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Abstract

Rapid development in automatic vector extraction from
remote sensing images has been witnessed in recent years.
However, the vast majority of existing works concentrate
on a specific target, fragile to category variety, and hardly
achieve stable performance crossing different categories. In
this work, we propose an innovative class-agnostic model,
namely TopDiG, to directly extract topological directional
graphs from remote sensing images and solve these issues.
Firstly, TopDiG employs a topology-concentrated node de-
tector (TCND) to detect nodes and obtain compact percep-
tion of topological components. Secondly, we propose a
dynamic graph supervision (DGS) strategy to dynamical-
ly generate adjacency graph labels from unordered nodes.
Finally, the directional graph (DiG) generator module is
designed to construct topological directional graphs from
predicted nodes. Experiments on the Inria, CrowdAl,
GID, GF2 and Massachusetts datasets empirically
demonstrate that TopDiG is class-agnostic and achieves
competitive performance on all datasets.

1. Introduction

Vector maps that are represented as topological direc-
tional graphs act as the foundation to various remote sens-
ing applications, such as property mapping, cartographic
generalization and disaster assessment [21,25]. Traditional
manual or semi-automatic vector map generation from re-
mote sensing images is extremely time-consuming and ex-
pensive. In contrast, state-of-the-art approaches, including
segmentation-based [4, 9, 13, 30], contour-based [, 16,22,
29,35,39] and graph generation [3,26, 3 1-34,41] methods
have typically developed to achieve automation. Howev-
er, these works are concentrated on a specific category and
can hardly achieve satisfactory performance when applied
to other classes.

Among aforementioned approaches, a dominant
paradigm is the segmentation-based method. It follows the

Figure 1. Visual illustrations of current and our approaches on
different targets. In contrast with PolyWorld and Enhanced iCurb
which only serve a specific category, TopDiG is class-agnostic and
can tackle both polygon-shape and line-shape targets. Yellow dots
refer to detected nodes while blue arrowed lines indicate the direc-
tional topological connection between node pairs (best viewed by
zooming in).

segmentation-vectorization pipeline and requires sophis-
ticated vectorization procedures to binary masks. Typical
examples that fall in this scope include PolyMapper [14],
Frame Field [9] and ASIP [13]. These methods retrieve
coarse raster maps with missing details and unavoidably de-
mand elaborate post-processing. Another paradigm mainly
adopts contour-based instance segmentation approaches,
which usually refine initial contours to obtain vector maps.
For instance, Polygon-RNN [6], Polygon-RNN++ [1],
Deep Snake [22], SharpContour [39] and E2EC [35] can
delineate the outlines of polygon-shape targets, such as
buildings and water bodies. However, it depends on the
quality of initial contours and can barely be reliable on
line-shape targets, such as roads. The flourishing graph
generation methods construct the topological graph based
on nodes and their connectivity. A few of such approaches,
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including RoadTracer [3], VecRoad [26], iCurb [33] and
RNGDet [32] focus on line-shape targets by iteratively
predicting nodes in a one-by-one manner. Nevertheless,
these methods suffer from the low efficiency, the accumu-
lated node connectivity error, and the poor reliability to
polygon-shape targets. Alternatively, the connectivity of
the nodes also can be recovered from adjacency matrix as
introduced in PolyWorld [41] and csBoundary [31]. These
workflows successfully produce visually pleasing vector
topology without irregular edges and overly smoothed
corners. Unfortunately, for intricate or sinuous structures,
such methods lead to severe topological errors.

Given the class-dependent characteristics, existing work-
s can hardly apply to other classes as illustrated in Fig-
ure 1. For example, PolyWolrd [41] (Figure 1(a)) is able
to extract well-vectorized buildings but fails to delineate
road networks. By contrast, Enhanced iCurb [34], orig-
inally concerning line-shape road curbs, is challenged by
polygon-shape buildings (Figure 1(b)). They adopt the sim-
ilar scheme where topological graphs are constructed by
connecting detected nodes and aim at either polygon-shape
or line-shape targets, respectively. Nevertheless, neither of
them can achieve stable and reliable topological directional
graphs regardless of varying categories. In this work, we
propose a class-agnostic approach named TopDiG which
can robustly obtain precise topological directional graphs
both for polygon-shape and line-shape targets (Figure 1(c)).
The underlying innovation is that the TopDiG formulates
diverse topological structures as directional graphs and nar-
rows the gap among categorical varieties. Besides, we fur-
ther develop a dynamic graph supervision strategy that en-
ables flexible arrangement of the predicted nodes and stabi-
lizes performance crossing different categories. Our contri-
butions are summarized as follows:

