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Abstract

Speech-driven gesture generation is highly challenging
due to the random jitters of human motion. In addition,
there is an inherent asynchronous relationship between hu-
man speech and gestures. To tackle these challenges, we in-
troduce a novel quantization-based and phase-guided mo-
tion matching framework. Specifically, we first present a
gesture VQ-VAE module to learn a codebook to summa-
rize meaningful gesture units. With each code representing
a unique gesture, random jittering problems are alleviated
effectively. We then use Levenshtein distance to align di-
verse gestures with different speech. Levenshtein distance
based on audio quantization as a similarity metric of cor-
responding speech of gestures helps match more appropri-
ate gestures with speech, and solves the alignment prob-
lem of speech and gestures well. Moreover, we introduce
phase to guide the optimal gesture matching based on the
semantics of context or rhythm of audio. Phase guides when
text-based or speech-based gestures should be performed
to make the generated gestures more natural. Extensive
experiments show that our method outperforms recent ap-
proaches on speech-driven gesture generation. Our code,
database, pre-trained models and demos are available at
https://github.com/YoungSeng/QPGesture.

1. Introduction
Nonverbal behavior plays a key role in conveying mes-

sages in human communication [26], including facial ex-
pressions, hand gestures and body gestures. Co-speech ges-
ture helps better self-expression [45]. However, producing
human-like and speech-appropriate gestures is still very dif-
ficult due to two main challenges: 1) Random jittering:
People make many small jitters and movements when they
speak, which can lead to a decrease in the quality of the gen-

Most   people  just   laughed   facemyat  two men came up Suddenly to   me

Figure 1. Gesture examples generated by our proposed method
on various types of speech. The character is from Mixamo [2].

erated gestures. 2) Inherent asynchronicity with speech:
Unlike speech with face or lips, there is an inherent asyn-
chronous relationship between human speech and gestures.

Most existing gesture generation studies intend to solve
the two challenges in a single ingeniously designed neural
network that directly maps speech to 3D joint sequence in
high-dimensional continuous space [18, 24, 27, 31] using a
sliding window with a fixed step size [17, 46, 47]. How-
ever, such methods are limited by the representation power
of proposed neural networks, like the GENEA gesture-
generation challenge results. No system in GENEA chal-
lenge 2020 [26] rated above a bottom line that paired the in-
put speech audio with mismatched excerpts of training data
motion. In GENEA challenge 2022 [48], a motion match-
ing based method [50] ranked first in the human-likeness
evaluation and upper-body appropriateness evaluation, and
outperformed all other neural network-based models. These
results indicate that motion matching based models, if de-
signed properly, are more effective than neural network
based models.

Inspired by this observation, in this work, we propose
a novel quantization-based motion matching framework for
audio-driven gesture generation. Our framework includes
two main components aiming at solving the two above chal-
lenges, respectively. First, to address the random jittering

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2321



Audio
Audio Cand. 

Text The book 
is open

34 96
Quan.

Seed pose
Quan.

72 511

784 37

Motion 
Matching

Speech-gesture database

Text Cand.

Phase
Guidance

Seed Phase

Text matching gesture
Audio matching gesture

Figure 2. Gesture generation pipeline of our proposed framework. ‘Quan.’ is short for ‘quantization’ and ‘Cand.’ is short for
‘candidate’. Given a piece of audio, text and seed pose, the audio and gesture are quantized. The candidate for the speech is calculated
based on the Levenshtein distance, and the candidate for the text is calculated based on the cosine similarity. The optimal gesture is selected
based on phase-guidance corresponding to the seed code and the phase corresponding to the two candidates.

challenge, we compress human gestures into a space that is
lower dimensional and discrete, to reduce input redundancy.
Instead of manually indicating the gesture units [23], we use
a vector quantized variational autoencoder (VQ-VAE) [42]
to encode and quantize joint sequences to a codebook in
an unsupervised manner, using a quantization bottleneck.
Each learned code is shown to represent a unique gesture
pose. By reconstructing the discrete gestures, some ran-
dom jittering problems such as grabbing hands and push-
ing glasses will be solved. Second, to address the inherent
asynchronicity of speech and gestures, Levenshtein distance
[28] is used based on audio quantization. Levenshtein dis-
tance helps match more appropriate gestures with speech,
and solves the alignment problem of speech and gestures
well. Moreover, unlike the recent gesture matching mod-
els [17, 50], we also consider the semantic information of
the context. Third, since the body motion is composed of
multiple periodic motions spatially, meanwhile the phase
values are able to describe the nonlinear periodicity of the
high-dimensional motion curves well [39], we use phase to
guide how the gestures should be matched to speech and
text.

