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Abstract

In this work, we revisit the weak-to-strong consistency
framework, popularized by FixMatch from semi-supervised
classification, where the prediction of a weakly perturbed im-
age serves as supervision for its strongly perturbed version.
Intriguingly, we observe that such a simple pipeline already
achieves competitive results against recent advanced works,
when transferred to our segmentation scenario. Its success
heavily relies on the manual design of strong data augmen-
tations, however, which may be limited and inadequate to
explore a broader perturbation space. Motivated by this,
we propose an auxiliary feature perturbation stream as a
supplement, leading to an expanded perturbation space. On
the other, to sufficiently probe original image-level augmen-
tations, we present a dual-stream perturbation technique,
enabling two strong views to be simultaneously guided by
a common weak view. Consequently, our overall Unified
Dual-Stream Perturbations approach (UniMatch) surpasses
all existing methods significantly across all evaluation proto-
cols on the Pascal, Cityscapes, and COCO benchmarks. Its
superiority is also demonstrated in remote sensing interpre-
tation and medical image analysis. We hope our reproduced
FixMatch and our results can inspire more future works.

1. Introduction
Semantic segmentation aims to provide pixel-level pre-

dictions to images, which can be deemed as a dense classi-
fication task and is fundamental to real-world applications,
e.g., autonomous driving. Nevertheless, conventional fully-
supervised scenario [43, 73, 77] is extremely hungry for deli-
cately labeled images by human annotators, greatly hinder-
ing its broad application to some fields where it is costly
and even infeasible to annotate abundant images. Therefore,
semi-supervised semantic segmentation [56] has been pro-
posed and is attracting increasing attention. Generally, it
wishes to alleviate the labor-intensive process via leverag-
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Figure 1. Comparison between state-of-the-art methods and our
reproduced FixMatch [55] on the Pascal dataset.

ing a large quantity of unlabeled images, accompanied by a
handful of manually labeled images.

Following closely the research line of semi-supervised
learning (SSL), advanced methods in semi-supervised se-
mantic segmentation have evolved from GANs-based adver-
sarial training paradigm [21, 47, 56] into the widely adopted
consistency regularization framework [13, 19, 28, 29, 49, 61,
81] and reborn self-training pipeline [23, 27, 68, 70]. In this
work, we focus on the weak-to-strong consistency regulariza-
tion framework, which is popularized by FixMatch [55] from
the field of semi-supervised classification, and then impacts
many other relevant tasks [42, 45, 57, 62, 66, 67]. The weak-
to-strong approach supervises a strongly perturbed unlabeled
image xs with the prediction yielded from its correspond-
ing weakly perturbed version xw, as illustrated in Figure 2a.
Intuitively, its success lies in that the model is more likely
to produce high-quality prediction on xw, while xs is more
effective for our model to learn, since the strong perturba-
tions introduce additional information as well as mitigate
confirmation bias [2]. We surprisingly notice that, so long
as coupled with appropriate strong perturbations, FixMatch
can indeed still exhibit powerful generalization capability in
our scenario, obtaining superior results over state-of-the-art
(SOTA) methods, as compared in Figure 1. Thus, we select
this simple yet effective framework as our baseline.

Through investigation of image-level strong perturbations,
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Method
# labeled images (10582 in total)

92 183 366 732 1464

w/o any SP 39.5 52.7 65.5 69.2 74.6
w/ CutMix 56.7 67.9 71.9 75.1 78.3

w/ whole SP 63.9 73.0 75.5 77.8 79.2

Table 1. The importance of image-level strong perturbations (SP)
to FixMatch on the Pascal dataset. w/o any SP: directly utilize hard
label of xw to supervise its logits. w/ CutMix: only use CutMix [71]
as a perturbation. w/ whole SP: strong perturbations contain color
transformations from ST++ [68], together with CutMix.

we observe that they play an indispensable role in making
the FixMatch a rather strong competitor in semi-supervised
semantic segmentation. As demonstrated in Table 1, the
performance gap between whether to adopt perturbations is
extremely huge. Greatly inspired by these clues, we hope to
inherit the spirit of strong perturbations from FixMatch, but
also further strengthen them from two different perspectives
and directions, namely expanding a broader perturbation
space, and sufficiently harvesting original perturbations.
Each of these two perspectives is detailed in the following
two paragraphs respectively.

