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Figure 1. An example video from our panoptic video scene graph (PVSG) dataset. The top row shows some keyframes overlaid with
the frame-wise panoptic segmentation masks. The timeline tubes underneath the keyframes contain fine, temporal scene graph annotations.
The PVSG dataset contains 400 videos (with an average duration of 76.5 seconds), including 289 third-person and 111 egocentric videos.

Abstract

Towards building comprehensive real-world visual per-
ception systems, we propose and study a new problem
called panoptic scene graph generation (PVSG). PVSG
is related to the existing video scene graph generation
(VidSGG) problem, which focuses on temporal interactions
between humans and objects localized with bounding boxes
in videos. However, the limitation of bounding boxes in
detecting non-rigid objects and backgrounds often causes
VidSGG systems to miss key details that are crucial for
comprehensive video understanding. In contrast, PVSG re-
quires nodes in scene graphs to be grounded by more pre-
cise, pixel-level segmentation masks, which facilitate holis-
tic scene understanding. To advance research in this new
area, we contribute a high-quality PVSG dataset, which
consists of 400 videos (289 third-person + 111 egocentric
videos) with totally 150K frames labeled with panoptic seg-
mentation masks as well as fine, temporal scene graphs. We

also provide a variety of baseline methods and share useful
design practices for future work.

1. Introduction
In the last several years, scene graph generation has re-

ceived increasing attention from the computer vision com-
munity [15, 16, 24, 48–51]. Compared with object-centric
labels like “person” or “bike,” or precise bounding boxes
commonly seen in object detection, scene graphs provide
far richer information in images, such as “a person riding
a bike,” which capture both objects and the pairwise rela-
tionships and/or interactions. A recent trend in the scene
graph community is the shift from static, image-based scene
graphs to temporal, video-level scene graphs [1, 41, 49].
This has marked an important step towards building more
comprehensive visual perception systems.

Compared with individual images, videos clearly contain
more information due to the additional temporal dimension,
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Table 1. Comparison between the PVSG dataset and some related datasets. Specifically, we choose three video scene graph generation
(VidSGG) datasets, three video panoptic segmentation (VPS) datasets, and two egocentric video datasets—one for short-term action antic-
ipation (STA) while the other for video object segmentation (VOS). Our PVSG dataset is the first long-video dataset with rich annotations
of panoptic segmentation masks and temporal scene graphs.

Dataset Task #Video Video Hours Avg. Len. View #ObjCls #RelCls Annotation # Seg Frame Year Source

ImageNet-VidVRD [35] VidSGG 1,000 - - 3rd 35 132 Bounding Box - 2017 ILVSRC2016-VID [33]
Action Genome [15] VidSGG 10,000 99 35s 3rd 80 50 Bounding Box - 2019 YFCC100M [42]
VidOR [34] VidSGG 10,000 82 30s 3rd 35 25 Bounding Box - 2020 Charades [36]

Cityscapes-VPS [17] VPS 500 - - vehicle 19 - Panoptic Seg. 3K 2020 -
KITTI-STEP [45] VPS 50 - - vehicle 19 - Panoptic Seg. 18K 2021 -
VIP-Seg [28] VPS 3,536 5 5s 3rd 124 - Panoptic Seg. 85K 2022 -

Ego4D-STA [12] STA 1,498 111 264s ego - - Bounding Box - 2022 -
VISOR [8] VOS 179 36 720s ego 257 2 Semantic Seg. 51K 2022 EPIC-KITCHENS [7]

PVSG PVSG 400 9 77s 3rd + ego 126 57 Panoptic Seg. 150K 2023 VidOR + Ego4D + EPIC-KITCHENS

which largely facilitates high-level understanding of tempo-
ral events (e.g., actions [14]) and is useful for reasoning [59]
and identifying causality [10] as well. However, we ar-
gue that current video scene graph representations based on
bounding boxes still fall short of human visual perception
due to the lack of granularity—which can be addressed with
panoptic segmentation masks. This is echoed by the evo-
lutionary path in visual perception research: from image-
level labels (i.e., classification) to spatial locations (i.e., ob-
ject detection) to more fine-grained, pixel-wise masks (i.e.,
panoptic segmentation [20]).