The inference procedure of our framework is shown in
Figure 2. Given a piece of audio, text and seed pose, the
audio and gesture are first quantized. The best candidate
for the speech is calculated based on the Levenshtein dis-
tance, and the best candidate for the text is calculated based
on the cosine similarity. Then the most optimal gesture is
selected based on the phase corresponding to the seed code
and the phase corresponding to the two candidates. Our
code, database, pre-trained models and demos will be pub-
licly available soon.

The main contributions of our work are:

• We present a novel quantization-based motion match-
ing framework for speech-driven gesture generation.

• We propose to align diverse gestures with different
speech using Levenshtein distance, based on audio
quantization.

• We design a phase guidance strategy to select optimal
audio and text candidates for motion matching.

• Extensive experiments show that jittering and asyn-
chronicity issues can be effectively alleviated by our
framework.

2. Related Work

End-to-end Co-speech Gesture Generation. Gesture
generation is a complex problem that requires understand-
ing speech, gestures, and their relationships. Data-driven
approaches attempt to learn gesticulation skills from human
demonstrations. The present studies mainly consider four
modalities: text [6,43,47], audio [15,18,24,29,36], gesture
motion, and speaker identity [4, 5, 9, 31, 32, 44, 46]. Habi-
bie et al. [18] propose the first approach to jointly synthe-
size both the synchronous 3D conversational body and hand
gestures, as well as 3D face and head animations. Ginosar
et al. [15] propose a cross-modal translation method based
on the speech-driven gesture gestures of a single speaker.
Liu et al. [32] propose a hierarchical audio learner extracts
audio representations across semantic granularities and a
hierarchical pose inferior renders the entire human pose.
Kucherenko et al. [24] propose Aud2Repr2Pose architec-
ture to evaluate the impact of different gesture and speech
representations on gesture generation. Qian et al. [36] use
conditional learning to resolve the ambiguity of co-speech
gesture synthesis by learning the template vector to improve
gesture quality.

As for learning individual styles, Yoon et al. [46] pro-
pose the first end-to-end method for generating co-speech
gestures using the tri-modality of text, audio and speaker
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Figure 3. Structure of gesture VQ-VAE. After learning the dis-
crete latent representation of human gesture, the gesture VQ-VAE
encode and summarize meaningful gesture units, and reconstruct
the target gesture sequence from quantized latent features.

identity. Ahuja et al. [4] train a single model for multi-
ple speakers while learning style embeddings for gestures
of each speaker. Alexanderson et al. [5] adapt MoGlow to
speech-driven gesture synthesis and added a framework for
high-level control the gesturing style. Liang et al. [30] pro-
pose a semantic energized generation method for semantic-
aware gesture generation. Li et al. [29] propose a con-
ditional variational autoencoder that models one-to-many
audio-to-motion mapping by splitting the cross-modal la-
tent code into shared code and motion-specific code.

Michael et al. [10] propose motion matching, which is
a k-Nearest Neighbor (KNN) search method for searching
a large database of animations. Zhou et al. [51] utilize
a graph-based framework to synthesize body motions for
conversations. Ferstl et al. [14] predict expressive gestures
based on database matching. Habibie et al. [17] predicted
motion using a KNN algorithm and use a conditional gen-
erative adversarial network to refine the result. Zhou et
al. [50] calculate rhythm signature and style signature us-
ing StyleGestures [5], and synthesized graph-based match-
ing gesture. Recently, a large-scale 3D gestures dataset
BEAT [31] is built from multi-camera videos based on six
modalities of data, which we used in this task.