Image-level perturbations, e.g., color jitter and CutMix
[71], include heuristic biases, which actually introduce ad-
ditional prior information into the bootstrapping paradigm
of FixMatch, so as to capture the merits of consistency reg-
ularization. In case not equipped with these perturbations,
FixMatch will be degenerated to a naïve online self-training
pipeline, producing much worse results. Despite its effective-
ness, these perturbations are totally constrained at the image
level, hindering the model to explore a broader perturbation
space and to maintain consistency at diverse levels. To this
end, in order to expand original perturbation space, we de-
sign a unified perturbation framework for both raw images
and extracted features. Concretely, on raw images, similar to
FixMatch, pre-defined image-level strong perturbations are
applied, while for extracted features of weakly perturbed im-
ages, an embarrassingly simple channel dropout is inserted.
In this way, our model pursues the equivalence of predictions
on unlabeled images at both the image and embedding level.
These two perturbation levels can be complementary to each
other. Distinguished from [33, 41], we separate different
levels of perturbations into independent streams to avoid a
single stream being excessively hard to learn.

On the other hand, current FixMatch framework merely
utilizes a single strong view of each unlabeled image in a
mini-batch, which is insufficient to fully exploit the manually
pre-defined perturbation space. Considering this, we present
a simple yet highly effective improvement to the input, where
dual independent strong views are randomly sampled from
the perturbation pool. They are then fed into the student
model in parallel, and simultaneously supervised by their

shared weak view. Such a minor modification even easily
turns the FixMatch baseline into a stronger SOTA framework
by itself. Intuitively, we conjecture that enforcing two strong
views to be close to a common weak view can be regarded as
minimizing the distance between these strong views. Hence,
it shares the spirits and merits of contrastive learning [11,25],
which can learn more discriminative representations and is
proved to be particularly beneficial to our current task [40,
61]. We conduct comprehensive studies on the effectiveness
of each proposed component. Our contributions can be
summarized in four folds:

• We notice that, coupled with appropriate image-level
strong perturbations, FixMatch is still a powerful frame-
work when transferred to the semantic segmentation
scenario. A plainly reproduced FixMatch outperforms
almost all existing methods in our current task.

• Built upon FixMatch, we propose a unified perturba-
tion framework that unifies image-level and feature-
level perturbations in independent streams, to exploit a
broader perturbation space.

• We design a dual-stream perturbation strategy to fully
probe pre-defined image-level perturbation space, as
well as to harvest the merits of contrastive learning for
discriminative representations.

• Our framework that integrates above two components,
surpasses existing methods remarkably across all evalu-
ation protocols on the Pascal, Cityscapes, and COCO.
Notably, it also exhibits strong superiority in medical
image analysis and remote sensing interpretation.

2. Related Work
Semi-supervised learning (SSL). The core issue in SSL
lies in how to design reasonable and effective supervision
signals for unlabeled data. Two main branches of methodol-
ogy are proposed to tackle the issue, namely entropy mini-
mization [22, 37, 51, 53, 64, 80] and consistency regulariza-
tion [5,6,20,30,36,38,48,54,58,63]. Entropy minimization,
popularized by self-training [37], works in a straightfor-
ward way via assigning pseudo labels to unlabeled data and
then combining them with manually labeled data for further
re-training. For another thing, consistency regularization
holds the assumption that prediction of an unlabeled exam-
ple should be invariant to different forms of perturbations.
Among them, FixMatch [55] proposes to inject strong pertur-
bations to unlabeled images and supervise training process
with predictions from weakly perturbed ones to subsume
the merits of both methodologies. Recently, FlexMatch [72]
and FreeMatch [60] consider learning status of different
classes and then filter low-confidence labels with class-wise
thresholds. Our method inherits from FixMatch, however,
we investigate a more challenging and labor-intensive set-
ting. More importantly, we demonstrate the significance
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of image-level strong perturbations, thereby managing to
expand original perturbation space and take full advantage
of pre-defined perturbations.
Semi-supervised semantic segmentation. Earlier works
[47, 56] incorporate the GANs [21] as an auxiliary supervi-
sion for unlabeled images via discriminating pseudo labels
from manual labels. Motivated by the rapid progress in SSL,
recent methods [1, 18, 32, 34, 40, 41, 46, 49, 74, 75, 78, 79, 81]
strive for simpler training paradigms from the perspective of
consistency regularization and entropy minimization. During
this trend, French et al. [19] disclose Cutout [16] and Cut-
Mix [71] are critical to success of consistency regularization
in segmentation. AEL [28] then designs an adaptive CutMix
and sampling strategy to enhance the learning on under-
performing classes. Inspired by contrastive learning, Lai et
al. [35] propose to enforce predictions of the shared patch
under different contextual crops to be same. And U2PL [61]
treats uncertain pixels as reliable negative samples to con-
trast against corresponding positive samples. Similar to the
core spirit of co-training [7,52,76], CPS [13] introduces dual
models to supervise each other.