In this paper, we take scene graphs to the next level by
proposing panoptic video scene graph generation (PVSG), a
new problem that requires each node in video scene graphs
to be grounded by a pixel-level segmentation mask. Panop-
tic video scene graphs can solve a critical issue exposed
in bounding box-based video scene graphs: both things
and stuff classes (i.e., amorphous regions containing water,
grass, etc.) can be well covered—the latter are crucial for
understanding contexts but cannot be localized with bound-
ing boxes. For instance, if we switch from panoptic video
scene graphs to bounding box-based scene graphs for the
video in Figure 1, some nontrivial relations useful for con-
text understanding like “adult-1 standing on/in ground” and
“adult-2 standing on/in water” will be missing. It is also
worth noting that bounding box-based video scene graph
annotations, at least in current research [15], often miss
small but important details, such as the “candles” on cakes.

To help the community progress in this new area, we
contribute a high-quality PVSG dataset, which consists of
400 videos among which 289 are third-person videos and
111 are egocentric videos. Each video contains an average
length of 76.5 seconds. In total, 152,958 frames are labeled
with fine panoptic segmentation and temporal scene graphs.
There are 126 object classes and 57 relation classes. A more
detailed comparison between our PVSG dataset and some
related datasets is shown in Table 1.

To solve the PVSG problem, we propose a two-stage
framework: the first stage produces a set of features for each

mask-based instance tracklet while the second stage gener-
ates video-level scene graphs based on tracklets’ features.
We study two design choices for the first stage: 1) a panop-
tic segmentation model + a tracking module; 2) an end-to-
end video panoptic segmentation model. For the second
scene graph generation stage, we provide four different im-
plementations covering both convolution and Transformer-
based methods.

In summary, we make the following contributions to the
scene graph community:

1. A new problem: We identify several issues associated
with current research in scene graph generation and
propose a new problem, which combines video scene
graph generation with panoptic segmentation for holis-
tic video understanding.

2. A new dataset: A high-quality dataset with fine, tem-
poral scene graph annotations and panoptic segmenta-
tion masks is proposed to advance the area of PVSG.

3. New methods and a benchmark: We propose a two-
stage framework to address the PVSG problem and
benchmark a variety of design ideas, from which valu-
able insights on good design practices are drawn for
future work.

2. Related Work

Scene Graph Generation Given an image, the scene
graph generation (SGG) task expects the model to output
a scene graph representation, where nodes represent ob-
jects and edges represent relations between objects. To lo-
calize object instances, the nodes should be grounded by
the bounding boxes [48]. Classic scene graph generation
methods have been dominated by the two-stage pipeline that
consists of object detection and pairwise predicate estima-
tion [38, 39, 48, 56, 58]. Recent works on one-stage meth-
ods [4, 23, 50] provide simpler models that output seman-
tically diverse relation predictions. Though the prevalent
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Figure 2. The PVSG dataset statistics. The PVSG dataset contains 400 third-person and ego-centric videos from diverse environments,
as shown in (a). The statistics of object classes and relation classes are shown in (b) and (c).

SGG benchmark Visual Genome [21] provides rich annota-
tions, it suffers from numerous “noisy” ground-truth pred-
icate labels, e.g., some un-annotated negative samples are
not absolutely background. NICE [22] reformulates SGG
as a noisy label learning problem. They re-assign pseudo la-
bels to detected noisy negative samples. Instead of exploit-
ing the noisy SGG datasets, recently a new task of panoptic
scene graph generation (PSG) [50] has been proposed with
a refined PSG dataset, based on panoptic segmentation an-
notations to identify foreground and background concretely.
Our work extends PSG to video level by predicting spatial-
temporal relations.

Video Scene Graph Generation Shang et al. [35] first
proposes Video Scene Graph Generation (VidSGG) and re-
leased ImageNet-VidVRD dataset. They generate object
tracklet proposals and short term relations on overlapping
segments. Subsequently, they greedily associate these rela-
tion triplets into video level. Several works follow the track-
to-detect paradigm with spatio-temporal graph and graph
convolutional neural networks [26, 31], or multiple hypoth-
esis association [37]. MVSGG [49] investigates the spatio-
temporal conditional bias problem in VidSGG. They per-
form a meta training and testing process, constructing the
data distribution of each query set w.r.t. the conditional
biases. TRACE [41] decouples the context modeling for
relation prediction from the complicated low-level entity
tracking. [1] raises the issue of domain shift between im-
age and video scene graphs. They exploit external com-
monsense knowledge to infer the unseen dynamic relation-
ship, and employ hierarchical adversarial learning to adapt
from image to video data distributions. Embodied Semantic
SGG [24] exploits the embodiment of the intelligent agent
to autonomously generate an appropriate path by reinforce-
ment learning [9] to explore an environment.