Quantization-based Pose representation. Kipp has
represented gestures as predefined unit gestures [23]. Van
et al. [42] propose Vector VQ-VAE to generate discrete rep-
resentations. Guo et al. [16] use motion tokens to generate
human full-body motions from texts, and their reciprocal
task. Lucas et al. [34] propose to train a GPT-like model
for next-index prediction in that space. Hong et al. [21] use
a pose codebook created by clustering to generate diverse
poses. Li et al. [38] propose to pose VQ-VAE to encode
and summarize dancing units. Existing studies have shown
that quantification helps to reduce motion freezing during
motion generation and retains the details of motion well [7].

In our work, we encode and quantize meaningful gesture
constituents and generate human-like gestures by speech

based motion matching with phase guidance.

3. Our Approach
Our approach takes a piece of audio, corresponding text,

seed pose and optionally a sequence of control signals as
inputs, and outputs a sequence of gesture motion. We first
prepossess these inputs as well as the motion database into
their quantized discrete forms automatically. We then find
the best candidate for the speech and the best candidate for
the text, respectively. Finally, we select the optimal gestures
based on the phase corresponding to the seed code and the
phase corresponding to the two candidates. The rest of this
section describes the details of each step.

3.1. Learning a discrete latent space representation

Gesture Quantization. We design a pose VQ-VAE
as shown in Figure 3. Given the gesture sequence G ∈
RT×Dg , where T denotes the number of gestures and Dg

pose dimension. We first adopt a 1D temporal convolu-
tion network Eg to encode the joint sequence G to context-
aware features g ∈ RT ′×C , where T ′ = T/d, d is the tem-
poral down-sampling rate, and C is the channel dimension
of features. This process could be written as g = Eg(G).
Codebook could index an embedding table with samples
drawn from the distributions [42]. To learn the correspond-
ing codebook Zg elements gq ∈ RT

′
×C , where gq ∈ ZT

g ,
Zg is a set of Cb codes of dimension nz , we quantize g by
mapping each temporal feature gi to its closest codebook
element zj as q(.):

gq,i = q(g) = arg min
zj∈Zg

∥gi − zj∥ (1)

A following de-convolutional decoder Dg projects gq

back to the motion space as a pose sequence Ĝ1, which
can be formulated as

Ĝ1 = Dg (gq) = Dg(q(Eg(G))) (2)

Thus the encoder, decoder and codebook can be trained
by optimizing:

Lgesture(Eg,Dg,Zg) = Lrec(Ĝ1,G) + ∥sg[g]− gq∥
+β ∥g − sg [gq]∥

(3)

where Lrec is the reconstruction loss that constrains the pre-
dicted joint sequence to ground truth, sg[·] denotes the stop-
gradient operation, and the term ∥g − sg [gq]∥ is the “com-
mitment loss” with weighting factor β [42].

Inspired by Bailando [38], a music-driven dance model,
we add velocity loss and acceleration loss to the reconstruc-
tion loss to prevent jitters in generated gesture:

Lrec(Ĝ1,G1) = ∥Ĝ1 −G1∥1 + α1

∥∥∥Ĝ1
′
−G′

1

∥∥∥
1

+α2

∥∥∥Ĝ1
′′
−G′′

1

∥∥∥
1

(4)
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And to avoid encoding confusion caused by the global
shift of joints, we normalize the absolute locations of input
G i.e., set the root joints (hips) to 0, and make objects face
the same direction. Standard normalization (zero mean and
unit variant) is applied to all joints.

Audio Quantization. We use vq-wav2vec Gumbel-
Softmax model [8] pre-trained on a clean 100h subset of
Librispeech [35] which is discretized to 102.4K tokens. We
multiply the values of the two groups together as the to-
ken of the segment of audio. The convolutional encoder
produces a representation z, for each time step i, the quan-
tization module replaces the original representation z by
ẑ = aq,i from Za, which contains a set of C

′

b codes of
dimension n

′

z .

3.2. Motion Matching based on Audio and Text

Our motion matching algorithm takes a discrete text se-
quence t = [t0, t1, . . . , tT ′−1], a discrete audio sequence
aq = [aq,0,aq,1, . . . ,aq,T ′−1], and one initial previous
pose code g−1, and optionally a sequence of control masks
M = [m0,m1, . . . ,mT ′−1]. The outputs are audio-based
candidate Ca = [c0,a, c1,a, . . . , cT ′−1,a] and text-based
candidate Ct = [c0,t, c1,t, . . . , cT ′−1,t]. T ′ denotes the
number of speech segments during inference.

