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Object-Query Example:

Q: What objects did I interacted with when I was 
“washing dishes” during [20:00 -- 30:00] ?

A:

…

… …

…

Activity-Query Example:

Q: What activities did I do with {                                   }

during [00:00 -- 15:00] ?

A: “Making tea”

Time-Query Example:

Q: When did I “take pills” 

Feafefaefefefef.     with {                                       } ? 

A: [18:31 – 20:15]

Activity-Query Template:
Q: What activities did I do when I interacted with object 𝑜
fefduring [𝑠, 𝑒] ?
A: A subset of 𝐶 pre-defined activities 𝒜 ⊆ 1, … , 𝐶

Object-Query Template:
Q: What objects did I interact with when I was doing activity 
fef𝑎 during [𝑠, 𝑒] ?

A: Spatio-temporal locations of the interacted objects                   
fe 𝑡!, 𝑥!, 𝑦!, 𝑤!, ℎ! !"#$

Time-Query Template:
Q: When did I do activity 𝑎 that involves interaction with 
fefobject 𝑜 ?

A: Temporal locations of the corresponding activity 
fef [𝑠!, 𝑒!] !"#%

Figure 1. Illustration of the three types of queries in our Relational Space-Time Query (ReST) framework. Given a long video spanning
up to 30 minutes, a set of queries are provided to assess a model’s ability to understand activities, objects, and their interactions in the
video. All queries and answers are generated in the form of pre-defined templates (top-left) to avoid the ambiguity and bias introduced
by language input / output. Note that ReST is a holistic framework that supports constructing queries with different levels of complexity
beyond the three basic types described in this paper.

Abstract

Egocentric videos are often available in the form of un-
interrupted, uncurated long videos capturing the camera
wearers’ daily life activities.Understanding these videos re-
quires models to be able to reason about activities, objects,
and their interactions. However, current video benchmarks
study these problems independently and under short, cu-
rated clips. In contrast, real-world applications, e.g. AR
assistants, require bundling these problems for both model
development and evaluation. In this paper, we propose to
study these problems in a joint framework for long video
understanding. Our contributions are three-fold. First,
we propose an integrated framework, namely Relational
Space-Time Query (ReST), for evaluating video under-
standing models via templated spatiotemporal queries. Sec-
ond, we introduce two new benchmarks, ReST-ADL and
ReST-Ego4D 1, which augment the existing egocentric video
datasets with abundant query annotations generated by the
ReST framework. Finally, we present a set of baselines and

1The latest version of our benchmark and models will be available here.

in-depth analysis on the two benchmarks and provide in-
sights about the query tasks. We view our integrated frame-
work and benchmarks as a step towards comprehensive,
multi-step reasoning in long videos, and believe it will fa-
cilitate the development of next generations of video under-
standing models.

1. Introduction
Thanks to the advances of modern, massive parallel

hardware, e.g. GPUs, and the availability of large datasets,
significant progress has been made in the last few years
with large language models (e.g., GPT-3 [6], BERT [11])
and image / video generative models (e.g., DALLE [40],
Imagen [41], Make-A-Video [46]). Meanwhile, current
video understanding models mostly focus on processing
short video clips [12, 13, 52] and solving basic perception
tasks such as action recognition [16, 28, 31, 44, 48] and de-
tection [7, 19]. One may ask the questions for video under-
standing research: “How far are current models progressing
to a human-level performance on video understanding?”, or

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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“What is blocking us from building models that can under-
stand complex relationships in long videos?”

Of course, there exists multiple blockers in practice such
as GPU memory limitation and inefficient hardware support
for processing long videos. Yet the first and most important
reason is always the lack of the right research problem and
the right benchmark. One drawback of current video un-
derstanding benchmarks [19, 28] is that they handle analy-
sis of activities, objects and their interactions in a separate
manner. However, understanding long-form videos usually
requires a unified analysis of these factors because activi-
ties manifesting within these uncurated videos are primar-
ily in the form of human-object interaction, especially for
egocentric recordings of a camera wearer’s daily lives [17].
In recent years, video-QA [18, 33, 49, 66] and video cap-
tioning [10, 50] have been proposed as alternative tasks for
video understanding. These tasks require models to under-
stand both visual and text modalities and perform cross-
modal reasoning. On one hand, such vision-language based
tasks have the benefit of bypassing the pre-defined taxon-
omy and closed-world assumptions by leveraging language
as input and/or output. On the other hand, using language
for vision tasks, either in the form of input query or output
prediction, brings additional ambiguity in text generation
and requires use of uninterpretable evaluation metrics (e.g.,
BLEU, ROUGE). Language priors also introduce bias to the
task as observed in prior work that the language-only model
achieves comparable results with the VQA ones [4, 18].