Video Panoptic Segmentation Video Panoptic Segmen-
tation (VPS) [18, 28, 46] unifies both Video Semantic Seg-
mentation [5] and Video Instance Segmentation [52] in one
framework. It extends panoptic segmentation into video via
making instance IDs across frames consistent. VPSNet [18]
first extends cityscapes sequences [5] and builds a VPS
dataset for driving scene, along with a new metric named
Video Panoptic Quality (VPQ). STEP dataset [46] proposes
another metric named Segmentation and Tracking Quality
(STQ) that decouples the segmentation and tracking error.
VIP-Seg [28] proposes a large scale VPS dataset which con-
tains various scenes. Several works [18, 47, 55] are pro-
posed to solve VPS task respectively. VIP-Deeplab [32] ex-
tends the Panoptic-Deeplab [2] with next frame center map
prediction. Video K-Net [25] unifies the VPS pipeline via
kernel online tracking and linking. TubeFormer [19] pro-
cess tube-frames with temporal attention. Compared with
previous VPS datasets, our PVSG dataset contains the ex-
tremely long videos, which bring new challenges for VPS
tasks. Moreover, our work is beyond VPS tasks by also
considering relation across a video.

3. The PVSG Problem

The goal of the PVSG problem is to describe a given
video with a dynamic scene graph, with each node associ-
ated with an object and each edge associated with a relation
in the temporal space. Formally, the input of the PVSG
model is a video clip V ∈ RT×H×W×3, where T denotes
the number of frames, and the frame size H ×W should be
consistent across the video. The output is a dynamic scene
graph G. The PVSG task can be formulated as follows,

Pr (G | V) = Pr (M,O,R | V) . (1)
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More specifically, G comprises the binary mask tubes M =
{m1, . . . ,mn} and object labels O = {o1, . . . , on} that
correspond to each of the n objects in the video, and their
relations in the set R = {r1, . . . , rl}. For object i, the mask
tube mi ∈ {0, 1}T×H×W collects all its tracked masks in
each frame, and its object category should be oi ∈ CO.
For all objects in a frame t, the masks do not overlap, i.e.,∑n

i=1 m
t
i ≤ 1H×W . The relation ri ∈ CR associates a sub-

ject and an object with a predicate class and a time period.
CO and CR means the object and predicate classes.
Metric In practice, the output of the PVSG task is to pre-
dict a set of triplets to describe the input video. Take a triplet
as an example, which contains a relation ri from t1 to t2,
associates the subject with its class category os and mask
tube m

(t1,t2)
s , and an object with os and m

(t1,t2)
o . m(t1,t2)

denotes the mask tube m span across the period of t1 to t2.
To evaluate the PVSG task, we follow the classic SGG

and VidSGG paper and use the metrics of the R@K and
mR@K, which calculates the triplet recall and mean recall
given the top K triplets from the PVSG model. A success-
ful recall of a ground-truth triplet (ôs, m̂(t̂1,t̂2)

s , ôs, m̂(t̂1,t̂2)
o ,

r̂
(t̂1,t̂2)
i ) should meet the following criteria: 1) the correct

category labels of the subject, object, and predicate: 2) the
volume IOU between the predicted mask tubes (m(t1,t2)

s ,
m

(t1,t2)
o ) and the ground-truth tubes (m(t̂1,t̂2)

s , m
(t̂1,t̂2)
o )

should be individually over 0.5. When the previous two
criteria are met, a soft recall score of the time IOU between
(t̂1, t̂2) and (t1, t2) is recorded.

Please notice the nuance of the PVSG metrics com-
pared with VidSGG metrics for VidOR [34]. For a case
where a child stop-and-go several times in a video, different
from VidOR which considers several “child-1 walking on
ground” triplets, our PVSG metrics only consider the triplet
once, but with a scattered time span. This small change
avoids some relations dominating the metrics by repeating.