Considering too long gesture clips time decreases the di-
versity of gestures and too short gesture clips time results
in poor human likeness [50], we split each gesture motion
in the dataset into clip-level gesture clips automatically by
time interval of words larger than 0.5 seconds in text tran-
scriptions. These clip-level data form the speech-gesture
database in Figure 1.

To find the appropriate output gesture sequence Ca and
Ct from the database, we consider both the similarity with
respect to the current test speech as well as the previously
searched pose code g−1 for every T frame interval for better
continuity between consecutive syntheses, as in [46]. Dur-
ing each iteration, we first compare the Euclidean distance
between the joints corresponding to initial code g−1 and the
joints corresponding to each code gq in the codebook to get

the pose-based pre-candidate Ĉg =
{
Ĉ0

g, Ĉ
1
g, . . . , Ĉ

Cb
g

}
.

In the first iteration, the previous pose code g−1 is initial-
ized by either randomly sampling a code from codebook Zg

or set to be the code with the most frequent occurrences in
the codebook (the code of mean pose).

Audio-based Search. To encode information about
the relevant past and future codes, we use a search-
centered window (0.5 seconds long) as a feature for the
current time, then we get audio features sequence Fa =
[Fa,0,Fa,1, . . . , Fa,T ′−1]. To address the inherent asyn-
chronicity of speech and gestures, Levenshtein distance [28]
is used to measure the similarity of the test audio by com-
paring the current test audio feature with the audio feature
of clips from the database. For every clip in the database,

C
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Figure 4. Architecture of the Periodic Autoencoder Network.
The convolutional network encoder learns a lower dimensional
embedding of the gesture. Then differentiable real Fast Fourier
Transform (FFT) and fully connected network is applied to get
periodic parameters: amplitude (A), frequency (F), offset (B) and
phase shift (S). The deconvolutional network decoder map all pe-
riodic parameters back to the original motion curves to force the
periodic parameters to reconstruct the original latent embedding.

we calculate the audio feature similarity of the correspond-
ing code per d frame and take the minimum value as the
audio candidate distance for each code. Then we get audio-
based pre-candidate Ĉa =

{
Ĉ0

a, Ĉ
1
a, . . . , Ĉ

Cb
a

}
. Lev-

enshtein distance as a similarity metric of corresponding
speech of gestures helps match more appropriate gestures
with speech, and solves the alignment problem of speech
and gestures well (see Section 4.2).

Text-based Search. Similarly, we use the text before
and after 0.5 seconds as the sentence of the current code.
To obtain the semantic information of the context, we use
Sentence-BERT [37] to compute sentence embeddings, as
text features sequence Ft. For every clip in the database,
we calculate the text features cosine similarity of the corre-
sponding code per d frame and take the minimum value as
the text candidate distance for each code. Then text-based
pre-candidate is Ĉt =

{
Ĉ0

t , Ĉ
1
t , . . . , Ĉ

Cb
t

}
Instead of weighting the similarity score of audio/text

and pose terms, we add pose similarity ranks and audio/text
similarity ranks for every pre-candidate to select the lowest
rank [17] result as the audio/text candidate. The generated
gesture will be discontinuous if only speech (audio and text)
matching is considered, so as shown in the figure 2, we first
compute the pre-candidates of pose, audio, and text, then
compute audio candidate Ca based on Ĉg and Ĉa, and text
candidate Ct based on Ĉg and Ĉt. Then we select the final
gesture from Ca and Ct according to the phase guide.

3.3. Phase-Guided Gesture Generation

To transform the motion space into a learned phase man-
ifold, we utilize a temporal periodic autoencoder architec-
ture structure similar to DeepPhase [39]. The architecture
is shown in figure 4. First, we adopt a 1D temporal convo-
lution network Ep to a latent space of the motion G, which
can be formulated as

L = Ep(G) (5)
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where L ∈ RT×M , M is the number of latent channels,
that is, the number of desired phase channels to be extracted
from the motion. For each channel, our goal is to extract a
good phase offset to capture its current point as part of a
larger cycle.