Other works from the research line of entropy minimiza-
tion utilize a self-training pipeline to assign pseudo masks
for unlabeled images in an offline manner. From this per-
spective, Yuan et al. [70] claim excessive perturbations on
unlabeled images are catastrophic to clean data distribution,
and thus propose a separate batch normalization for these
images. Concurrently, ST++ [68] points out that appropriate
strong data perturbations are indeed extremely helpful to self-
training. Moreover, to tackle the class bias issue encountered
in pseudo labeling, He et al. [27] align class distributions
between manual labels and pseudo labels. And USRN [23]
clusters balanced subclass distributions as a regularization
to alleviate the imbalance of pre-defined classes.

To pursue elegance and efficacy, we adopt the weak-
to-strong consistency regularization framework from Fix-
Match [55]. Our end-to-end baseline can be deemed as
an improvement of [19], or a simplification of [81]. For in-
stance, it strengthens image-level strong perturbations in [19]
with color transformations from [68], and discards the cali-
bration fusion module in [81]. With this neat but competitive
baseline, we further probe a broader perturbation space, and
fully exploit original image-level perturbations as well.

3. Method
Algorithms in semi-supervised semantic segmentation

aim to fully explore unlabeled images Du = {xu
i } with

limited amount of annotations from labeled images Dl =
{(xl

i, y
l
i)}. Our method is based on FixMatch [55], so we

first briefly review its core idea (Sec. 3.1). Following this,
we introduce the two proposed components in detail, namely
unified perturbations (Sec. 3.2), and dual-stream perturba-
tions (Sec. 3.3). Finally, we summarize our overall Unified
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Figure 2. (a) The FixMatch baseline. (b) Our proposed unified
dual-stream perturbations method (UniMatch). The FP denotes
feature perturbation, and the dashed curves represent supervision.

Dual-Stream Perturbations method (UniMatch) (Sec. 3.4).

3.1. Preliminaries

As aforementioned, FixMatch utilizes a weak-to-strong
consistency regularization to leverage unlabeled data. Con-
cretely, each unlabeled image xu is simultaneously perturbed
by two operators, i.e., weak perturbation Aw such as crop-
ping, and strong perturbation As such as color jitter. Then,
the overall objective function is a combination of supervised
loss Ls and unsupervised loss Lu as:

L =
1

2
(Ls + Lu). (1)

Typically, the supervised term Ls is the cross-entropy loss
between model predictions and groundtruth labels. And the
unsupervised loss Lu regularizes prediction of the sample
under strong perturbations to be the same as that under weak
perturbations, which can be formulated as:

Lu =
1

Bu

∑
1(max(pw) ≥ τ)H(pw, ps), (2)

where Bu is the batch size for unlabeled data and τ is a
pre-defined confidence threshold to filter noisy labels. H
minimizes the entropy between two probability distributions:

pw = F̂ (Aw(xu)); ps = F (As(Aw(xu))), (3)

where the teacher model F̂ produces pseudo labels on weakly
perturbed images, while the student F leverages strongly per-
turbed images for model optimization. In this work, we set
F̂ exactly the same as F for simplicity, following FixMatch.

3.2. Unified Perturbations for Images and Features

Apart from semi-supervised classification, the methodol-
ogy in FixMatch has swept across a wide range of research
topics and achieved booming success, such as semantic seg-
mentation [19, 28, 81], object detection [42, 57, 66], unsuper-
vised domain adaptation [45], and action recognition [62,67].
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Figure 3. The two sub-frameworks, i.e., UniPerb and DusPerb, that
are integrated into our final UniMatch framework. The FP denotes
feature perturbation, which is a simple Dropout in this work.

Despite its popularity, its efficacy actually heavily depends
on delicately designed strong perturbations from researchers,
whose optimal combinations and hyper-parameters are time-
consuming to acquire. Besides, in some cases such as medi-
cal image analysis and remote sensing interpretation, it may
require domain-specific knowledge to figure out promising
ones. More importantly, they are completely constrained
at the image level, hindering the student model to maintain
multi-level consistency against more diverse perturbations.

To this end, in order to construct a broader perturbation
space, built on top of FixMatch, we propose to inject pertur-
bations on features of the weakly perturbed image xw. We
choose to separate different levels of perturbations into mul-
tiple independent feedforward streams, enabling the student
to achieve targeted consistency in each stream more directly.
Formally, a segmentation model f can be decomposed into
an encoder g and a decoder h. In addition to acquired pw

and ps in FixMatch, we also obtain pfp from an auxiliary
feature perturbation stream by:

ew = g(xw), (4)

pfp = h(P(ew)), (5)

where ew is extracted features of xw, and P denotes feature
perturbations, e.g., dropout or adding uniform noise.

Overall, as exhibited in Figure 3a, three feedforward
streams are maintained for each unlabeled mini-batch, which
are (i) the simplest stream: xw → f → pw, (ii) im-
age-level strong perturbation stream: xs → f → ps,
and (iii) our introduced feature perturbation stream:
xw → g → P → h → pfp. In this way, the student
model is enforced to be consistent to unified perturbations
at both image and feature level. We name it as UniPerb for
convenience. The unsupervised loss Lu is formulated as:

Lu =
1

Bu

∑
1(max(pw) ≥ τ)

(
H(pw, ps)+H(pw, pfp)

)
. (6)

It should be noted that, we do not aim at proposing a novel
feature perturbation approach in this work. Actually, an

Algorithm 1 Pseudocode of UniMatch in a PyTorch-like style.