In this paper, we present a holistic framework, Relational
Space-Time Query (ReST), for evaluating video under-
standing models via templated spatiotemporal queries. By
combining analysis of activities, objects, and their interac-
tions, our ReST framework captures much of the rich ex-
pressivity of natural language query while avoiding the am-
biguity and bias introduced by the language input / output.
Figure 1 illustrates an example of our ReST framework.
Given a long video spanning up to 30 minutes, we evalu-
ate a video understanding model by asking various queries
about the activities and human-object interactions occurred
in the video. Unlike VQA that relies on language-based
questions and answers, all of our queries and answers are
constructed in the form of pre-defined templates with vi-
sual or categorical input. Such a design helps the evaluation
remain pure vision-focused and enjoy well-defined, well-
posed evaluation metrics. Queries constructed in ReST can
cover various questions with different levels of complexity.
As shown in the examples in Figure 1, the questions can
be: “what activities did I do with the coffee mug?”, “what
objects did I interact with when I was washing dishes?” or
“when did I take the pills stored in this specific bottle?”. We
note that these questions are templated and only the time
in square brackets, the activities in the double quotes, and
the image crops in the curvy brackets are allowed to vary

to form different questions. In order to perform well on
these query tasks, a model needs not only be able to process
the long video efficiently, but is also required to understand
the temporal dependencies of activities and the fine-grained
human-object interactions across the video.

We summarize our contributions as follows. We present
Relational Space-Time Query (ReST), a holistic frame-
work and benchmarks for long video understanding with
detailed-reasoning tasks. We provide annotations for our
ReST queries on two existing benchmarks, ADL [37] and
Ego4D [17]. We conduct a set of comprehensive baselines
and analysis for ReST to gain insights into the tasks. We
find that even with the initial set of the three basic tasks,
current state-of-the-art models are not meeting desired per-
formance, which indicates the need for further research and
opportunities in this field.

2. Related Work

Our work is related to a broad range of prior studies on
video understanding, especially in the areas of action recog-
nition, detection, and question answering. This section pro-
vides an overview of well-known benchmarks and models
that have been developed for these tasks.

Action recognition and detection. Action recognition has
been one of the fundamental and fast growing research areas
in video understanding. Since the introduction of 3D Con-
volutional Neural Networks (CNNs) [26,51] to video classi-
fication, various CNN-based models have been proposed to
learn better spatiotemporal representations [8,13,52,59,63].
Two-stream architectures [8, 14, 45] and motion extraction
modules [32, 53, 65] are also introduced to better model
motion information from raw video frames. Recently,
Transformer-based models [3,5,12,34] have shown promis-
ing results. Building upon the frame/clip-based features ex-
tracted from the classification backbones, action detection
can be achieved by temporal localization models [9, 35, 68,
71] or spatiotemporal detection models [27, 64, 72].

While significant progress has been made, it is note-
worthy that most of the action classification models are
designed for conventional video benchmarks which com-
prise short videos spanning from a few seconds to three
minutes, such as HMDB51 [31], UCF-101 [48], Kinet-
ics [28], Something-something [16], and Charades [44].
Even for action detection or the recent works on “long-form
video modeling” [23,42,55–57,63], which involve datasets
with untrimmed videos and longer durations (e.g., THU-
MOS [24], ActivityNet [7], AVA [19], LVU [56]), they are
still processing videos with duration shorter than 5 minutes
and limited to basic classification or detection tasks.

Visual reasoning. Recent years have witnessed grow-
ing interest in visual reasoning tasks, most of which in-
volve video-language understanding, such as image cap-
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tioning [36], question answering (QA) [1, 67] and language
grounding / query [17, 69]. Specifically, in the video do-
main, MovieQA [49] is one of the earliest works that ex-
plore video understanding via QA problems. After that,
various QA benchmarks have been proposed by collect-
ing human-generated questions on either video clips ex-
tracted from TV series (e.g., TVQA [33]), GIFs (e.g., TGIF-
QA [25] or internet videos (e.g., ActivityNet-QA [66],
Next-QA [58], Just-Ask [61]). There are also datasets that
automatically generate question-answer pairs from descrip-
tions (e.g., MSRVTT-QA [60], MSVD-QA [60]) or scene
graphs (e.g., AGQA [18]). Language grounding / query is
a related task that involves generating the (spatio-)temporal
location of a language input, instead of the language answer.
Several popular benchmarks, such as Charades-STA [15]
and VidSTG [70], have been proposed in prior work.