4. The PVSG Dataset
In this section, we first summarize the existing VidSGG

datasets and highlight their problems. Then, we introduce
the overview and statistics of our PVSG dataset, and its an-
notation pipeline.

4.1. Connecting Existing Datasets to PVSG

To select candidate video clips for the PVSG dataset,
a go-to option is to borrow the videos from other
VidSGG datasets. Table 1 lists three classic VidSGG
datasets chronologically. While the limited size of their
first VidSGG dataset, ImageNet-VidVRD [35], Shang et
al. collects 10K videos from the user-uploaded dataset
YFCC100M [42] and generate a large-scale VIDOR
dataset [34], with dense object and relation annotation.
Ji et al. also introduces a large-scale dataset Action

Genome (AG) based on a diverse, crowd-sourcing Charades
dataset [36]. While Charades provides a novel solution to
gather large-scale, less-biased video datasets by asking peo-
ple to act based on the generated script, the curated scripts
usually produce random action series, such as a man rush-
ing out of the room and running back for no reason. Also,
the performance traces turn out to be heavy in the dataset.
These shortcomings limit the potential of the community to
explore contextual logic and reasoning in videos.

Alternative video datasets that lean toward logic reason-
ing and video scene understanding are instruction datasets
or movie datasets. However, these datasets are either
full of close-up shots (e.g., Something-Something [11],
Howto100M [29]) or cut shots (e.g., MOMA [27], HC-
STVG [40]). In fact, humans rely on unpolished videos to
form an essential understanding of the world. In this sense,
we find that the unedited, natural, and diverse VidOR [34]
videos are a good candidate for learning the visual essence
as well as keeping the potential of contextual logic explo-
ration. While the videos presented above showcase a third-
person perspective, egocentric videos have gained popu-
larity due to their practicality in autonomous driving [54],
robotic decision-making [57], and in the metaverse [30]. In
particular, a subset of the Ego4D dataset [12] is suitable for
exploring logical relationships and modeling, as it supports
short and long-term action anticipation tasks. Additionally,
the Epic-Kitchens [6] dataset is focused on the kitchen sce-
nario and offers rich action data. Its subset, the VISOR
dataset, includes video object segmentation (VOS) annota-
tion, which partially matches the PVSG scope, though its
relations are not yet annotated.

Another dataset category that is closely related to
the PVSG problem is the video panoptic segmentation
(VPS) datasets. Popular VPS datasets include Cityscapes-
VPS [17] and KITTI-STEP [45]. However, the relations
in the self-driving scenarios are limited, which is not suit-
able for the PVSG task. Although the recent VIP-Seg [28]
provides a more diverse VPS dataset, each video only lasts
around 5 seconds, which also lacks temporal relations.

With all the rationale above, we eventually decide to
combine three video sources to the PVSG dataset, which
are VidOR, Ego4D-STA, and Epic-Kitchens-100 (including
some videos from VISOR).

4.2. Dataset Statistics

Figure 2 displays the statistics of the PVSG dataset,
which consists of 400 videos, including 289 third-person
videos from VidOR and 111 egocentric videos from Epic-
Kitchens and Ego4D. Among the videos, 62 videos feature
birthday celebrations, while 35 videos center around cere-
monies, providing rich content for contextual logic and rea-
soning. Furthermore, the dataset includes numerous videos
related to sports and pets, featuring complex and diverse ac-
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Figure 3. PVSG Dataset Annotation Pipeline. The construction of PVSG dataset can be divided into VPS annotation and relation
annotation. For VPS annotation, we select a few key frames and use an off-the-shelf video object segmentation (VOS) model AOT [53] to
propagate the annotated objects to the whole video, and then perform frame-level mask fusion using the predefined layer order to obtain a
coarse VPS annotation for further revision. The relations are annotated based on the description of the key information in the video.

tions and interactions between objects. Figure 2-(c) shows
the object count (including stuff) in the PVSG dataset.