# f: network, composed of an encoder g and a decoder h
# aug_w/aug_s: weak/strong image-level perturbations

for x in loader_u:
# one weak view and two strong views as input
x_w = aug_w(x)
x_s1, x_s2 = aug_s(x_w), aug_s(x_w)

# feature of weakly perturbed image
feat_w = g(x_w)
# perturbed feature
feat_fp = nn.Dropout2d(0.5)(feat_w)

# four predictions from four forward streams
p_w, p_fp = h(torch.cat((feat_w, feat_fp))).chunk(2)
p_s1, p_s2 = f(torch.cat((x_s1, x_s2))).chunk(2)

# hard (one-hot) pseudo mask
mask_w = p_w.argmax(dim=1).detach()

# loss from image- and feature-level perturbation
criterion = nn.CrossEntropyLoss()
p_s = torch.cat((p_s1, p_s2))
loss_s = criterion(p_s, mask_w.repeat(2, 1, 1))
loss_fp = criterion(p_fp, mask_w)

# final unsupervised loss
loss_u = (loss_s + loss_fp) / 2.0

embarrassingly simple channel dropout (nn.Dropout2d
in PyTorch) is well-performed enough. Furthermore, dis-
tinguished from recent work [41] that mixes three levels
of perturbations into a single stream, we highlight the ne-
cessity of separating perturbations of different properties
into independent streams, which is evidenced in our ablation
studies. We believe that, image-level perturbations can be
well complemented by feature-level perturbations.

3.3. Dual-Stream Perturbations

Motivated by the tremendous advantages of image-level
strong perturbations, we wish to fully explore them. We
are inspired by recent progress in self-supervised learning
and semi-supervised classification, that constructing multi-
ple views for unlabeled data as inputs can better leverage the
perturbations. For instance, SwAV [8] proposes a novel tech-
nique called multi-crop, enforcing the local-to-global
consistency among a bag of views of different resolutions.
Likewise, ReMixMatch [5] produces multiple strongly aug-
mented versions for the model to learn.

Therefore, we wonder whether such a simple idea can
also benefit our semi-supervised semantic segmentation. We
make a straightforward attempt that, rather than feeding a
single ps into the model, we independently yield dual-stream
perturbations (xs1 , xs2 ) from xw by strong perturbation pool
As. Since As is pre-defined but non-deterministic, xs1 and
xs2 are not equal. This dual-stream perturbation framework
(DusPerb) is displayed in Figure 3b.

Intriguingly, such a minor modification brings consistent
and substantial improvements over original FixMatch under
all partition protocols in our segmentation scenario, estab-
lishing new state-of-the-art results. It is validated in our
ablation studies that, the performance gain is non-trivial, not
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Pascal 92 183 366 732 1464

SupBaseline 44.0 52.3 61.7 66.7 72.9
PC2Seg [78] [ICCV’21] 56.9 64.6 67.6 70.9 72.3

UniMatch | RN-50 71.9 72.5 76.0 77.4 78.7

SupBaseline 45.1 55.3 64.8 69.7 73.5
CPS [13] [CVPR’21] 64.1 67.4 71.7 75.9 -

ST++ [68] [CVPR’22] 65.2 71.0 74.6 77.3 79.1
U2PL [61] [CVPR’22] 68.0 69.2 73.7 76.2 79.5

PS-MT [41] [CVPR’22] 65.8 69.6 76.6 78.4 80.0
PCR [65] [NeurIPS’22] 70.1 74.7 77.2 78.5 80.7

UniMatch | RN-101 75.2 77.2 78.8 79.9 81.2

Table 2. Comparison with SOTAs on the Pascal. Labeled images
are from the original high-quality training set. The integers (e.g.,
92) in the head denote the number of labeled images. Except ST++,
the training resolution of other works is larger than us: 512 vs. 321.

credited to a doubled unlabeled batch size. We conjecture
that regularizing two strong views with a shared weak view
can be regarded as enforcing consistency between these two
strong views as well. Intuitively, suppose kw is the classi-
fier weight of the class predicted by xw, and (qs1 , qs2) are
features of images (xs1 , xs2), then in our adopted cross en-
tropy loss, we maximize qj · kw against

∑C
i=0 qj · ki, where

j ∈ {s1, s2}, and ki is classifier weight of class i. It thus
can be deemed that we are also maximizing the similarity
between qs1 and qs2 . So the InfoNCE loss [59] is satisfied:

Ls1↔s2 = − log
exp(qs1 · qs2)∑C
i=0 exp(qj · ki)

, s.t., j ∈ {s1, s2}, (7)

where qs1 and qs2 are positive pairs, while all other classifier
weights except kw are negative samples.