It is complicated to calculate the phase of a cluttered
curve directly, so we calculate periodic parameters ampli-
tude (A), frequency (F), offset (B) and phase shift (S) first.
We apply differentiable real Fast Fourier Transform (FFT)
to each channel of L and create the zero-indexed matrix of
Fourier coefficients c ∈ CM×K+1, K =

⌊
T
2

⌋
, written as

c = FFT (L). Power spectrum p ∈ RM×K+1 for each
channel is pi,j = 2

T |ci,j |2, where i is the channel index
and j is the index for the frequency bands. Assumed that
there are T points in a time window of N seconds. The
periodic parameters are computed by:

Ai =

√√√√ 2

T

K∑
j=1

pi,j , Fi =

∑K
j=1 (fj · pi,j)∑K

j=1 pi,j

, Bi =
ci,0
T

,

(6)
where f = (0, 1/N, 2/N, . . . ,K/N) is frequencies vector.

Phase shift S ∈ RM for each latent curve Si can be pre-
dicted by a fully connected layer FC, which can be formu-
lated as:

(sx, sy) = FC (Li) , Si = atan 2 (sy, sx) (7)

For each temporal motion G, within a centered time win-
dow T =

[
− t1−t0

2 ,− t1−t0
2 + t1−t0

N−1 , . . . ,
t1−t0

2

]
, where

t0 ≤ t ≤ t1, the decoder Dp takes all periodic parameters
as its input, and maps back to the original motion curves:

L̂ = f(T ;A,F,B,S) = A ·sin(2π ·(F ·T −S))+B (8)

Ĝ2 = h(L̂) (9)

The network is learned with the periodic parameters via
the following loss function, which forces the periodic pa-
rameters to reconstruct the original latent embedding L.

Lphase = Lphase−recon(G, Ĝ2) (10)

After training, phase manifold P of a sample motion
which captures a lot of “information” about the current state
of the original time series data is

P(t)
2i−1 = A

(t)
i ·sin

(
2π · S(t)i

)
, P(t)

2i = A
(t)
i ·cos

(
2π · S(t)i

)
(11)

where P ∈ R2M .
We visualize the phase features and the velocity features

in Figure 5. The Principle Components (PCs) of the original
joint rotational velocities, replacing the phase layers with
fully connected layers and phase features are projected onto

(a) Rotational velocity space.

(b) Latent space learned by convolutional and fully connected.

(c) Phase space.

Figure 5. 2D PCA embedding of feature distributions for different
motion domains. Each color represents gestures from a single mo-
tion clip that are temporally connected, which means that neigh-
boring frames in the motion data should be closely connected in
the embedding

a 2D plane. It can be observed that the phase manifold has
a consistent structure similar to polar coordinates. The cy-
cles represent the primary period of the individual motions,
where the timing is represented by the angle around the cen-
ter, and the amplitude is the velocity of the motion. Samples
smoothly transition between cycles of different amplitude
or frequency, which indicate the transition between move-
ments.

The phase manifold of the motion curve is shown in
Figure 6. Instead of using phase to set network weights
as in [20, 40, 49] to generate motion, we use phase guid-
ance to select motion. To find the appropriate motion
alignments, we calculate the cosine similarity of the lat-
ter frames Nstrid of the manifold phase P−1 correspond-
ing to the frame of the initial code and the first frames
of the manifold phase Pa/t corresponding to the au-
dio/text candidate Ca and Ct within Nphase frames, which
can be written as concat[P [(Nstrid−Nphase):]

−1 ,P [Nstrid:]
a/t ] and

concat[P [−Nstrid:]
−1 ,P [(Nphase−Nstrid):]

a/t ]. Candidates with
more similar phase manifolds will also have more natural
motion as the final matching gestures. Please refer to the
supplements for the pseudo-code of our algorithm.

4. Experiments
Dataset. We perform the training and evaluation on the

BEAT dataset proposed in [31], which to our best knowl-
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(a) The phase manifold of the seed
code to be matched.

(b) The phase manifold of the candi-
date to be matched.