A Dynamic Graph Supervision (DGS) strategy is de-
signed to generate the ground truth of adjacency matrix
in an on-the-fly manner during training. Instead of utiliz-
ing the adjacency matrix labels established from ordered
ground truth nodes [31, 36,41], we dynamically generate
such labels according to real-time unordered predict nodes
in each training epoch. Our strategy alleviates the compul-
sory assumption that the sequence of predict nodes must be
in consistent with real ones as in PolyWorld [41]. Conse-
quently, DGS can facilitate the connectivity of unordered
nodes and ease the demand for the accurate positions of
nodes. We further propose a novel topology-concentrated
node detector (TCND) to guarantee an appropriate density
of predicted nodes. Unlike PolyWorld [41] and csBound-
ary [31] that mainly employ semantic contexts, TCND con-
centrates on compact geometric textures via the meticu-
lous perception of topological components, which boosts
the topological APLS score by approximately 8.06%.

A Class-agnostic Topological Directional Graph Extrac-

tion (TopDiG) approach is proposed to extract polygon-
shape and line-shape targets, i.e., buildings, water bodies
and roads, from remote sensing images. In contrast with
existing approaches that can only serve a specific catego-
ry, TopDiG directly performs class-independent vector map
generation from diverse targets. We introduce TCND and
directional graph (DiG) generator module to retain the ge-
ometrical shapes, i.e., polygon-shape and line-shape tar-
gets. Our method is performed in an end-to-end manner
and does not require initial contours or additional post-
processing. The TopDiG outperforms the segmentation-
based, contour-based and previous graph generation ap-
proaches, achieving a competitive performance with bound-
ary mloU scores of 68.39%, 72.51%, 74.51% and 75.28%
on Inria, CrowdAlI, GID and GF2 datasets, respective-
ly. Moreover, TopDiG can construct reliable topological di-
rectional graphs, with the application to Massachusetts
dataset, achieving an average path length score (APLS) of
64.60%.

2. Related Work

Segmentation-based methods. Conventional pipeline
for segmentation-based methods, such as TDAC [10],
ASIP [13], Frame Field [9] and BT-RoadNet [38], utilizes
a two-step strategy to vectorize the segmentation masks.
They first obtain the irregular binary mask and subsequent-
ly achieve the topological graph by simplifying the raster
map. Wei ef al. [30] obtained polygon-shape buildings
from binary masks by the Douglas-Peucker algorithm [8]
and refine these polygons with handcraft post-processing.
ASIP [13] method designs sophisticated post-processing to
polygonize low-complexity buildings at a cost of low effi-
ciency. TDAC [10] incorporates the active contour mod-
el (ACM) to refine initial segmentation outlines of build-
ings in an end-to-end fashion and reports superior accuracy
over past approaches. Girard et al. [9] employed a learn-
able frame field and proposed active skeleton model (AS-
M) to regularize coarse raster buildings, leading to more
regular outlines. Zhou er al. [38] followed a coarse-to-fine
framework to improve contiguousness of extracted road net-
work masks. Some other studies dedicate to vectorization
techniques, such as GGT model [5] which employs self-
attention mechanism to generate vectorized roads from bi-
nary masks. However, these methods usually overly depend
on correctness of predicted segmentation maps, require ded-
icated post-processing steps and suffer from serious topo-
logical errors when applied to complicated boundaries [31].