Hence, it shares the spirits of contrastive learning [11, 12,
25], which is able to learn discriminative representations and
has been proved to be highly meaningful to our task [40, 61].

3.4. Our Holistic Framework: UniMatch

To sum up, we present two key techniques to leverage
unlabeled images, namely UniPerb and DusPerb. Our holis-
tic framework (dubbed as UniMatch) that integrates both
approaches is illustrated in Figure 2b. The corresponding
pseudocode is provided in Algorithm 1. In comparison with
FixMatch, two auxiliary feedforward streams are maintained,
one for perturbation on features of xw, and the other for
multi-view learning of (xs1 , xs2). The final unsupervised
term is computed as:

Lu =
1

Bu

∑
1(max(pw) ≥ τ)·(

λH(pw, pfp) +
µ

2

(
H(pw, ps1) + H(pw, ps2)

))
. (8)

It is clarified that feature-level and image-level perturbation
streams have their own properties and advantages, thus their

Pascal ResNet-50 ResNet-101

1/16 1/8 1/4 1/16 1/8 1/4

SupBaseline 61.2 67.3 70.8 65.6 70.4 72.8
CAC [35] 70.1 72.4 74.0 72.4 74.6 76.3

ST++ [68] 72.6 74.4 75.4 74.5 76.3 76.6

UniMatch | 321 74.5 75.8 76.1 76.5 77.0 77.2

SupBaseline 62.4 68.2 72.3 67.5 71.1 74.2
CPS [13] 72.0 73.7 74.9 74.5 76.4 77.7

U2PL [61] 72.0 75.1 76.2 74.4 77.6 78.7
PS-MT [41] 72.8 75.7 76.4 75.5 78.2 78.7

UniMatch | 513 75.8 76.9 76.8 78.1 78.4 79.2

SupBaseline† 67.7 71.9 74.5 70.6 75.0 76.5
U2PL† [61] 74.7 77.4 77.5 77.2 79.0 79.3

UniMatch† | 513 78.1 79.0 79.1 80.9 81.9 80.4

Table 3. Comparison with SOTAs on the Pascal. Labeled images
are sampled from the blended training set. The 321 and 513 denote
the training resolution. The fractions in the head denote the propor-
tion of labeled images. We reproduce the RN-50 results of U2PL.
†: Prioritizing selecting labeled images from the high-quality set.

loss weights λ and µ are equally set as 0.5. The H in Lu is a
regular cross-entropy loss. The confidence threshold τ is set
as 0.95 for all datasets except Cityscapes, where τ is 0.

4. Experiments
4.1. Implementation Details

For a fair comparison with prior works, we mainly adopt
DeepLabv3+ [10] based on ResNet [26] as our segmentation
model. The ResNet uses an output stride of 16 across all
experiments to save memory and speed up training. During
training, each mini-batch is composed of 8 labeled images
and 8 unlabeled images. The initial learning rate is set as
0.001, 0.005, and 0.004 for Pascal, Cityscapes, and COCO
respectively, with a SGD optimizer. The model is trained for
80, 240, and 30 epochs under a poly learning rate scheduler.
We assemble the color transformations from ST++ [68] and
CutMix [71] to form our As. A raw image is resized between
0.5 and 2.0, cropped, and flipped to obtain its weakly aug-
mented version xw. The training resolution is set as 321, 801,
and 513 for these three datasets. By default, we adopt a chan-
nel dropout of 50% probability (nn.Dropout2d(0.5) in
PyTorch) as our feature perturbation, which is inserted at the
intersection of the encoder and decoder.

4.2. Comparison with State-of-the-Art Methods

Pascal VOC 2012. The Pascal dataset [17] is originally
constructed of 1464 high-quality training images. Later,
it is expanded by extra coarse annotations from the SBD
[24], resulting in 10582 training images. There are three
protocols to select labeled images: (1) (the most convincing
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Cityscapes 1/16 1/8 1/4 1/2
(186) (372) (744) (1488)

SupBaseline 63.3 70.2 73.1 76.6
PS-MT [41] [CVPR’22] - 75.8 76.9 77.6
U2PL‡ [61] [CVPR’22] 70.6 73.0 76.3 77.2

UniMatch | RN-50 75.0 76.8 77.5 78.6

SupBaseline 66.3 72.8 75.0 78.0
CPS [13] [CVPR’21] 69.8 74.3 74.6 76.8
AEL [28] [NeurIPS’21] 74.5 75.6 77.5 79.0

PS-MT [41] [CVPR’22] - 76.9 77.6 79.1
U2PL [61] [CVPR’22] 74.9 76.5 78.5 79.1
PCR [65] [NeurIPS’22] 73.4 76.3 78.4 79.1

UniMatch | RN-101 76.6 77.9 79.2 79.5

Table 4. Comparison with SOTAs on the Cityscapes. ‡: U2PL
ResNet-50 results are reproduced on the same splits as ours.