In the recently published dataset, Ego4D [17], the au-
thors propose three episodic memory tasks. (1) Visual
Query (VQ): locating the most recent spatio-temporal tube
corresponding to a query object; (2) Moment Query (MQ):
locating the temporal segments corresponding to a moment
category; (3) Natural Language Query (NLQ): locating the
temporal segments corresponding to a language question.
The three tasks can be cast to object retrieval and tracking,
activity detection and language grounding, respectively. A
QA dataset QAEgo4D [4] is later built upon the NLQ subset
by collecting additional natural language answers.

Unlike all the these prior work, our ReST benchmarks
emphasize the joint analysis of objects, activities, and
human-object interactions in long-form, egocentric videos.
In addition, ReST is designed to be entirely focused on vi-
sion, both in terms of the input and output of the query. We
will provide additional elaboration on the distinctions be-
tween ReST and Ego4D episodic memory tasks in Sec. 3.

3. Relational Space-Time Query for Long
Video Understanding

The key idea of Relational Space-Time Query (ReST) is
to provide a unified framework for the analysis of activities,
human-object interactions and eventually long video under-
standing. Drawing inspiration from recent advances in vi-
sual reasoning [2,17,49], we formulate the problem as a set
of query tasks 2 that require the model to predict structured
answers to input queries. In particular, we describe a ba-
sic event in an egocentric video using the following general
form:

“I engaged in 〈activity〉 while interacting with 〈object〉
during 〈time period〉.”

This form naturally integrates the occurrence of activities
and human-object interactions while also grounding them

2We use the term “query” instead of “question-answering” to make it
explicit that our framework is not dependent on language input or output.

to specific time periods. In our framework, we denote an
activity c as a category label defined by a close-set taxon-
omy, and a time period t as a temporal segment with a start-
ing time s and an ending time e. An object o is represented
as image crops of the object in selected frames. This is in
fact more precise and concise than using natural language to
refer to a specific object instance, as discussed in [17, 67].

We construct three basic types of queries by asking about
one of the three key properties in the query: activity, ob-
ject, or time. In other words, to answer the query, a model
is required to understand two of the key properties simul-
taneously. This is in contrast with most existing tasks that
study different vision problems in isolation. We believe that
this multi-modal, compositional nature of our queries is the
key to providing a unified framework for measuring holis-
tic video understanding. We describe the three basic query
types in details below. Note that the template descriptions
only convey the motivation and semantic significance of the
query, while the query input consists solely of activity la-
bels, object crops, and time windows.

Activity-query: “Template: What activities did I per-
form with object o during time t ?” An example query
is shown in the red box in Fig. 1. The answer to this type
of query is a subset C of the activities from a pre-defined
taxonomy {1 . . . C}, where C is the total number of activ-
ity categories. Note that C may contain multiple activities
or be an empty set, indicating no interaction with the object
o. Activity-query differs from conventional activity recog-
nition and detection tasks by incorporating a condition on
the interaction between the camera wearer and the queried
object. This design not only increases the task’s difficulty
but also helps reduce ambiguity in the questions, especially
when applied to long videos with numerous irrelevant ac-
tivities. For instance, it is more meaningful to ask “What
activity did I perform yesterday while using this mug?” than
to simply ask “What activity did I perform yesterday?”

Object-query: “Template: What objects did I interact
with when engaging in activity c during time t ?” An
example query is shown in the green box in Fig. 1. The
answer to this type of question is a set of “active” objects
(i.e., objects that the camera wearer is interacting with) rep-
resented as bounding boxes with associated spatiotemporal
locations {ti, xi, yi, hi, wi}Ni=1, where N is the total num-
ber of ground truth boxes. While object-query shares a sim-
ilar prediction format with traditional object detection and
visual query tasks, the objects of interest are fundamentally
different. Object detection involves localizing objects from
a pre-defined set of categories, while visual query [17] aims
to localize the most recent track of the query object, with-
out considering whether it was interacted with or not. In
contrast, object-query requires identifying the active objects
that are involved in the query activity, without making any
assumptions about their semantic category.
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Time-query: “Template: When did I perform activity c
with object o ?” An example query is shown in the blue
box in Fig. 1. The answer to this query type is a set of time
windows with starting and ending timestamps {si, ei}Mi=1,
where M is the number of ground truth segments. Com-
pared to traditional temporal localization tasks, time-query
presents a more challenging but fine-grained problem since
it involves understanding the joint occurrence of the query
activity and the interaction with the querying object.