Contour-based methods. Unlike the previous
segmentation-based approaches, contour-based methods di-
rectly extract vector topology of targets from input im-
ages. In general, initial contours are first obtained by ob-
ject detectors or segmentation methods. Subsequently, final
topological graphs are refined from initial contours. Ear-
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ly works usually design a fixed template of the initial con-
tour for each instance. For example, focusing on natu-
ral images, semi-automatic method Curve-GCN [16] uses
manually drawn circles surrounding objects as initial con-
tours and then trains a graph convolution network (GCN)
to refine them. Wei et al. [29] extended CurveGCN to the
vector extraction of building boundaries from aerial images
by replacing manually drawn circles with predicted object
bounding boxes. DeepSnake [22] transforms object bound-
ing boxes to octagons and achieves better accuracy. Recent
works replace constant handcraft templates of initial con-
tours with coarse contours to enhance the performance of
refinement. For instance, Zhang et al. [35] proposed E2EC
workflow that gradually refines segmentation coarse bound-
aries and outperforms past approaches. SharpContour [39]
iteratively deforms categorical nodes sampled from raster
contours to obtain sharper object outlines. Suffering from
unavoidable dependence in initial contours, these contour-
based methods can scarcely apply to the line-shape target-
s, such as roads. Besides, the deformation paths of the
contours seriously pare the initialization strategy, which re-
duces the upper bound of the performance.

Graph generation methods. Approaches of this cate-
gory extract vector topology by predicting nodes and their
connections. A portion of them concentrate on delineat-
ing road graphs by exploring sequential nodes. RoadTrac-
er [3] iteratively moved a fixed distance from current nodes
based on predicted directions and action decisions started
by a manually selected node. VecRoad [26] employs auto-
selected starting nodes and flexible step distance to reduce
topology errors and human laboring. RNGDet [32] em-
ploys Transformer [28] and can predicts arbitrary number
of adjacencies of the current nodes to increase the efficien-
cy of training and inference. Another portion of graph gen-
eration methods firstly extracts nodes of targets and then
connects possible node pairs. APGA [40], aiming to ex-
tract building boundaries, successfully learns a direction
map to construct the relationships among building corner-
s. PPGNet [36] learns an adjacency matrix of predicted
junctions by a convolution neural network (CNN) to in-
fer topological graphs of line segments and is capable of
handling multiple instances simultaneously. Instead of C-
NN, Transformer [28] is introduced to predict the adjacen-
cy matrix in csBoundary [31] and achieves better perfor-
mance in road boundary detection from city-scale aerial im-
ages. PolyWorld [41] concatenates predicted clockwise and
counter-clockwise adjacency matrices of building corners
and employs Sinkhorn algorithm [7,23,24] to produce final
graphs. Nevertheless, existing graph generation approach-
es mainly consider a specific class and few works can re-
sist categorical varieties. Instead, we propose TopDiG, a
class-agnostic framework that achieves reliable topological
directional graphs crossing different categories.

3. Our Approach

As illustrated in Figure 2, the TopDiG can directly ex-
tract topological directional graphs from remote sensing im-
ages. TopDiG is trained in an end-to-end manner, which
consists of TCND, DGS and DiG generator modules. In
Section 3.1, we introduce TCND that focuses on concrete
geometric textures to facilitate the detection of nodes and
meticulous feature perception of topological components.
Section 3.2 introduces DGS strategy that dynamically gen-
erates graph labels and is conducted in an on-the-fly man-
ner. We further introduce the DiG generator (Section 3.3)
which constructs the directional topological graph with self-
attention network.

3.1. Topology-Concentrated Node Detector

The detection of nodes requires a compact representa-
tion of topological components to resist semantic turbulence
from complicated contexts in remote sensing images. Tra-
ditionally, the previous works, such as PolyWolrd [4 1] and
csBoundary [31], utilize R2UNet [2] and FPN [15] to guar-
antee the compactness of the nodes. These methods are o-
riginate from semantic segmentation networks which over-
ly emphasize semantic contexts instead of topological com-
ponents. Figure 3 presents the attentive maps on different
categories including water bodies and roads. R2UNet and
FPN can perceive semantic contexts but neglect topological
components, such as water boundaries and road centerlines.
Inspired by DFF [12], we design the TCND that can con-
centrate on topological components and provide compact
responses on the potential node positions. The TCND guar-
antees the density and topology of these nodes and thereby
it can tackle varying classes of targets.

(a) Image (b) FPN (c) R2UNet (d) TCND
Figure 3. Visual comparison of attentive maps for FPN, R2UNet
and TCND on different categories. The topological components
can be well perceived by TCND.