4.3. Dataset Construction Pipeline

Creating the PVSG dataset is never a trivial task con-
sidering that both video panoptic segmentation and relation
annotations are required. This section describes how the
PVSG dataset is collected and annotated.
Step 1: Video Clip Selection To get rid of the drawbacks
of the current datasets (i.e., the unnatural videos in AG [15]
without logical script, and the static and short videos from
the VPS datasets), we carefully select around 300 long,
daily, unedited videos with a logical storyline. In addi-
tion, to encourage the VidSGG models to be practical on
egocentric videos, we also select around 100 videos from
Epic-Kitchens and Ego4D with the same criteria. Videos
with too many small and trivial objects are also discarded
for VPS annotation purposes. We hope the selected videos
could greatly encourage the exploration of video recogni-
tion, understanding, and reasoning.
Step 2: VPS Annotation Notice that the PVSG videos
have more than 300 frames on average and 150K in total,
it is impossible to annotate panoptic segmentation for each
frame. After iterations and improvements, we finalize a
human-machine collaborative VPS annotation pipeline, de-
picted in Figure 3. In a nutshell, we largely rely on an
off-the-shelf VOS model called AOT [53] for the human-
machine interactive annotation process.
Coarse VPS Annotation: With a few well-annotated ob-

ject masks in the first frame, the AOT [53] is able to prop-
agate the masks to later frames. With this strong auto-
matic tool, we design a pipeline to obtain coarse VPS an-
notation. For the example video in Figure 3 (actions 1-3),
we first identify several key objects to annotate, and also
identify key frames where the selected objects have a clear
and whole appearance. To identify key objects, our anno-
tators need to select all objects and background to address
“panoptic”, except those messy and unrelated ones. After
annotating these key objects on their corresponding frames,
we use AOT based on the frames to propagate the mask,
both forward and backward. Thus, each frame will yield a
whole mask video. To merge those mask videos into one,
the layer order should be considered beforehand, i.e., the
objects from which layer should be put in front. In fact, the
decision of the layer order is made with key frame selection.
Fine VPS Annotation: Based on the coarse VPS annota-
tion, we conduct several rounds (more than 5) of the human-
machine interactive revision process to obtain the final an-
notation. We rely on the multi-frame panoptic segmentation
propagation mode of the AOT algorithm [53], which inter-
polates the entire video masks based on several frames with
the entire panoptic segmentation. The quality of interpola-
tion increases with more intermediate frames. To accelerate
the revision process, we revise the transit frames first, as
shown in action 5 in Figure 3. Typical examples of poor
masks include incorrect tracking masks and boundaries that
deviate significantly from the object.

Step 3: Relation Annotation We annotate temporal re-
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Figure 4. The two-stage framework to solve the PVSG task. The goal of the first stage is to obtain the video panoptic segmentation mask
for each object, as well as its corresponding video-length feature tube. Two options are provided to achieve the goal. The second stage
predicts pairwise relations based on all the feature tubes from the first stage. Four options are provided for a comprehensive comparison.

lations based on the VPS annotation, with object ID pre-
pared. To guarantee the significance of the relation, we ask
annotators to describe the video with several sentences and
annotate relations accordingly. The relations they use are
strictly within our dictionary, but we also enlarge the dictio-
nary when necessary. Similar to the PSG dataset [50], we
ask the annotators to use the most unambiguous predicate
as possible, i.e., “sitting on” rather than “on”.

5. Methodology
In this section, we introduce the two-stage pipeline to

address the PVSG problem. We provide two options for the
first stage and four options for the second stage.

5.1. Stage One: Video Panoptic Segmentation

Given a video clip input V ∈ RT×H×W×3, the goal of
VPS is to segment and track each pixel in a non-overlap
manner. Specifically, the model predicts a set of video clips
{yi}Ni=1 = {(mi, pi(c))}Ni=1, where mi ∈ {0, 1}T×H×W

denotes the tracked video mask, and pi(c) denotes the prob-
ability of assigning class c to a clip mi. N is the number of
entities, which includes thing classes and stuff classes.

We present two strong baselines for the first stage of VPS
processing. In particular, we adopt the state-of-the-art im-
age segmentation baseline [3] with an extra tracker and the
improved video panoptic segmentation method [25]. For
the former, it processes the video frames individually. For
the latter, it processes the video frames across the temporal
dimension, with a nearby frame as the reference frame.

