experi-
ments, we only compare POEM with MVP w.r.t. the single-
body reconstruction. Apart from MVP, we also simulate
several SOTA methods for multi-view hand mesh recon-
struction. The purpose of the simulation is to combine the
SOTA architecture in monocular hand reconstruction with
the most advanced fusion algorithms adopted by multi-view
settings. With this in mind, we first explore the advanced
model in the field of 3D detection in autonomous driv-
ing, as operating neural network on multi-view setting is
well-explored in this field. The recent method: PETR [29]
encoded the 3D position embedding (PE) of camera frus-
tum into 2D image features, fused those position-embedded
features with learnable objects’ queries (corresponding to
the Q in our model), and finally transferred those objects’
queries to the objects’ 3D position via a DETR [3] decoder.
In terms of monocular hand mesh reconstruction, the Mesh
Transformer [27] is a representative method that adopts an
image-based self-attentive Transformer to directly regress
all vertices on the hand mesh. Therefore, for simulat-
ing multi-view hand mesh reconstruction, we utilize the
feature-position encoder of PETR to process multi-view im-
age features and a DETR-like vision Transformer to regress
the 3D vertices on hand mesh (based on the design in [27]).
We denote this method “PE-Mesh-TR”. Similarly, we sim-
ulate the “FTL-Mesh-TR”, which utilizes the feature trans-
form layer (FTL) [39] to fuse multi-view features and a
mesh-adapted DETR decoder for mesh regression. Our
POEM outperforms these methods in all metrics.

B. POEM’s Two-stage Design. Recalling the prob-
lem formulation in Sec. 3.1: Eq. (1), the method MVP,
PE-Mesh-TR and FTL-Mesh-TR can be represented as
P (X,V|I), where the hand vertices and keypoints are di-
rectly regressed from their models at the output stage. In
contrast, our method is explicit formulated as two-stage
model. Their comparisons are shown in row 1 vs. 2-4, 11
vs. 12-14 and 18 vs. 19-21.

C. POEM without Embedded Point. We also simulate
a two-stage version of POEM but without embedded points
design, named “POEM w/o pt”. We sequentially concate-
nate the first stage in POEM (for predicting X), the feature-
position encoder, and Transformer decoder as in the PE-
Mesh-TR. This lead inferior results, shown in row 1 vs. 8
and 11 vs. 15.

D. POEM without Projective Aggregation. We inves-
tigate the performance of two feature-to-points embedding
methods in Sec. 3.3.2. The results of the position embedded
aggregation are denoted as “POEM w/o proj”. Comparison
between row 1 vs. 9, 11 vs. 16 and 18 vs. 22 show that the
later projective aggregation is effective.

E. POEM without Progressive VC Update. We remove
all the FFN in the decoder layer only except the last one.

The final V is thus a single-step prediction (“POEM w/o
∆V”). The comparison can be found in row 11 vs. 17 and
18 vs. 23, showing that removing the progressive VC’s up-
date leads to inferior results.

F. POEM -vs- Multi-view Mesh Fitting. Multi-view
pose estimation is a common practice for datasets to obtain
hand’s ground-truth [11, 37]. For instance, HOnnotate [11]
aggregated visual cues from several upstream vision tasks
to acquire the hand model automatically. In a similar way,
we also fit a 3D hand mesh (MANO) to the multi-view 2D
predictions. Our fitting objectives are three-fold: 1) 2D
hand keypoints; 2) silhouette; 3) hand’s anatomical con-
straints [50]; The pseudo ground-truth of 2D keypoints and
silhouette are obtained from a pretrained model [7]. We re-
port the final results in row 1 vs. 10. POEM outperforms the
time-consuming fitting-based methods for auto-labeling.

G. POEM: V’s Positional Encoding. We explored three
different strategies for constructing the position encoding
(pos-enc) of V, namely SJ, SG, and S+, as described in
Sec. 3.3.2-B. The results in row 18 vs. 24,25 show that the
joint-level embedding (SJ ) best fit for our model.

H. Decoders, Cameras, and k Neighbors. We further
examine the performance of POEM on varying the number
of decoder, numbers of cameras, and numbers of k nearest
neighbors, and qualitatively assess the POEM’s reconstruc-
tion results. Please refer to the Appx for more details.