Figure 2(a) depicts the architecture of TCND. TCND re-
ceives an input image I¢*H#>*W where H and W are the
height and width of the image and C is the number of
channels. Firstly, the image is processed by a CNN en-
coder which contains four stages and each stage yields a
sideout heatmap with the size of H x W. All sideouts are
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Figure 2. The pipeline of TopDiG. Given an input image, TCND extracts nodes and visual descriptors. DGS dynamically generates
adjacency graph labels in an on-the-fly manner. DiG generator predicts adjacency graphs recording connectivity of nodes. The top row
presents the entire pipeline of TopDiG; The bottom row illustrates details of TCND, DGS and DiG generator.

then concatenated as the side fusion S**#*W which is fed
into a feature block. This block enhances low-level topo-
logical features and produces a D-dimensional feature map
FDPxHXW = Besides, a weighting block receives the last
sideout and yields the weighting map W4*H>W (o bal-
ance the semantic contexts. After that a merging block is
conducted to fuse the weighting map and feature map. The
feature map is decoded by a detection head and obtains the
intermediate heatmap Hi,or 7", Next, the weight-
ing map W4HXW s multiplied by Hypnzer 7 *W and

added up along the channel dimension to yield the heatmap
Hf IxXHxW )

Subsequently, the heatmap H ;**#>*W is filtered by a

non-maximum suppression (NMS) algorithm [4 1] to extract
N nodes donated as v = {v; | i = 1,2,..., N}, v € RVx2
where each node v; = {(z;, y;)}. Unlike previous approach-
es that simply extract /N most relevant peaks from heatmap,
we adopt an additional distance tolerance @ to force the N
nodes in an appropriate density. This strategy eliminates
the overly clustered nodes and thereby topological com-
ponents can be well preserved. Based on obtained nodes,
visual descriptors d = {d; | i = 1,2,..., N}, d € RVxP
(each d; € RP) that capture local features are extracted
from FPXH*W by orid sampling method [22, 31, 35,41].
The v is employed to generate adjacency graph labels in
DGS module (see Section 3.2) while the d, together with v
are fed into DiG generator (see Section 3.3) to predict node
connections. The predicted heatmap is regressed with the
mean square error (MSE) loss:

Enode = M(h - 5)2’ (1)
where M (o) donates absolute mean, h represents ground
truth heatmap while the h refers to the predicted one.

3.2. Dynamic Graph Supervision
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(a) Previous works
Figure 4. Visual comparison of the adjacency graph label gen-
erated by the previous works and DGS. (a) Previous works gen-
erate the adjacency graph labels from ordered ground truth nodes
and cluster the topological connections near diagonal, degenerat-
ing their resistance to categorical varieties. By contrast, the DGS
illustrated in (b) and (c) makes full use of the unordered detected
nodes to dynamically establish the adjacency graph labels, which
augments the class-agnostic ability on both polygon-shape and
line-shape targets.

Conventional approaches [31,41] generate the adjacen-
cy graph label from ordered ground truth nodes. They re-
sort the order of predicted nodes to be consistent with the
ground truth, which cripples the ability to tackle nodes with
an unpredictable order in practice. Alternatively, we pro-
pose to utilize an order-independent adjacency graph that is
dynamically generated from detected nodes in an on-the-fly
manner. As shown in Figure 2(b), given the unordered ex-
tracted nodes v and ordered ground truth nodes v* = {v;* |
Jj=1,2,..., N} where each node v,;* = {(z;*,y;*)}, we
adopt v;* as the reference to iteratively find the nearest v;
and the matching relationship is exclusive. Based on the
matched pairs, we construct the adjacency graph label from
extracted nodes v without rearranging their order. Those
uncoupled nodes are recorded in the diagonal of adjacency
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graph. This adjacency graph is served as supervision of the
DiG generator. As illustrated in Figure 4, our DGS retain-
s the order of predicted nodes and dynamically produces
adjacency graph labels. Figure 4(a) and Figure 4(b) both
aim at polygon-shape targets, previous works [31,41] gen-
erate labels with overly clustered distribution while DGS
produces randomly scattered ones. Moreover, DGS can ap-
ply the same scheme to different categories (Figure 4(b) and
Figure 4(c)), which permits class-agnostic applications on
topological directional graph extraction.