Although this paper focuses on the three basic types of
queries, it is important to note that our ReST framework is
holistic and supports queries that require varying levels of
comprehension of a long video. It is possible to construct
more complex queries by combining the three basic ones or
incorporating additional information such as object states,
ownership, and environment, into the event description. We
leave the option of introducing more diverse query types
to further expand the scope of our framework in the future
work. Nevertheless, we have already observed that even
with the three basic tasks, the complexity of the problem
is increasing significantly due to various design choices for
different perception components (as discussed in Sec. 5).
We see our integrated framework and benchmarks as a cru-
cial step towards achieving comprehensive, multi-step rea-
soning in long videos, and we believe that it will facili-
tate the development of next-generation video understand-
ing models.

4. ReST Benchmarks

We introduce two new benchmarks for evaluating the
Relational Space-Time query (ReST) tasks, based on the
publicly available datasets ADL [37] and Ego4D [17]. Both
datasets consist of egocentric videos with long durations
ranging from 10 to 60 minutes, and are characterized by
intensive human-object interaction. In particular, the ReST-
ADL benchmark is smaller in scale but provides denser and
cleaner annotations, making it more suitable for task analy-
sis (as discussed in Sec. 6). The ReST-Ego4D benchmark,
on the other hand, is larger in scale and more challenging
with videos recorded from diverse scenarios. In this sec-
tion, we introduce the query generation process in details,
report basic statistics for both two benchmarks, and discuss
the evaluation metrics for the three types of queries.

4.1. Benchmark Generation

Human-object annotation. ReST tasks are centered
around activities and human-object interaction in long-form
videos. To achieve this, we consolidate and augment the
original annotation in ADL [37] and Ego4D [17] to include
the following information: (1) activity annotation: label-
ing each video with temporal segments indicating the oc-
currence of pre-defined activities; (2) object annotation: la-

beling each frame with bounding boxes locating common
objects and tagging each of them with a unique id indicat-
ing different object instances; (3) interaction annotation: la-
beling each object bounding box with the status of being
interacted with or not. Annotations are collected in 1 FPS
on ADL and 2 FPS on Ego4D.

Query generation. The query generation process is fully
automatic given the densely collected human-object anno-
tations. For each video, we first generate a set of can-
didate windows, which can be considered as independent
“episodic memories” from which the three types of queries
are generated. A valid candidate window should not con-
tain truncated activity segments. We define three window
sizes to evaluate different complexity levels in terms of
memory durations – short (around 5 minutes) / medium
(around 15 minutes) / long (around 30 minutes). To avoid
highly overlapping windows, we randomly select query
windows from the these candidates such that their tempo-
ral intersection-over-union (IoU) is less than 0.9. For each
query window, we collect activity and object information
(Sm, lm,Am, Im), where m ∈ {1, ...,M} denotes the in-
dex of activity segments occurred in the current window.
Sm = [sm, em] indicates the segment location, lm ∈ [1, C]
is the activity label, Am and Im denote the “active” and
“inactive” objects that are present during the activity, re-
spectively.

To generate activity-query, we randomly sample an
“active” object o ∈ {A1 ∪ A2 ∪ ...AM} as the query,
and collect the corresponding activities as the answers
{lm | o ∈ Am}. To generate object-query, we sample an
activity category c ∈ {lm}Mm=1 as the query and collect the
bounding boxes of the corresponding “active” objects as the
answer {Am | lm = c}. Similarly for time-query, the query
is a pair of “active” object and activity category (o, c), and
the answer is the temporal location of the corresponding ac-
tivity segments {Sm | o ∈ Am, lm = c}. In addition to the
positive queries described above, we also generate negative
queries where either the query activity or the object inter-
action is absent from the query window. In such cases, the
answers are represented as empty sets and the model should
“reject” those queries to prevent false alarms.