5. Discussion

Limitation. First, POEM is not able to distinguish key-
point from different hands. Hence, it only supports single
hand reconstruction. Second, to fully exploit its power, the
projective aggregation expects those cameras to have an ap-
parent spatial difference. Otherwise, it will collapse to the
aggregation of 2D features with adjacent coordinates.

Conclusion. In this paper, we propose POEM, which ad-
dresses the multi-view hand reconstruction using point rep-
resentation. POEM directly operates on points through two
novel designs, that are point-based feature fusion and cross-
set point attention. Experiments on three datasets show the
effectiveness of such designs. Though targeting on hand’s
reconstruction, the virtue brought from POEM also opens
a path toward the general multi-view-based object recon-
struction, which we leave as a future work.
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[20] Abhishek Kar, Christian Häne, and Jitendra Malik. Learning
a multi-view stereo machine. Conference on Neural Infor-
mation Processing Systems (NeurIPS), 2017. 3

[21] Korrawe Karunratanakul, Jinlong Yang, Yan Zhang,
Michael J Black, Krikamol Muandet, and Siyu Tang. Grasp-
ing field: Learning implicit representations for human
grasps. In International Conference on 3D Vision (3DV),
2020. 3

[22] Nikos Kolotouros, Georgios Pavlakos, and Kostas Dani-
ilidis. Convolutional mesh regression for single-image hu-
man shape reconstruction. In Computer Vision and Pattern
Recognition (CVPR), 2019. 3

[23] Deying Kong, Linguang Zhang, Liangjian Chen, Haoyu Ma,
Xiangyi Yan, Shanlin Sun, Xingwei Liu, Kun Han, and Xi-
aohui Xie. Identity-aware hand mesh estimation and per-
sonalization from rgb images. In European Conference on
Computer Vision (ECCV), 2022. 3

[24] Dominik Kulon, Riza Alp Guler, Iasonas Kokkinos,
Michael M Bronstein, and Stefanos Zafeiriou. Weakly-
supervised mesh-convolutional hand reconstruction in the
wild. In Computer Vision and Pattern Recognition (CVPR),
2020. 3

[25] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,
and Baoquan Chen. Pointcnn: Convolution on x-transformed
points. In Conference on Neural Information Processing Sys-
tems (NeurIPS), 2018. 3

[26] Jiahao Lin and Gim Hee Lee. Multi-view multi-person 3d
pose estimation with plane sweep stereo. In Computer Vision
and Pattern Recognition (CVPR), 2021. 2

[27] Kevin Lin, Lijuan Wang, and Zicheng Liu. End-to-end hu-
man pose and mesh reconstruction with transformers. In
Computer Vision and Pattern Recognition (CVPR), 2021. 1,
3, 6, 8

21116



[28] Kevin Lin, Lijuan Wang, and Zicheng Liu. Mesh
graphormer. In International Conference on Computer Vi-
sion (ICCV), 2021. 3

[29] Ying-Hao Liu, Tiancai Wang, X. Zhang, and Jian Sun. Petr:
Position embedding transformation for multi-view 3d ob-
ject detection. In European Conference on Computer Vision
(ECCV), 2022. 2, 5, 8

[30] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J. Black. SMPL: a skinned multi-
person linear model. ACM Transactions on Graphics, 2015.
7

[31] Gyeongsik Moon and Kyoung Mu Lee. I2l-meshnet: Image-
to-lixel prediction network for accurate 3d human pose and
mesh estimation from a single rgb image. In European Con-
ference on Computer Vision (ECCV), 2020. 1, 3

[32] Joo Hyun Park, Yeong Min Oh, Gyeongsik Moon, Hongsuk
Choi, and Kyoung Mu Lee. HandOccNet: Occlusion-robust
3d hand mesh estimation network. In Computer Vision and
Pattern Recognition (CVPR), 2022. 1

[33] Georgios Pavlakos, Xiaowei Zhou, Konstantinos G. Derpa-
nis, and Kostas Daniilidis. Harvesting multiple views for
marker-less 3d human pose annotations. In Computer Vision
and Pattern Recognition (CVPR), 2017. 1, 2

[34] Sergey Prokudin, Christoph Lassner, and Javier Romero. Ef-
ficient learning on point clouds with basis point sets. In In-
ternational Conference on Computer Vision (ICCV), 2019.
2