3.3. Directional Graph Generator

DiG generator predicts a directional adjacency graph to
connect extracted nodes. We design a transformer-based
DiG generator that can capture long-term dependencies a-
mong numerous nodes. This enables each node to search
potential adjacencies in the entire node set. Consequently,
DiG generator can seek out sufficient node connections to
splice the topological graphs.

The pipeline of the DiG generator is illustrated in Fig-
ure 2(c). Receiving visual descriptors d and detected n-
odes v, the DiG generator firstly concatenates each coupled
d; and v; to embedded descriptors de,,p € RN *(D+2),
A multi-layer perception (MLP) is then utilized to encode
the d.,,, and produce the D’-dimensional initial descriptors
dini € RVXD' Afterwards, the d;p;; is fed into a connec-
tion network that consists of M transformer encoder layers
to yield final descriptors d fina; € RN*D', Following the
common practice [31,32,41], we adopt the self-attention
transformer as below:

T

: QK

Attention(Q, K, V) = softmax( i

where (), K and V' are query, key and value vectors which

are three dy;n. encoded by individual linear projections.
dy, refers to the dimension of d fipq1.

Two parallel graph heads receive the d f;,4; and predict
two directional adjacency graphs A € RY*Y as well as
B € RV*N| These two graphs are added up to export the
final adjacency graph A fnq € RY*Y, which indicates the
directional connections of nodes. The predicted adjacency
graph is supervised by a binary cross-entropy loss :

v, @

Lgraph = —(plog(p) + (1 —p)log(l —p)), (3)

where p represents the predicted adjacency graph and p is
the adjacency graph label.

4. Implementation Details

Network architecture. TopDiG adopts ResNet50 [11]
as the CNN encoder. The dimension of feature map
FPXHXW and visual descriptors d is set as D = 64 while
that of initial descriptors d;y;; and final descriptors d f;y,41

is D' = 768. The MLP in DiG generator module consists
of two fully-connected layers. In terms of the connection
network, we sequentially stack M = 2 transformer encoder
layers which contain h = 12 parallel heads. When tackling
the polygon-shape targets, we apply Sinkhorn [7] algorithm
to optimize the final adjacency graph A t;,4; as suggested
in [23,41].

Training. TopDiG is trained in an end-to-end man-
ner by adding up the losses of TCND and DiG generator:
Liotal = Lnode + Lgraph- Instead of training from the
scratch, we suggest first pretraining TCND with separate
Lnode and then training the full model when the TCND de-
tects sufficient nodes. The parameter NV is set to 320 and
® is set as 2 (see Section 5.2). In addition, augmentations
w.r.t rotation, flipping, Gaussian blur and changes in HSV
(Hue, Saturation and Value) space are randomly applied to
training images. Other hyperparameters for each specific
dataset can be found in Section 5.3. We train TopDiG with
the automatic mixed precision (AMP) strategy provided by
PyTorch framework. The computing platform is powered
by Ubuntu 18.04 and equipped with NVIDIA Tesla V100
GPU as well as Intel Xeon Gold 5218 CPU @ 2.3GHz.

Inference. We recover the topological directional graph
by connecting the nodes from predicted adjacency graph
A tinqr. The connections of nodes that are represented in
the diagonal of A ¢;,,; are discarded.

5. Experiments
5.1. Datasets and metrics

Datasets. Buildings, water bodies and roads are cho-
sen as representative targets in remote sensing images. We
evaluate TopDiG on five datasets, namely Inria Aerial Im-
age Labeling dataset (Inria), Crowd Al Mapping Challenge
dataset (CrowdAlI), five-classes Gaofen Image Dataset
(GID), a Gaofen-2 satellite water bodies dataset (GF'2)
and Massachusetts Roads Dataset (Massachusetts).

e Inria [18] dataset is designed for building extraction
and provides 170/ 10 aerial images for train/val.
Their size is 5000x5000 pixels and the spatial reso-
lution is 0.3m. We crop raw images to the size of
300x300 pixels and remove tiles without buildings.

e CrowdAlI [20] is an urban landscapes dataset that
consists of 280741 and 60317 images for train and
val. The size of all images is 300x300 pixels. In
this work, we validate models on its small val set that
contains 1820 images.