IPS+T: Image Panoptic Segmentation With Tracker
We adopt strong Mask2Former [3] as our baseline method
since it is a mask-based transformer architecture. It con-
tains a transformer encoder-decoder architecture with a set
of object queries, where the object queries interact with en-
coder features via masked cross-attention. Given an image

I, during the inference, the Mask2Former directly outputs a
set of object queries {qi}, i = 1, . . . , N , where each object
query qi represent one entity. Then, two different Multi-
ple Layer Perceptrons (MLPs) project the queries into two
embeddings for mask classification and mask prediction, re-
spectively. During training, each object query is matched to
ground truth masks via masked-based bipartite matching.

We first fine-tune the Mask2Former on our dataset.
Then, we test the model with an extra tracker [44]. In par-
ticular, we first obtain panoptic segmentation results of each
frame. Then we link each frame via using UniTrack [44] for
tracking to obtain the final N tracked video cubes for each
clip. Therefore, a query tube is obtained. For the object i at
the t-th frame, the query is noted as qti . We use Q(t1,t2)

i to
denote the set of queries {qti}

t2
t=t1 , and Qi denotes the query

tube in the entire video.

VPS: Video Panoptic Segmentation Baseline For video
baselines, we modify the previous state-of-the-art method
Video K-Net [25] into Mask2Former framework. We first
replace the backbone and neck in Video K-Net [25] with
Mask2Former feature extractor. Then we use the temporal
contrastive loss to directly on the output queries from the
last layer of the decoder. In particular, given two frames, we
first obtained the object queries from both frames, and then
we sent them into an embedding layer (a shared MLP) to
obtain association embeddings. We adopt the same tracking
loss used in [25] to supervise the association embeddings.
The embeddings are close if they are the same object, oth-
erwise, they are pulled away.

During the training, the two nearby frames are sent to
the model to learn the association embedding. During the
inference, the learned association embeddings are used to
perform instance-wised tracking cues to match each thing
masks frame by frame in an online manner. Compared with
the image baseline, our video baseline considers the tempo-
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Table 2. Comparison between all two-stage PVSG baselines. We provide two options for the first stage and four options for the second
stage, as described in Section 3. The results show that using the basic image-based method in the first stage with the transformer encoder
in the second stage can achieve the optimal recall.

Method PVSG Metrics

Stage-1 Stage-2 R/mR@20 R/mR@50 R/mR@100

IPS+T [3, 44]

Vanilla 2.35 / 1.22 2.71 / 1.31 2.94 / 1.45
Handcrafted Window 2.56 / 1.24 2.78 / 1.35 3.05 / 1.54
1D Convolution 2.79 / 1.24 2.80 / 1.47 3.10 / 1.59
Transformer Encoder 4.02 / 1.75 4.41 / 1.86 4.88 / 2.03

VPS [3, 25]

Vanilla 0.52 / 0.24 0.60 / 0.24 0.63 / 0.24
Handcrafted Window 0.54 / 0.27 0.61 / 0.29 0.62 / 0.29
1D Convolution 0.60 / 0.27 0.73 / 0.28 0.76 / 0.29
Transformer Encoder 0.75 / 0.36 0.91 / 0.39 0.94 / 0.40

ral learned embedding. After this step, we obtain N tracked
video cubes for each clip. For both baselines, we also dump
the corresponding object queries for further processing.

5.2. Stage Two: Relation Classification

The object query (feature) tubes {Qi}Ni=1 serve as a link
between the first and second stages. Object tubes are paired
with each other in their intersections in the second stage, as
in Figure 4. Specifically, as in Figure 4 (b), we first con-
catenate the query pairs. Next, we mainly introduce four
operations to process the relations between feature pairs.
Vanilla: Fully-Connected Layer Begin with the most
basic version, the pairwise feature fusion is followed by a
straightforward fully-connected layer on the fused features.
In this scenario, some objects may have several interactions
occurring simultaneously, we define the issue as a multi-
label classification job with binary cross-entropy loss.
Handcrafted Filter To further consider the tempo-
ral information, we design a simple kernel to gather
the information from the context in nearby frames. By
default, the handcrafted filter is a simple vector of
[1/4, 1/2, 1, 1/2, 1/4] with a window size of 5. Note that
the filter is also required during inference.
1D-Convolutional Layer To improve the handcrafted fil-
ter, we also utilize a learnable 1D-Convolutional layer to
capture temporal information. The kernel sizes are set to 5
in 3 layers.
Transformer Encoder A transformer encoder [43] is
also suitable in this scenario. We utilize a 3-layer trans-
former block with positional embeddings in the entire fused
query feature to capture temporal information via cross-
attention between frames.