COCO 1/512 1/256 1/128 1/64 1/32
(232) (463) (925) (1849) (3697)

SupBaseline 22.9 28.0 33.6 37.8 42.2
PseudoSeg [81] 29.8 37.1 39.1 41.8 43.6

PC2Seg [78] 29.9 37.5 40.1 43.7 46.1

UniMatch 31.9 38.9 44.4 48.2 49.8

Table 5. Comparison with SOTAs on the COCO with Xception-65.

one) select from the original high-quality training images,
(2) select from the blended 10582 training images, and (3)
prioritize the high-quality set, and if not enough, select from
the expanded set. Under the first protocol (Table 2), our
UniMatch outperforms existing methods tremendously. We
even adopt a smaller training size of 321 than most recent
works of 512. In addition, for the other two protocols (Table
3), we train UniMatch at two resolutions of 321 and 513. It
still gains remarkable improvements over prior works.
Cityscapes. This dataset [15] focuses on urban scenes, con-
sisting of 2975 high-resolution training images and 500 vali-
dation images. We follow two techniques in previous SOTA
works [13,28,41,61,65], i.e., sliding window evaluation and
online hard example mining (OHEM) loss. Results under
ResNet-50 and ResNet-101 are reported in Table 4. Our
results are consistently much better than existing best ones.
MS COCO. The COCO dataset [39], composed of 118k/5k
training/validation images, is a quite challenging benchmark,
containing 81 classes to predict. Therefore, it was rarely
explored before in semi-supervised works of segmentation.
However, in view of the seemingly saturate performance
on the Pascal and Cityscapes, we believe it will be more
practical to evaluate our algorithms on this dataset. We adopt
exactly the same setting and backbone (Xception-65 [14])
as PseudoSeg [81]. As evidenced by Table 5, our UniMatch
significantly surpasses all available methods by 1.4%-4.5%.

Method 92 183 366 732 1464

SOTA Before⋆ 65.2 71.0 74.6 77.3 79.1
FixMatch (Fig 2a) 63.9 73.0 75.5 77.8 79.2

UniPerb (Fig 3a) 72.0 75.8 77.5 79.3 80.1
DusPerb (Fig 3b) 72.1 75.9 78.3 78.1 79.6

UniMatch (Fig 2b) 75.2 77.2 78.8 79.9 81.2
Gain (△) ↑ 11.3 ↑ 4.2 ↑ 3.3 ↑ 2.1 ↑ 2.0

Table 6. Effectiveness of each component on the Pascal. ⋆: Bor-
rowed from results in Table 2, that use the same size (321) as us.
The better results between our reproduced FixMatch and previous
SOTAs are underlined. The △ is measured against FixMatch.

Method 1/16 1/8 1/4 1/2

FixMatch (Baseline) 72.6 75.7 76.8 78.2
UniMatch (Ours) 75.0 76.8 77.5 78.6

Gain (△) ↑ 2.4 ↑ 1.1 ↑ 0.7 ↑ 0.4

Table 7. Comparison between our UniMatch and our reproduced
strong FixMatch baseline on the Cityscapes dataset.

Method 1/512 1/256 1/128 1/64 1/32

FixMatch 26.8 32.8 37.7 44.1 47.5
UniMatch 31.9 38.9 44.4 48.2 49.8
Gain (△) ↑ 5.1 ↑ 6.1 ↑ 6.7 ↑ 4.1 ↑ 2.3

Table 8. Comparison between our UniMatch and our reproduced
strong FixMatch baseline on the COCO dataset.

4.3. Ablation Studies

Unless otherwise specified, we mainly conduct ablation
studies on the Pascal dataset extensively with ResNet-101.
Improvement over the FixMatch baseline. We conduct
this most important ablation in Table 6, 7, and 8 for all the
three benchmarks respectively. It is clear that our UniMatch
consistently improves the strong baseline by a large margin.
Individual effectiveness of UniPerb and DusPerb. In Ta-
ble 6, we first demonstrate that our reproduced FixMatch is
a strong competitor against previous SOTA methods. Then
built upon FixMatch, both UniPerb and DusPerb facilitate
this baseline by a large margin. Lastly, our overall UniMatch
that integrates both components achieves the best results.
The improvement of diverse perturbations is non-trivial.
Our UniMatch utilizes three views, i.e., one feature pertur-
bation view and dual image perturbation views. We wish to
validate that constructing diverse perturbations is beneficial,
much better than blindly maintaining three parallel image
perturbations. So we design a simple counterpart that adopts
three image-level strong perturbation views. As displayed in
Table 9, our UniMatch is consistently superior to it, indicat-
ing the improvement brought by UniMatch is not credited to
blindly increasing views, but the diversity counts.
The improvement of dual-stream perturbation is non-
trivial. It might have been noticed that in our DusPerb,
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Figure 4. Ablation study on the efficacy of various feature pertur-
bation strategies in our UniPerb method.