e GID [27] dataset is designed for multi-class semantic
segmentation tasks and consists of 150 images with the
spatial resolution of 4m. We crop raw images to 31500
tiles with the size of 512x512 pixels. These images are
randomly split to 25500, 6000 for train and val,
respectively.
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Figure 5. Ablation studies on the effects of NV and &. (a) F1"7°
and mIoU"?" of different detected nodes number N; (b) F1/%°
and mIoU"” of tolerance distance ¢ between two detected n-
odes. Notably, F1"?° and mIoU"”” achieve the highest scores
when N and @ are set to 320 and 2, respectively.

e GF2 [37] dataset serves the semantic segmentation
of water bodies and is composed of 13787 images for
training and 5949 images for validation. The size of
all train and val images is 512x512 pixels with
the spatial resolution is 0.5m.

e Massachusetts [19] is a publicly accessible road-
s dataset which is composed of 1108 and 14 aerial
images for train and val. The raw images are
1500 1500 pixels and have the resolution of 1m. We
crop all images to the size of 300x300 pixels follow-
ing the t rain and val partition and filter out samples
without roads.

Metrics. To evaluate the performances of extracted
buildings and water bodies, standard pixel-wise metrics,
namely pixel accuracy (PA™%), F1 score (F1™*") and
mean intersection over union (mIoU"**) are measured us-
ing ground truth segmentation labels and predicted topo-
logical directional graphs. For buildings and water bodies,
those masks are the interiors of their contours. Roads pre-
dictions of Massachusetts are not evaluated by the afore-
mentioned metrics since our method directly obtains road
centerlines.

The quality of topological directional graphs is evaluat-
ed for buildings, water bodies and roads by comparing the
predicted graphs to ground truth topological graphs. We e-
valuate the topological quality by dilating ¢ pixels (see Sec-
tion 5.2) around boundary or centerlines for polygon-shape
and line-shape targets, respectively. We employ topology-
wise metrics of PA"P°, F17°, mIoU"”° and average path
length similarity (APLS).

5.2. Diagnostic Experiment

To quantitatively analyse and verify the design of each
module in the TopDiG, ablation studies are conducted on
the Inria dataset.

Effects of NV and #. We investigate influences of pa-
rameters N and @ (Section 3.1) with F1'?° and mIoU""°.
F1'7° balances the precision and recall to examine the
quality of boundary topology. mIoU™” is a metric that
evaluates the correctness of predicted boundaries within a
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Figure 6. mIoU"”° with respect to different 5. For fair compar-
ison, we adopt the dilating factor § = 5 for all experiments.
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67.26
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40.03
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Table 1. Analysis of different node detectors on Inria dataset.
The three rows show scores of TopDiG when adopting FPN, TC-
ND w/o or w/ weighting block.

buffer area. Quantitative comparisons are illustrated in Fig-
ure 5. First, increasing of N is not prone to boost the
accuracy of predictions (Figure 5(a)). When N is set as
320, F1'7° and mIoU"”” reach the peak with 78.47 % and
68.39 %, respectively. Otherwise leading to decreases in all
metrics. Second, enlarging ¢ from O to 2 gains improve-
ment in the predicted topological directional graphs (Fig-
ure 5(b)). Both F1°?° and mIoU"”° increase from 78.24
%, 68.15 % to 78.47 %, 68.39 %, respectively. This demon-
strates that node density controlled by ¢ = 2 is reasonable
to recover topological graphs from detected nodes.

Effects of different node detectors. We also evaluate
the design of TCND (Section 3.1) by comparing with FP-
N. As shown in Table 1, TCND outperforms FPN on all
metrics. By concentrating on compact geometric textures
via the meticulous perception on topological components,
it leads to 1 %, 1.13 % and 8.06% increases in mIoU"**,
mIoU"”’ and APLS, respectively. Moreover, we observe
that topology-wise metrics mIoU"”° gains more improve-
ment than pixel-wise mIoU™**_ This indicates that TCND
facilitates the preservation of topological components and
reduces incorrect connections among extracted nodes.