Figure 6. Sinusoidal diagram of learned phase manifold within a
sliding window. The blue lines in (a) and (b) indicate the ground
truth results, and the orange and green lines indicate the candidates
to be matched, i.e., audio candidate Ca and text candidate Ct.

edge is the largest publicly available motion capture dataset
for human gesture generation. We divided the data into
8:1:1 by training, validation, and testing, and trained code-
books and baselines using data from all speakers. Be-
cause motion matching is more time-consuming, we se-
lected 4 hours of data from two speakers “wayne” (male
speaker) and “kieks” (female speaker), and constructed sep-
arate databases for our experiments.

Implementation Details. In this work, we use 15 joints
corresponding to the upper body without hands or fingers.
3 × 3 rotation matrix features are computed as gesture se-
quences, with pose dimension Dg is 9. Down-sampling rate
d is 8. The size Cb of codebook Zg is set to 512 with dimen-
sion nz is 512. While training the gesture VQ-VAE, gesture
data are cropped to a length of T = 240 (4 seconds), using
the ADAM [22] optimizer (learning rate is e-4, β1 = 0.5,
β2 = 0.98) with a batch size of 128 for 200 epochs. We
set β= 0.1 for Equation (3) and α1= 1, α2= 1 for Equation
(4). In terms of motion matching, the window lengths for
audio and text are 4 pose codes corresponding to each of
the past and future speech information, with d=32. As for
phase guidance, we use the rotational velocity as input to
the network. We train the network using the AdamW [33]
optimizer for 100 epochs, using a learning rate and weight
decay both of 10−4 and a batch size of 128. The number
of phase channels M is set to 8. To calculate the phase
similarity, the number of frames is set to Nphase = 8 and
Nstride = 3. The whole framework is learned in less than
one day on one NVIDIA A100 GPU. The initial pose code
is generated by randomly sampling a code from the code-
book Zg .

Evaluation Metrics. The distance between speed his-
tograms is used to evaluate gesture quality. We calculate
speed-distribution histograms and compare to the speed dis-
tribution of natural motion by computing the Hellinger dis-

tance [25], H
(
h(1),h(2)

)
=

√
1−

∑
i

√
h
(1)
i · h(2)

i be-

tween the histograms h(1) and h(2). The Fréchet gesture
distance (FGD) [46] on feature space is proposed as a met-
ric to quantify the quality of the generated gestures. This
metric is based on the FID [19] metric used in image gen-
eration studies. Similarly, we calculate FGD on raw data
space used in [3]. To compute the FGD, we trained an au-
toencoder using the Trinity dataset [13]. Lower Hellinger
distance and FGD are better. We also report average jerk,
average acceleration, Canonical correlation analysis (CCA),
Diversity, and Beat Align Score in the supplements.

4.1. Comparison to Existing Methods

We compare our proposed framework with End2End
[47] (Text-based), Trimodal [46] (Text, audio and iden-
tity, flow-based), StyleGestures [5] (Audio-based), KNN
[17] (Audio, motion matching-based) and CaMN [31]
(Multimodal-based). The quantitative results are shown
in Table 1. According to the comparison, our proposed
model consistently performs favorably against all the other
existing methods on all evaluations. Specifically, on the
metric of Hellinger distance average, we achieve the same
good results as StyleGestures. Since well-trained models
should produce motion with similar properties to a specific
speaker, our method has a similar motion-speed profile for
any given joint. And our method improves 15.921 (44%)
and 3837.068 (39%) than the best compared baseline model
StyleGestures on FGD on feature space and FGD on raw
data space.

User Study. To further understand the real visual per-
formance of our method, we conduct a user study among
the gesture sequences generated by each compared method
and the ground truth data. Following the evaluation in GE-
NEA [5], for each method, from the 30-minute test set we
selected 38 short segments of test speech and correspond-
ing test motion to be used in the evaluations. Segments are
around 8 to 15 seconds long, and ideally not shorter than
6 seconds. The experiment is conducted with 23 partici-
pants separately. The generated gesture data is visualized
on an avatar via Blender [1] rendering. For human-likeness
evaluation, each evaluation page asked participants “How
human-like does the gesture motion appear?” In terms of
appropriateness evaluation, each evaluation page asked par-
ticipants “How appropriate are the gestures for the speech?”
Each page presented six videos to be rated on a scale from
5 to 1 with 1-point intervals with labels (from best to worst)
“Excellent”, “Good”, “Fair”, “Poor”, and “Bad”. The mean
opinion scores (MOS) on human-likeness and appropriate-
ness are reported in the last two columns in Table 1.