6. Experiments
In this section, we show the experimental results for the

PVSG dataset. We split the dataset with 360 videos for

training and 40 videos for testing. For both IPS+T and VPS,
we adopt Mask2Former upon the ResNet-50 [13] backbone
with 12 training epochs, which takes 12 hours and 48 hours
on 8 V-100 GPUs, respectively. The training time of the
second stage is shorter than an hour on single V-100 GPU.

The experimental results to compare two stage-one op-
tions and four stage-two options are shown in Table 2. We
first take a look at the second stage. The transformer en-
coder obtains the optimal results regardless of the first-stage
options, showing the effectiveness of temporal information
fusion. Besides, the 1D convolutional layer achieves better
results than the handcrafted window, showing that model-
ing with learning parameters in the second stage is worth
exploring. Considering the harsh recall criteria described in
Section 3, even the most basic vanilla method can achieve
a few recall scores, showing that the PVSG task is solvable
with a decent first-stage model. We hope that the second
stage alone could advance research efforts on visual tempo-
ral predictions.

We then discuss the influence of the first stage. Accord-
ing to Table 2, the end-to-end VPS model seems to un-
derperform the IPS+T baseline. Although the VPS mod-
els are shown effective on the existing VPS datasets such as
Cityscape-VPS and Kitty-STEP, videos in the PVSG dataset
are longer and more dynamic (frequent and large camera
view shift), which seems to bring new challenges for the
VPS community. According to Figure 5, the end-to-end
VPS model fails to achieve a higher tracking performance,
which seems severely affect its performance on the PVSG
task.

7. Conclusion, Challenges, and Outlook
In this paper, we introduce a new PVSG task, a new

PVSG dataset with several baselines to address the new
task, in hope of encouraging comprehensive video under-
standing and trigger more interesting downstream tasks
such as visual reasoning. Here we discuss the challenges
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(In the middle of the video, the blue adult loses tracking and turning into brown)

(a) The visualization result with the IPS+T method in the first stage and Transformer Encoder in the second stage. 

(b) The visualization result with the VPS method in the first stage and Transformer Encoder in the second stage. 

Figure 5. The visualization of the top triplets generated by PVSG models. The result shows that the IPS+T method is able to predict a
better-quality video panoptic mask. The VPS baseline is shown unable to perform well on tracking (e.g., the tracking of the child switched
in the later frames), which leads to its low performance in the PVSG task.

and future work.

Challenges Real-world data often exhibit long-tailed het-
eroscedastic distributions across objects and relations, as
shown in Figure 2. The PVSG models are expected to
predict informative and diverse relations, rather than being
obsessed with statistically common relations. Yet another
challenge the PVSG models faces is the aleatoric uncer-
tainty in verbal relation descriptions. For example, ”playing
with” can be overlapping with ”chasing” when it describes
two kids chasing each other. Such nuances from canoni-
cal languages introduce intrinsic label noises in prevailing
video event datasets, including PVSG. Another important
challenge that the PVSG dataset introduces is video panop-
tic segmentation. With the video with a large view shift, the
VPS models are expected to have a better performance on
tracking and segmentation.

Outlook on Video Perception and Reasoning We fore-
see the potential of PVSG in bridging video scene percep-
tion and reasoning. While current video question-answering
datasets lack pixel-level segmentation masks that refine
(sometimes determine) the relations between object pairs,
the inclusion of such dense annotations is critical to video
reasoning tasks. PVSG is related to social intelligence, with

rich event annotations in human behaviors and dynamics. In
the same spirit, it is also related to human-object interaction
(HOI) that dense labels are capable to capture very subtle
visual differences in the scene.

Potential Negative Societal Impacts This work releases
a dataset containing human behaviours, posing possible
gender and social biases inherently from data. Potential
users are encouraged to consider the risks of oversighting
ethical issues in imbalanced data, especially in underrepre-
sented minority classes.
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