Impact of weighting block. We further estimate the ef-
fects of weighting block designed in TCND (Section 3.1).
Table 1 shows that the weighting block is crucial for bal-
ance of semantic contexts. Excluding weighting block sig-
nificantly deteriorates the performance of TopDiG. Conse-
quently, the mIoU™** and mIoU"”” scores decline from
84.56% and 68.39% to 40.88% and 43.74%, respectively.
This demonstrates that semantic attention provided by the
weighting block is necessary to assist the compact percep-
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Memory & Speed Accuracy
vz H ehed ‘ #Params (Mb) MACs (Gb) FPS mloU™F mloUtor
+1 Heads 11.49 39.70 45.42
2 Layers || +4 Heads 41.04 144.75 12.20 40.10 45.81
+8 Heads 12.98 40.84 46.40
+2 Layers 41.04 144.75 14.49 40.66 46.81
12 Heads || +4 Layers 55.21 149.28 12.35 38.93 45.36
+6 Layers 69.39 153.82 11.76 39.76 4525

Table 2. Comparisons of different )/ and h on Inria. Obvious-
ly, TopDiG achieves the best performance and efficiency when M
and h are set as 2 and 12, respectively.

tion of target topology.

Impact of dilating factor. We exterminate the dilating
factor 0 to search the most reasonable dilating pixels for
topological evaluation. As shown in Figure 6, DeepLab-
V3, PolyWorld and TopDiG depict the same tendency that
mIoU"”’ progressively increases with 6. By contrast, s-
core of E2EC reaches the inflection point at § = 5 and tends
to drop afterwards. For fair comparison, we uniformly set
dilating factor § to 5 for all experiments.

Influences to memory consumption and speed.
We evaluate the total number of parameters, multi-
ply—accumulate operations (MAC) and frame per second
(FPS) with respect to M and h. For efficiently evaluating
these metrics, models are assessed on randomly selected
100 / 40 images for train / val. Table 2 indicates that
fewer transformer encoder layers in DiG generator decreas-
es steadily in parameters and MAC, while more heads bring
faster inference speed and higher mIoU™"°. Consequently,
we choose M =2 and h = 12 as the default value.

5.3. Comparison with state-of-the-art methods

Extensive experiments are conducted to compare
TopDiG with segmentation-based, contour-based and graph
generation methods. Quantitative comparisons on Inria,
CrowdAlI, GID, GF2 and Massachusetts datasets
are reported in Table 3. TopDiG achieves the best perfor-
mance in most cases and displays the reliability on both
polygon-shape and line-shape targets. Evaluations on dif-
ferent datasets are as follows:

Inria. When training TopDiG on the Inria dataset,
we set the learning rate as le-4 and adopt an Adam opti-
mizer without learning rate scheduler. Early stop strategy
is utilized as long as no improvements in Lyodes Lgraphs
mIoU™* and mIoU'”°. As shown in Table 3, TopDiG
outperforms all other models on topological quality metrics
by at least 1.91% mIoU"’ and 7.61% APLS. In addi-
tion, it also reports competitive scores on pixel-wise met-
rics such as the 84.56% mIoU™**. These assessments im-
ply that TopDiG can precisely extract topology of polygon-
shape targets from aerial images. Figure 7 illustrates some
visualized predictions of TopDiG.

CrowdAlI On this dataset, early stop strategy is also
adopted and all other settings were the same as the Inria
dataset. TopDiG is solidly superior over all three com-

petitors on the correctness of predicted topological graphs
correctness with highest 59.61% APLS. Moreover, com-
pared with DeepLabV3, TopDiG also gains completive per-
formance on pixel-wise metrics with 90.23% mIoU™**.
Though DeepLabV3 reports decent scores on segmentation,
it unavoidably suffers from jagged contours and requires
post-processing for polygon simplification. By contrast,
TopDiG can directly extract compact topological direction-
al graphs from images and perverse their completeness.

GID. Experiment settings and strategy on Inria are
also adopted on GID. TopDiG surpasses E2EC and Poly-
World by 24.26% and 8.28% mIoU™**, respectively. Fur-
thermore, it outperforms all three other methods in terms of
topology metrics by at least 3.96% mIoU*”° and 5.10%
APLS. Figure 7 visually presents a few of examples for
the water bodies, which clearly demonstrate the topologi-
cal preservation ability of TopDiG in delineating details of
polygon-shape targets.