Method 92 183 366 732 1464

Dual Image Views 72.1 75.9 78.3 78.1 79.6
Triple Image Views 71.6 76.4 78.4 78.8 79.6

UniMatch 75.2 77.2 78.8 79.9 81.2

Table 9. Ablation study on the non-trivial improvement of diverse
perturbations. Our UniMatch is consistently superior to its counter-
part which directly uses triple strongly perturbed images as inputs.

Method 92 183 366 732 1464

2× Batch Size 62.5 74.5 77.1 77.8 79.3
2× Epochs 61.8 73.6 76.2 77.6 79.4

DusPerb 72.1 75.9 78.3 78.1 79.6

Table 10. Ablation study on the necessity of dual-stream perturba-
tions, compared with doubling the batch size or training epochs.

the number of unlabeled images in each mini-batch is dou-
bled, since each unlabeled image is strongly perturbed twice.
Hence, it might be argued that the improvement is due to
larger batch size. Considering this concern, we further carry
out an ablation study on the FixMatch with a twice larger
batch size (keep the same training iterations) or a twice
longer training epochs. As presented in Table 10, although
increasing the unlabeled batch size or lengthening training
epochs improves the FixMatch baseline in most cases, they
are still evidently lagging behind our DusPerb.
The necessity of separating image- and feature-level per-
turbations into independent streams. PS-MT [41] mixes
three levels of perturbations into a single feedforward stream,
however, we claim that separating perturbations with dif-
ferent properties into independent streams will enable the
model to achieve the targeted invariance more directly, and
also avoid a single stream being excessively hard. To confirm
it, we inject the dropout on the features of strongly perturbed
images, forming a stream of hybrid view. As shown is Ta-
ble 11, one hybrid view is inferior to one image perturbation
view. Moreover, we attempt to adopt two hybrid views, but
it is still worse than our separate practice in UniPerb.

0.85 0.90 0.95 (Default) 0.98 0.99
Confidence threshold

72

75

78

81

m
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Figure 5. Ablation study on different values of confidence threshold
in our UniMatch method on the Pascal dataset. Numbers in the
legend denote the number of labeled images.

Method 92 183 366 732 1464

FixMatch 63.9 73.0 75.5 77.8 79.2
Single Hybrid View 63.4 72.8 75.0 76.9 78.7

Dual Hybrid Views 71.8 74.6 76.8 78.4 79.6
UniPerb 72.0 75.8 77.5 79.3 80.1

Table 11. Ablation study on separating image- and feature-level
perturbations into independent streams.

IS FS 92 183 366 732 1464 1/16 1/8 1/4

2 1 75.2 77.2 78.8 79.9 81.2 76.5 77.0 77.2
2 2 75.2 77.7 78.9 79.7 80.7 76.9 77.3 77.9
3 3 75.5 77.0 78.6 79.5 80.5 76.7 77.7 77.3
4 4 75.0 76.6 79.4 79.8 80.6 76.6 77.1 77.5

Table 12. The performance change with respect to the number of
image- and feature-level perturbation streams. IS stands for image-
level stream, while FS represents feature-level stream. The first
row (IS:2, FS:1) is our UniMatch approach.

More perturbation streams. We also attempt to increase
the number of image- and feature-level perturbation streams
in Table 12. It is observed that, increasing the perturbation
streams does not necessarily result in higher performance.
This also indicates that, the two image streams and one
feature stream in our UniMatch are well-performed enough.
Other feature perturbation strategies. We adopt a simplest
form of feature perturbation in our method, which is a chan-
nel dropout. There are some other options available, such
as uniform noise and virtual adversarial training (VAT) [48].
We follow [49] to set the hyper-parameters in these strategies.
And all these options are compared in Figure 4. It can be
concluded that a channel dropout performs best.
Value of the confidence threshold τ . We ablate this hyper-
parameter on the Pascal in Figure 5. It is observed that τ of
0.95 works best for the Pascal.
Locations to insert feature perturbations. Our feature
perturbations are injected at the intersection of the encoder
and decoder. Previous work [49] also performs perturbations
to the input of final classifier. We compare the two locations
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Method
WHU-CD LEVIR-CD