Comparison with Ego4D queries. ReST provides a unify-
ing view of VQ and MQ – rather than locating the presence
of a query object or activity independently, we take into ac-
count the relationships between these closely related prob-
lem. Although NLQ also supports such capacity in general,
ReST differentiates itself by employing a substantially dif-
ferent query generation process, i.e., operating on densely
collected, low-level human-object annotations. The advan-
tages are as follow: (a) Finer-grained control. First, it en-
ables re-balancing or creating new query sets with differ-
ent emphasis. For instance, we can balance the distribu-
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Vision Avg. Total #Queries
Benchmarks focused length (s) hours (K)

MovieQA [49] 202.7 381.2 6.5
TGIF-QA [25] 3 59.8 165
Act.-QA [66] 180 290 58
AGQA [18] 30 80 1920
QAEgo4D [4] 495 182 14.5
Just-Ask [61] 12.1 233K 83K
Next-QA [58] 44 66.5 52

ReST-ADL ✓ 1631 9 185.7
ReST-Ego4D ✓ 1104 92 303.3

Table 1. Compare ReST-ADL and ReST-Ego4D with common
video question answering (QA) benchmarks.

tion of positive and negative queries, or re-sample the ques-
tions and answers to reduce intrinsic bias of the dataset.
Second, it allows for evaluation under specific conditions,
such as different window sizes, query types, and even dif-
ficulty and visibility levels (detailed in the supplementary
material). (b) Improved data efficiency. Collecting human
annotated question-answer pairs is labor-intensive – NLQ
only involves sparse annotation with 52.2 queries per hour
on average. In contrast, low-level annotations can be ef-
ficiently collected or even generated by models, leading
to 20.6(3.3)K queries per hour in ReST-ADL(Ego4D) with
dense coverage of events. In addition, ReST is the first work
that explicitly takes human-object interaction into account
when constructing queries. Our framework is also vision-
centric, providing a more precise and concise method to re-
fer to object instances than NLQ / QAEgo4D [4] and avoid-
ing potential bias from language models

4.2. Dataset Statistics

ReST-ADL ADL [37] is one of the earliest datasets for
detecting activities of daily living in first-person camera
views. The dataset involves 9 hours of videos amassed from
20 people performing non-scripted activities in 20 different
homes. We re-define 24 activity categories that are more
common and clear in real-world applications and manually
clean up the annotation of instance id and “active” objects.

We generate over 185K queries in total for ReST-ADL,
with 1,020 unique object instances. Fig. 2 highlights some
basic statistics of the generated queries. The activity-query
and time-query are more frequent due to the large number
of interacted objects for query generation. Query windows
with a medium duration (around 15 minutes) are the most
frequent because they involve more diverse activities and
interactions than short windows and some of the 20 videos
are not long enough to generate long query windows. We
also observe that the distribution of an activity served as the

Percentage of the three query types Percentage of the three window sizes Distribution of activities as query

Percentage of the three query types Percentage of the three window sizes Distribution of activities as query

Figure 2. Dataset statistics of ReST-ADL (top) and ReST-Ego4D
(bottom). (Left) The percentage of activity-query, object-query
and time-query. (Center) The percentage of queries from different
window sizes. (Right) Distribution of an activity category served
as the query activity. The top-24 most frequent activities are se-
lected for the visualization of ReST-Ego4D.

query activity shows a natural long-tail distribution since
some activities occur more often and have longer duration
than the others. Since ADL is relatively small scale, we
divide the videos into five splits and report results on 5-fold
cross validation unless otherwise stated.

ReST-Ego4D Ego4D [17] is a recently-published dataset
offering a huge amount of egocentric video recordings in
diverse scenarios. In particular, we extend a subset of the
dataset that was originally proposed for the Moment Query
(MQ) challenge. This subset provides temporal segment an-
notation for a set of pre-defined “moments”, and we addi-
tionally collect the object and interaction annotations de-
scribed in Sec. 4.1 for each of the moment segments. ReST-
Ego4D consists of 301 video recordings with 92 hours in
total. We generate over 303K queries and the dataset statis-
tics is shown in Fig. 2. Note that the duration of moment
segments in ReST-Ego4D is much shorter than those in
ReST-ADL as reported in [17], therefore identifying and
locating the query activities is very challenging even for the
query windows with a small size (around 5 minutes). We
randomly split the 301 videos into 70%, 10% and 20% for
training, validation, and testing, respectively.