GF2. We set the same hyperparameters as those in
Inria. Images in the GF2 dataset have higher spatial reso-
lution and are better annotated than GID dataset. Obvious-
ly, TopDiG presents superior scores over other approach-
es on extracting topological directional graphs. Accord-
ing to quantitative evaluation for GF2, TopDiG suppresses
other methods by at least 0.16% mIoU.”"**. In terms of
topology quality, TopDiG notably outperforms DeepLab-
V3, E2EC and PolyWorld by approximately 4.58%, 7.45%,
8.08% mIoU"" and at least 3.41% APLS.

Massachusetts. We adopt AdamW [17] optimizer
and set initial learning rate as 2e-3. We also utilize the early
stop strategy and all other settings are the same as Inria.
Table 3 reveals the performance of TopDiG with 70.66%
mIoU™°, which is better than that of DeepLabV3 and
PolyWorld. TopDiG further achieves much better APLS
than other methods with the score of 64.60%. This indicates
that TopDiG can tackle line-shape tagetes and construct pre-
cise topological graphs. Figure 7 shows a few of representa-
tive examples and illustrates the ability of TopDiG on both
polygon-shape and line-shape targets. This demonstrates
that TopDiG is class-agnotic and can extract topological di-
rectional graphs regardless of categories.

6. Conclusion

In this work, we introduce a class-agnostic framework
called TopDiG to extract topological directional graph-
s from remote sensing images. TopDiG formulates both
polygon-shape and line-shape targets as directional graphs
and can tackle targets regardless of their classes. We design
TCND to perceive compact topological components and ex-
tract nodes with the appropriate density. In addition, the
DGS strategy is proposed to dynamically generate adjacen-
cy graph labels in an on-the-fly manner and stimulates the
prediction of nodes connections. Finally, the DiG genera-
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Figure 7. Visual examples of TopDiG on the Inria, GID and Massachusetts datasets.

Pixel-wise Metrics Topology-wise Metrics

Daach H LEhed ‘PA"“”’“T F1masks mloUmaskq | pAteros Fl1t°Pot mloUtoP°1 | APLST
DeepLabV3 | 94.04 91.93 8545 93.20 76.77 6648 | 4048

Inria [20] E2EC 88.46 70.85 63.64 92.69 65.83 58.61 | 39.46
PolyWorld | 90.82 83.54 7341 92.92 73.60 6347 | 40.03

Ours 94.70 91.32 84.56 93.88 78.47 68.39 | 48.09

DeepLabV3 | 97.08 95.74 91.92 9482 83.49 7406 | 48.07

CrowdAL [20] E2EC 95.62 92.11 86.72 93.70 78.67 69.13 | 36.05
PolyWorld | 93.67 90.29 82.89 93.21 7771 6743 | 51.73

Ours 96.45 94.77 90.23 94,51 82.20 7251 | 59.61

DeepLabV3 | 99.05 97.34 94.92 99.23 7927 7055 | 80.14

eI [27] E2EC 98.85 76.03 69.68 99.16 73.90 6632 | 76.17
PolyWorld | 98.07 90.05 85.66 99.17 73.65 66.04 | 75.84

Ours 99.17 96.52 93.94 99.39 82.56 7451 | 8524

DeepLabV3 | 9924 98.14 96.40 99.11 79.46 7070 | 77.90

GF2[37] E2EC 99.25 81.29 75.37 99.01 75.96 67.83 | 74.34
PolyWorld | 98.55 94.68 91.10 98.98 75.51 67.20 | 73.63

Ours 99.40 98.20 96.56 99.28 83.57 7528 | 8131

DeepLabV3 B 5 = 95.75 77.94 68.30 | 51.40
Massachusetts [19] || PolyWorld - - - 94.28 76.56 66.59 | 47.74
Ours - - - 95.16 80.33 70.66 | 64.60

Table 3. Quantitative comparisons for TopDiG and segmentation-

based, contours-based, graph generation approaches. We evaluate

the pixel-wise and topology-wise metrics on Inria, CrowdAI, GID, GF2 and Massachusetts datasets. Red and blue represent the
top-2 scores. We use 1 and 1 to indicate the increases crossing all datasets.

tor is introduced to recover precise topological graphs from
nodes. Extensive experiments demonstrate that TopDiG
achieves competitive performance on the prediction of topo-
logical directional graphs. Our future work will concentrate
on multi-class extraction and the lightweight design. We
wish this work provides meritorious insights for the vector
topology extraction field.
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