5% 10% 20% 40% 5% 10% 20% 40%

S4GAN [47] 18.3 / 96.69 62.6 / 98.15 70.8 / 98.60 76.4 / 98.96 64.0 / 97.89 67.0 / 98.11 73.4 / 98.51 75.4 / 98.62
SemiCDNet [50] 51.7 / 97.71 62.0 / 98.16 66.7 / 98.28 75.9 / 98.93 67.6 / 98.17 71.5 / 98.42 74.3 / 98.58 75.5 / 98.63

SemiCD [3] 65.8 / 98.37 68.1 / 98.47 74.8 / 98.84 77.2 / 98.96 72.5 / 98.47 75.5 / 98.63 76.2 / 98.68 77.2 / 98.72

SupBaseline 48.3 / 97.41 60.7 / 98.03 69.7 / 98.55 69.5 / 98.47 67.5 / 98.12 73.4 / 98.50 75.2 / 98.63 77.7 / 98.79
UniMatch | PSPNet 77.5 / 99.06 78.9 / 99.10 82.9 / 99.26 84.4 / 99.32 75.6 / 98.62 79.0 / 98.83 79.0 / 98.84 78.2 / 98.79

SupBaseline 54.1 / 97.56 60.9 / 97.86 68.4 / 98.34 76.2 / 98.87 69.3 / 98.28 76.0 / 98.69 77.6 / 98.79 80.5 / 98.94
UniMatch | DeepLab 80.2 / 99.15 81.7 / 99.22 81.7 / 99.18 85.1 / 99.35 80.7 / 98.95 82.0 / 99.02 81.7 / 99.02 82.1 / 99.03

Table 13. Results on the WHU-CD [31] and LEVIR-CD [9] datasets. Numbers in each cell denote changed-class IOU and overall accuracy,
respectively. The fraction (e.g., 5%) denotes the proportion of labeled images. We try both PSPNet and DeepLabv3+ with ResNet-50.

Encoder

shared SUB Decoder

Encoder

Figure 6. A typical framework in change detection task. Features
extracted by the encoder are subtracted to be fed into the decoder.

Location 92 183 366 732 1464

Decoder-Classifier 64.5 72.2 76.9 77.9 79.5
En-Decoder (Default) 72.0 75.8 77.5 79.3 80.1

Table 14. Ablation study on the location to insert feature perturba-
tions in our UniPerb method.

in Table 14. It is observed that our practice is much better.

4.4. Application to More Segmentation Scenarios

We have validated our UniMatch in common benchmarks
of natural images. Here, we further carry out extra exper-
iments in two highly practical and critical scenarios, i.e.,
remote sensing interpretation and medical image analysis. In
both scenarios, unlabeled data is easy and cheap to acquire,
while manual annotations are extremely expensive.
Remote Sensing Interpretation. We focus on the change
detection task in this scenario, due to its wide application
demand and strict labeling requirement. Given a pair of
bi-temporal images, i.e., two images for the same region but
of different times, the changed regions are required to be
highlighted. It can be simply deemed as a binary segmenta-
tion problem. A typical framework is illustrated in Figure 6.
Following the latest work SemiCD [3], we validate our Uni-
Match on two popular benchmarks, i.e., WHU-CD [31] and
LEVIR-CD [9]. We attempt on two networks, i.e. PSPNet
and DeepLabv3+, both based on ResNet-50. As shown in
Table 13, UniMatch outperforms SemiCD [3] impressively.
Medical Image Analysis. We follow a recent work [44] to
investigate semi-supervised medical image segmentation on
the ACDC dataset [4]. As shown in Table 15, our UniMatch

Method 1 case 3 cases 7 cases

SupBaseline 28.5 41.5 62.5
UA-MT [69] N/A 61.0 81.5

CPS [13] N/A 60.3 83.3
CNN & Trans [44] N/A 65.6 86.4

UniMatch (Ours) 85.4 88.9 89.9

Table 15. Comparison with SOTAs on ACDC [4] with 1/3/7 labeled
cases. There are 70 training cases in total. Results are measured by
Dice Similarity Coefficient (DSC) metric averaged on 3 classes.

improves the SOTAs significantly, e.g., +23.3% given 3 la-
beled cases. Our result of mere 1 labeled case even surpasses
others with 3 cases, and is on par with others using 7 cases.

For implementation details of these two scenarios, please
refer to our open-sourced code.

5. Conclusion
We investigate the promising role of FixMatch in semi-

supervised semantic segmentation. We first present that
equipped with proper image-level strong perturbations, a
vanilla FixMatch can indeed outperform the SOTAs. In-
spired by this, we further strengthen its perturbation practice
from two perspectives. On one hand, we unify image- and
feature-level perturbations to form a more diverse perturba-
tion space. On the other, we design a dual-stream pertur-
bation technique to fully exploit image-level perturbations.
Both components facilitate our baseline significantly. The fi-
nal method UniMatch improves previous results remarkably
in all the natural, medical, and remote sensing scenarios.
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