Our method significantly surpasses the compared state-
of-the-art methods with both human-likeness and appropri-
ateness, and even above the ground truth (GT) in human-

2326



Table 1. Quantitative results on test set. Bold indicates the best metric. Among compared methods, End2End [47], Trimodal [46],
StyleGestures [5], KNN [17] and CaMN [31] are reproduced using officially released code with some optimized settings. For more details
please refer to the supplementary material. Objective evaluation is recomputed using the officially updated evaluation code [41]. Human-
likeness and appropriateness are results of MOS with 95% confidence intervals.

Name Objective evaluation Subjective evaluation
Hellinger

distance average ↓ FGD on
feature space ↓ FGD on raw

data space ↓ Human-likeness Appropriateness

Ground Truth (GT) 0.0 0.0 0.0 3.79 ± 0.19 3.62 ± 0.21
End2End [47] 0.146 64.990 16739.978 3.64 ± 0.11 3.23 ± 0.14
Trimodal [46] 0.155 48.322 12869.98 3.31 ± 0.17 3.20 ± 0.19

StyleGestures [5] 0.136 35.842 9846.927 3.66 ± 0.08 3.30 ± 0.11
KNN [17] 0.364 43.030 12470.061 2.38 ± 0.10 2.35 ± 0.13

CaMN [31] 0.149 52.496 10549.455 3.65 ± 0.16 3.29 ± 0.15
Ours 0.136 19.921 5742.281 4.00 ± 0.14 3.66 ± 0.23

Table 2. Ablation studies results. ‘w/o’ is short for ‘without’. Bold indicates the best metric.

Name Objective evaluation Subjective evaluation
Hellinger

distance average ↓ FGD on
feature space ↓ FGD on raw

data space ↓ Human-likeness Appropriateness

w/o wavvq + WavLM 0.151 19.943 6009.859 3.87 ± 0.21 3.64 ± 0.21
w/o audio 0.134 20.401 5871.044 3.87 ± 0.21 3.63 ± 0.20
w/o text 0.118 23.929 6389.866 3.57 ± 0.29 3.41 ± 0.23

w/o phase 0.138 19.195 5759.167 3.90 ± 0.11 3.65 ± 0.17
w/o motion matching
(GRU + codebook) 0.140 30.404 11642.641 3.78 ± 0.14 3.43 ± 0.16

Ours 0.136 19.921 5742.281 4.07 ± 0.15 3.77 ± 0.21

likeness and appropriateness. However, there is no sig-
nificant difference compared to the appropriateness of GT.
According to the feedback from participants, our generated
gesture is more “related to the semantics” with “more nat-
ural”, while our method “lacking power and exaggerated
gestures” compared to GT. More details regarding the user
study are shown in the supplementary material.

4.2. Ablation Studies

Moreover, we conduct ablation studies to address the
performance effects of different components in the frame-
work. The results of our ablations studies are summarized
in Table 2. The visual comparisons of this study can be also
referred to the supplementary video.

We explore the effectiveness of the following compo-
nents: (1) Levenshtein distance, (2) audio modality, (3) text
modality, (4) phase guidance, (5) motion matching. We per-
formed the experiments on each of the five components, re-
spectively.

Supported by the results in Table 2, when we do not use
vq-wav2vec or Levenshtein distance to measure the simi-
larity of corresponding speech of gestures, but use WavLM
[11] pre-trained on Librispeech and cosine similarity in-
stead, the performances of all metrics have deteriorated.
The change of FGD on feature space was not significant.

Figure 7. Comparison of gestures blended with and without phase
guidance. Black shading indicates no phase guidance.