[35] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and
Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Computer Vision
and Pattern Recognition (CVPR), 2017. 3

[36] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Conference on Neural Infor-
mation Processing Systems (NeurIPS), 2017. 3, 5

[37] Yuzhe Qin, Yueh-Hua Wu, Shaowei Liu, Hanwen Jiang, Rui-
han Yang, Yang Fu, and Xiaolong Wang. DexMV: Imitation
learning for dexterous manipulation from human videos. In
European Conference on Computer Vision (ECCV), 2022. 8

[38] Haibo Qiu, Chunyu Wang, Jingdong Wang, Naiyan Wang,
and Wenjun Zeng. Cross view fusion for 3d human pose
estimation. In International Conference on Computer Vision
(ICCV), 2019. 1, 2

[39] Edoardo Remelli, Shangchen Han, Sina Honari, P. Fua, and
Robert Y. Wang. Lightweight multi-view 3d pose estimation
through camera-disentangled representation. In Computer
Vision and Pattern Recognition (CVPR), 2020. 1, 2, 8

[40] Javier Romero, Dimitris Tzionas, and Michael J Black. Em-
bodied hands: Modeling and capturing hands and bodies to-
gether. ACM Transactions on Graphics, 36(6), 2017. 3, 7

[41] Xiao Sun, Bin Xiao, Fangyin Wei, Shuang Liang, and Yichen
Wei. Integral human pose regression. In European Confer-
ence on Computer Vision (ECCV), 2018. 3

[42] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. In International Conference on Computer Vi-
sion (ICCV), 2019. 3

[43] Hanyue Tu, Chunyu Wang, and Wenjun Zeng. Voxelpose:
Towards multi-camera 3d human pose estimation in wild en-
vironment. In European Conference on Computer Vision
(ECCV), 2020. 1, 2

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 6

[45] Tao Wang, Jianfeng Zhang, Yujun Cai, Shuicheng Yan, and
Jiashi Feng. Direct multi-view multi-person 3d pose esti-
mation. In Conference on Neural Information Processing
Systems (NeurIPS), 2021. 2, 5, 6, 7

[46] Xiaolong Wang, Ross Girshick, Abhinav Kumar Gupta, and
Kaiming He. Non-local neural networks. In Computer Vision
and Pattern Recognition (CVPR), 2018. 6

[47] Shih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser
Sheikh. Convolutional pose machines. In Computer Vision
and Pattern Recognition (CVPR), 2016. 3

[48] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep
convolutional networks on 3d point clouds. In Computer Vi-
sion and Pattern Recognition (CVPR), 2019. 3

[49] Lixin Yang, Kailin Li, Xinyu Zhan, Fei Wu, Anran Xu, Liu
Liu, and Cewu Lu. OakInk: A large-scale knowledge reposi-
tory for understanding hand-object interaction. In Computer
Vision and Pattern Recognition (CVPR), 2022. 1, 2, 7

[50] Lixin Yang, Xinyu Zhan, Kailin Li, Wenqiang Xu, Jiefeng
Li, and Cewu Lu. CPF: Learning a contact potential field to
model the hand-object interaction. In International Confer-
ence on Computer Vision (ICCV), 2021. 8

[51] Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long Quan.
Mvsnet: Depth inference for unstructured multi-view stereo.
In ECCV, 2018. 3

[52] Hengshuang Zhao, Jiaya Jia, and Vladlen Koltun. Exploring
self-attention for image recognition. In Computer Vision and
Pattern Recognition (CVPR), 2020. 6

[53] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip H. S. Torr, and
Vladlen Koltun. Point Transformer. In International Confer-
ence on Computer Vision (ICCV), 2021. 3, 6

[54] Yuxiao Zhou, Marc Habermann, Weipeng Xu, Ikhsanul
Habibie, Christian Theobalt, and Feng Xu. Monocular real-
time hand shape and motion capture using multi-modal data.
In Computer Vision and Pattern Recognition (CVPR), 2020.
1, 3

[55] Christian Zimmermann, Duygu Ceylan, Jimei Yang, Bryan
Russell, Max Argus, and Thomas Brox. FreiHand: A dataset
for markerless capture of hand pose and shape from single
rgb images. In International Conference on Computer Vision
(ICCV), 2019. 1

21117