4.3. Evaluation metrics

Prior works on question answering mostly use accuracy
as the evaluation metric since they either involve multi-
choice questions [49, 58] or only short and simple an-
swers [2, 61]. When evaluation for more complex and
practical answers, metrics from machine translation (e.g.,
BLEU, ROUGE) are adopted in QAEgo4D [4]. Inspired
by the work on information retrieval [30, 47] and language
grounding [62, 69], we evaluate the effectiveness of vision
models using the standard Recall@kx. The metric mea-
sures the percentage of ground truth labels identified in top-
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kx predictions, where x stands for the number of ground
truth labels in the answer. For object-query and time-query
that involve (spatio-)temporal localization, an IoU threshold
is used to identify the correct detection. We also measure
the Rejection recall for negative queries, which measures
the percentage of negative queries that are successfully re-
jected by the models.

5. Experiments: Baselines for ReST Tasks
Solving ReST queries requires understanding of both

fine-grained human-object interaction and long-range tem-
poral dependencies in videos. In this section, we present
a simple, modularized system that generates probabilistic
answers to the queries by consolidating predictions from
state-of-the-art perception modules. We then report base-
line results for the three query tasks on our benchmark.

5.1. Probability-based Modularized System

Given a query, our modularized system first estimates
the likelihood of a time step being relevant to the query task
within the query window, which we refer to as the “rele-
vance likelihood”. A time step is regarded as “relevant” if
there exists an “active” object matches the query object or
the ongoing activity matches the query activity. Query re-
jection is performed if no relevant time step is identified.
Then, the system collects information within the relevant
time steps and generates probabilistic answers to the query.

Activity-query. Given a query object o and a query win-
dow [s, e], the goal is to either reject the query or generate
a probability estimation of the C activity classes as the an-
swer. We first estimate the relevance likelihood L1(t) for
each time step t ∈ [s, e], defined by the probability of find-
ing an “active” object that matches the query object:

L1(t) = max
i=1,...,Nt

Pmatch(bi, o)× Pinter(bi), (1)

where bi denotes the i-th detected bounding box and Nt

is the number of detected boxes at time t. Pmatch(bi, o),
Pinter(bi) denote the probability of matching a detected box
bi with o and the probability of bi being interacted with, re-
spectively. We will elaborate on how to obtain these two
probabilities later. A query is rejected if L1(t) < σ1 at all
time steps. If a query is not rejected, we re-weight the activ-
ity recognition prediction Pact(t) with the relevance likeli-
hood and generate the answer Aact ∈ RC by performing a
max-pooling for each activity class c along all time steps:

Ac
act = max

t=s,...e
L1(t)× P c

act(t). (2)

Object-query. Given a query activity c and a query window
[s, e], the goal is to either reject the query or generate a list
of spatio-temporal bounding boxes with confidence scores.

We define the relevance likelihood as the probability of the
occurrence of the query activity: L2(t) = P c

act(t). A query
is rejected if L2(t) < σ2 for all time steps. For each de-
tected box bt,i at time t, its confidence score is defined as
the probability of the object being interacted with, weighted
by the “relevance likelihood” of the time step:

wt,i = L2(t)× Pinter(bt,i). (3)

The answer to the query is the collection of all detected
boxes within the query window:

Aobj = {bt,i, wt,i} , t ∈ [s, e], i = 1, ..., Nt (4)

Time-query. Given a query instance o and a query ac-
tivity c, the goal to either reject the query or generate a
list of temporal segments with confidence scores. We ob-
tain the “relevance likelihood” by estimating the joint like-
lihood: L3(t) = L1(t) × L2(t). A query is rejected if
L3(t) < σ3 for all time steps. To generate the answer, we
follow the standard post-processing strategies in weakly-
supervised action detection [20, 39], which generate activ-
ity proposals by applying different thresholds to the activ-
ity recognition scores at each time step. We score each of
these activity proposals Ŝi = [si, ei] by combining its outer-
inner-contrastive (OIC) score [43] over P c

act and the maxi-
mum object matching score within the proposal:

vi = OIC(Ŝi)× max
t∈[si,ei]

L1(t). (5)

The answer is obtained after applying temporal non-
maximum suppressed (NMS) to the proposals:

Atime =
{
Ŝi, vi

}
, i = 1, ...,K, (6)

where K is the total number of predicted activity segments.