The Hellinger distance average and FGD on raw data space
deteriorated by 0.015 (11%), and 267.578 (4.7%), respec-
tively. When the model is trained without audio, we select
two candidates for text-based motion matching instead of
one, and then synthesize the gesture based on phase guid-
ance. The FGD on feature space and FGD on raw data
space deteriorated by 0.48 (2%) and 128.763 (2%), respec-
tively. When the model is trained without text, similarly,
two candidates for audio-based motion matching are se-
lected instead of one. The FGD on feature space and FGD
on raw data space deteriorated by 4.008 (20%) and 647.585
(11%), respectively. Notice that when one of the modal-
ities of both text and speech is not used, the FGD metric
increases while the Hellinger distance average metric de-
creases, which indicates that the quality of the gestures gen-
erated when only one modality is used decreases, but the
distribution of the velocity becomes better. When the phase
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guidance is removed, we select one candidate every time
between two candidates using the distance in the rotational
velocity space (Not randomly select one candidate). The
results showed a slight increase in Hellinger distance aver-
age and FGD on raw data space and a slight decrease in
FGD on feature space, but none of the changes were sig-
nificant. One possible explanation is that the phase space
loses information from the original feature space to gener-
ate more natural actions, as shown in Figure 7. When the
model is trained using deep gated recurrent unit (GRU) [12]
to learn pose code instead of motion matching, The FGD
on feature space and FGD on raw data space deteriorated
by 10.483 (53%) and 6460.202 (107%), respectively. This
demonstrates the advantage of the matching model over the
generative model. Further, this model has a comparable per-
formance with baselines, which also proves the efficiency of
the codebook encoded gesture space.

User Study. Similarly, we conduct a user study of ab-
lation studies. We use the same approach as in Section
4.1, with the difference that we use another avatar char-
acter to test the robustness of the results. The MOS on
human-likeness and appropriateness are shown in the last
two columns in Table 2. The score of our proposed frame-
work is similar to the previous one, which will be a bit
higher, indicating that even if the generated results are the
same, the rating may be related to the visual perception
of different character. However, there was no significant
change. The results demonstrate that the final performance
of the model decrease without any module. Notice that the
score without text decreases more than the score without
audio, indicating that the matched gestures are mostly se-
mantically related. Not using phase space has the least ef-
fect on the results, which is consistent with expectations,
since phase only provides guidance. Another significant re-
sult is that the results without audio and using audio without
Levenshtein distance or audio quantization are close, which
effectively indicates the effectiveness of Levenshtein dis-
tance. Furthermore, the results without model matching has
a comparable performance in terms of naturalness with GT,
the effectiveness of the codebook encoded gesture unit was
also confirmed.

4.3. Controllability

Since we use motion matching to generate gestures, it
is easy to control the gesture or take out the code for in-
terpretation. For example, to generate a sequence of body
gestures where the left wrist is always above a specified
threshold r, the search can be restricted to consider only
codes corresponding to wrists above r. Here is an exam-
ple. The most frequent gesture in the database of “wayne”
that we found, besides the average pose, is the gesture cor-
responding to the code ‘318’, as shown in Figure 8. This
can be explained by that “wayne” is a habitual right-handed

Figure 8. Visualization of how a gesture changes when codes are
changed. We replace twelve code ‘318’ in a motion sequence
(240 frames, 30 codes) with code ‘260’ on a habitual right-handed
speaker.

speaker. We choose a preferred left-handed code ‘260’ to
replace it, and the result is shown in the figure. In practice,
to produce natural gestures, it is sufficient to add the code
frequency score and adjust the weights appropriately when
matching. Please refer to the supplementary video for more
comparisons.

5. Discussion and Conclusion
In this paper, we present a quantization-based and phase-

guided motion matching framework for speech-driven ges-
ture generation. Specifically, we address the random jitter-
ing issue by using discrete representation that encodes hu-
man gestures. Besides, we tackle the inherent asynchronic-
ity of speech and gestures and flexibility of the current mo-
tion matching models by Levenshtein distance based on au-
dio quantization. Then, phase-guided audio-based or text-
based candidates are used as the final result. Experiments
on the standard benchmark (i.e., BEAT dataset) along with
user studies show that proposed framework achieves state-
of-the-art performance both qualitatively and quantitatively.
There is room for improvement in this research, besides text
and audio, more modalities (e.g. emotions, facial expres-
sions) could be taken into consideration to generate more
appropriate gestures.
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