Perception modules. We finetune the recent action recog-
nition models [12, 34] on the training split of our dataset
and use the model to predict the activity recognition results
Pact(t) in Eq. (2). Off-the-shelf object detectors [21,29,54]
are adopted to detect potential objects in each frame and
generate the corresponding objectness scores Pobj(bi). We
then crop the image with the predicted bounding boxes and
extract feature embeddings using a pre-trained ResNet-50
model [22]. For brevity, we extend the use of the symbol oi
to also represent the embedding of the bounding box bi.

The matching probability between a detected box and
a query object Pmatch(bi, o) is defined as the joint proba-
bility of the box successfully detecting an object and this
object being the same as the query one: Pmatch(bi, o) =
Pobj(bi) × Psame(oi, o). Psame is obtained by computing
the cosine similarity between the two embeddings followed
by probabilistic calibration [38]. Similarly, we define the in-
teraction probability of a detect box Pinter(bi) as the joint
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Activity-query Object-query Time-query

R@1x R@3x Rej. R@1x R@3x Rej. R@1x R@3x Rej.

Short 48.1 (±7.0) 69.2 (±8.0) 68.9 (±3.1) 9.6 (±1.3) 19.4 (±3.3) 84.5 (±2.1) 31.3 (±9.5) 32.6 (±9.8) 86.8 (±3.0)
Medium 50.7 (±13.1) 72.6 (±8.4) 63.3 (±5.9) 10.0 (±1.7) 20.23 (±3.7) 79.3 (±3.6) 31.8 (±9.4) 33.8 (±10.2) 84.3 (±4.4)
Long 46.3 (±7.6) 70.9 (±4.8) 67.0 (±8.8) 10.0 (±1.9) 21.0 (±4.3) 68.6 (±7.8) 30.0 (±6.3) 31.9 (±7.6) 85.8 (±5.1)

Table 2. Baseline results with the explicit system on ReST-ADL. The results are obtained with 5-fold cross validation and reported in the
format mean (±std). Rej. stands for rejection recall. We report results with IoU=0.3 for object-query and time-query in the table and the
complete results are provided in the supplementary material.

probability of the box detecting an object and this object
being interacted with: Pinter(bi) = Pobj(bi)× Pactive(oi).
We train a binary classifier using the annotated objects in
the training split to predict Pactive(oi). More implementa-
tion details and ablations of the individual perception mod-
ules are provided in the supplementary material.

Discussion. Despite the simplicity and interpretability of
our modularized system, we have identified certain limita-
tions to the approach. (1) The perception modules are not
optimized for the final ReST tasks, which may hinder the
performance when scaling to larger amount of data. How-
ever, adapting end-to-end models to the tasks is non-trivial
– there is no existing QA or video models that support de-
tection of human-object interaction or reasoning on multi-
ple perceptions (e.g., predicting video activity given object
crops and time windows). We provide preliminary studies
on ReST-ADL using a modified version of TubeDETR [62]
and Object-Transformer [56] in the supplementary material
and leave more dedicated model designs to future work. (2)
Our system requires computing and storing the results of all
the perception modules beforehand, which implies an un-
limited computation and storage footprint for solving the
tasks. Such an assumption does not hold for most real-
world applications and our system is designed for better an-
alyzing the new tasks and evaluating different vision mod-
els. Our system also requires different inference strategies
to generate answers with different structures.

5.2. Baseline Results

We present baseline results with our explicit system in
Tab. 2 and 3 for ReST-ADL and ReST-Ego4D, respec-
tively. We first observe that our ReST tasks are very chal-
lenging, especially for object-query and time-query. Even
equipped with state-of-the-art perception models and un-
limited computation and memory resource, the explicit sys-
tem still suffers from identifying and localizing the ongoing
activities and the objects being interacted. ReST-ADL and
ReST-Ego4D benchmarks share the same trend of difficul-
ties across three query types. The problem becomes more
severe when processing videos in ReST-Ego4D with more
diverse scenarios and more severe camera motion.

Activity-query Object-query Time-query

R@1x Rej. R@3x Rej. R@3x Rej.

Short 30.1 61.9 1.4 85.5 11.1 74.3
Medium 33.9 64.7 1.9 89.3 17.8 69.0

Long 22.6 76.1 1.4 90.3 21.8 76.6

Table 3. Baseline results on the test split of ReST-Ego4D. Our
ReST tasks are highly challenging, especially for object-query and
time-query that require precise detection of interacted objects.

5.3. Qualitative results

We present visualization results of our modularized sys-
tem in Fig. 3. We also plot the “relevance likelihood” to
illustrate how the query object and activity are identified
within the query window. For activity-query (Q1, Q2), our
system successfully detects the time steps where the query
objects are interacted with and predicts the correct activity
label at the corresponding time steps, therefore the correct
answers are generated accordingly. For object-query (Q3),
we can see that it is a very challenging task and the top-
scoring predictions are usually dominated by the incorrect
object detection results. We only recall one ground truth
bounding box (the tap) in this example. For time-query
(Q4), we observe that the model successfully detects the
“washing hands” segment that involves interaction with the
query object (hand soap), while suppressing the prediction
on the other segment with the same activity label. However,
the model still generates incorrect answers if the activity
recognition results are incorrect (e.g. Q5).

6. Sensitivity Analysis

We conduct an “oracle” analysis to better understand the
contribution of each sub-problem (i.e., perception compo-
nent) to the overall ReST task performance. In this setup,
we replace model predictions with ground truth labels for
all perception modules, and then systematically corrupt one
module (e.g. by injecting noise at different levels) to gauge
its sensitivity and importance to task performance. This
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Q1: What activities did I do with {               }
during [15:06 -- 20:16] ?

Prediction: “Washing hands”

Relevance likelihood ℒ!

15:06 20:16

Q2: What activities did I do with {               }
during [15:06 -- 20:16] ?

Prediction: “Preparing food”

Relevance likelihood ℒ!

Q3: What objects did I interact with when 
feffI was doing “wash hands”?

Relevance likelihood ℒ"

Q4: When did I “wash hands” with ?

GT:

Pred:

Q5: When did I “wash bowls” with ?

GT:

Pred:

Predictions: 

Figure 3. Visualization of the model predictions on ReST-ADL
generated by the modularized system. The first row shows video
snapshots within the query window. The following rows show the
queries and predictions for activity-query, object-query, and time-
query, respectively. We visualize the top-1x predictions for all the
queries and use the green color to indicate correct predictions.

analysis helps inform future work on identifying which sub-
module may provide the greatest opportunities for perfor-
mance improvements in the ReST task.

In particular, we conduct label corruption experiments
by replacing the ground truth of one module with noisy
labels. The noise we add to each module is described as
follows. Activity module: assign a random activity label
(including background) to a time step with probability ρ.
Detection module: randomly remove a ground truth box
with probability ρ (missed detection of an object). Embed-
ding module: assign a random instance id to a ground truth
box (one-hot embedding of the instance id is used for object
matching in the experiments). Interaction module: assign
a random interaction label to a ground truth box with prob-
ability ρ.

We note that by varying ρ we can control the level of
corruption of the selected module. Experiment results are
shown in Fig. 4. It is obvious that the performance on pos-
itive queries drops significantly as the noise level of the ac-
tivity module increases. This indicates the key role of the
activity module to the ReST tasks since all three types of
query require recognizing and localizing activities to gener-

Figure 4. Label corruption experiments on split-1 of ReST-ADL.
We observe that the activity module is critical for all types of
queries, while the object detection and interaction modules have
larger impacts to object-query and negative queries, respectively.

ate the answers. We also observe that the detection module
and the interaction module have larger impacts to object-
query, which requires predicting the bounding boxes of all
“active” objects within the query activity. The interaction
module has particularly large impact to the performance
on negative queries because query rejection is based on the
“relevance likelihood” computed with the prediction of the
interaction module (Eqn. 1). The probabilistic modeling ap-
proach in our explicit system provides decent robustness to
random noise when the overall noise level is low.

7. Conclusion and Future Work

We introduced Relational Space-Time query (ReST), a
holistic framework that jointly studies the activities, objects,
and their interactions in long videos with templated spa-
tiotemporal queries. ReST is set up on long videos, e.g.,
5-to-30-minute long, and is designed to captures the rich
expressivity of natural language query while avoiding the
ambiguity and bias introduced by the language modality.
We further introduced two new benchmarks, ReST-ADL
and ReST-Ego4D, which are built upon the publicly avail-
able egocentric video datasets with long duration and in-
tensive human-object interactions. Finally, we developed
a probability-based explicit system and conducted a set of
experiments to provide in-depth analysis about the ReST
tasks. We believe our integrated framework and bench-
marks will facilitate future research on long video under-
standing and inspire the development of next generations of
video models.
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