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Abstract

Can we train a hybrid discriminative-generative model
with a single network? This question has recently been
answered in the affirmative, introducing the field of Joint
Energy-based Model (JEM) [17, 48], which achieves high
classification accuracy and image generation quality si-
multaneously. Despite recent advances, there remain two
performance gaps: the accuracy gap to the standard soft-
max classifier, and the generation quality gap to state-of-
the-art generative models. In this paper, we introduce a
variety of training techniques to bridge the accuracy gap
and the generation quality gap of JEM. 1) We incorporate
a recently proposed sharpness-aware minimization (SAM)
framework to train JEM, which promotes the energy land-
scape smoothness and the generalization of JEM. 2) We
exclude data augmentation from the maximum likelihood
estimate pipeline of JEM, and mitigate the negative im-
pact of data augmentation to image generation quality. Ex-
tensive experiments on multiple datasets demonstrate our
SADA-JEM achieves state-of-the-art performances and out-
performs JEM in image classification, image generation,
calibration, out-of-distribution detection and adversarial
robustness by a notable margin. Our code is available at
https://github.com/sndnyang/SADAJEM .

1. Introduction
Deep neural networks (DNNs) have achieved state-of-

the-art performances in a wide range of learning tasks, in-
cluding image classification, image generation, object de-
tection, and language understanding [21,30]. Among them,
energy-based models (EBMs) have seen a flurry of inter-
est recently, partially inspired by the impressive results of
IGEBM [10] and JEM [17], which exhibit the capability of
training generative models within a discriminative frame-
work. Specifically, JEM [17] reinterprets the standard soft-
max classifier as an EBM and achieves impressive perfor-
mances in image classification and generation simultane-
ously. Furthermore, these EBMs enjoy improved perfor-
mance on out-of-distribution detection, calibration, and ad-

versarial robustness. The follow-up works (e.g., [18, 48])
further improve the training in terms of speed, stability and
accuracy.

Despite the recent advances and the appealing property
of training a single network for hybrid modeling, training
JEM is still challenging on complex high-dimensional data
since it requires an expensive MCMC sampling. Further-
more, models produced by JEM still have an accuracy gap
to the standard softmax classifier and a generation quality
gap to the GAN-based approaches.

In this paper, we introduce a few simple yet effective
training techniques to bridge the accuracy gap and gener-
ation quality gap of JEM. Our hypothesis is that both per-
formance gaps are the symptoms of lack of generalization
of JEM trained models. We therefore analyze the trained
models under the lens of loss geometry. Figure 1 visu-
alizes the energy landscapes of different models by the
technique introduced in [34]. Since different models are
trained with different loss functions, visualizing their loss
functions is meaningless for the purpose of comparison.
Therefore, the LSE energy functions (i.e., Eq. 4) of dif-
ferent models are visualized. Comparing Figure 1(a) and
(b), we find that JEM converges to extremely sharp lo-
cal maxima of the energy landscape as manifested by the
significantly large y-axis scale. By incorporating the re-
cently proposed sharpness-aware minimization (SAM) [12]
to JEM, the energy landscape of trained model (JEM+SAM)
becomes much smoother as shown in Figure 1(c). This
also substantially improves the image classification accu-
racy and generation quality. To further improve the en-
ergy landscape smoothness, we exclude data augmentation
from the maximum likelihood estimate pipeline of JEM,
and visualize the energy landscape of SADA-JEM in Fig-
ure 1(d), which achieves the smoothest landscape among all
the models considered. This further improves image gen-
eration quality dramatically while retaining or sometimes
improving classification accuracy. Since our method im-
proves the performance of JEM primarily in the framework
of sharpness-aware optimization, we refer it as SADA-JEM,
a Sharpness-Aware Joint Energy-based Model with single
branched Data Augmentation.
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(d) SADA-JEM

Figure 1. Visualizing the energy landscapes [34] of different models trained on CIFAR10. Note the dramatic scale differences of the
y-axes, indicating SADA-JEM identifies the smoothest local optimum among all the methods considered.

Our main contributions are summarized as follows:

1. We investigate the energy landscapes of different mod-
els and find that JEM leads to the sharpest one, which
potentially undermines the generalization of trained
models.

2. We incorporate the sharpness-aware minimization
(SAM) framework to JEM to promote the energy land-
scape smoothness, and thus model generalization.

3. We recognize the negative impact of data augmenta-
tion in the training pipeline of JEM, and introduce two
data loaders for image classification and image gen-
eration separately, which improves image generation
quality significantly.

4. Extensive experiments on multiple datasets show that
SADA-JEM achieves the state-of-the-art discrimina-
tive and generative performances, while outperforming
JEM in calibration, out-of-distribution detection and
adversarial robustness by a notable margin.

2. Related Work
Energy-Based Models (EBMs) [33] stem from the ob-
servation that any probability density function pθ(x) can
be expressed via a Boltzmann distribution as

pθ(x) =
exp (−Eθ(x))

Z(θ)
, (1)

where Eθ(x) is an energy function that maps input x ∈ X
to a scalar, and Z(θ) =

∫
x
exp (−Eθ(x)) is the normaliz-

ing constant w.r.t. x (also known as the partition function).
Ideally, an energy function should assign low energy values
to the samples drawn from data distribution, and high values
otherwise.

The key challenge of EBM training is to estimate the
intractable partition function Z(θ), and thus the maximum
likelihood estimate of parameters θ is not straightforward.

Specifically, the derivative of the log-likelihood of x ∈ X
w.r.t. θ can be expressed as

∂ log pθ(x)

∂θ
=Epθ(x)

[
∂Eθ(x)

∂θ

]
−Epd(x)

[
∂Eθ(x)

∂θ

]
, (2)

where pd(x) is the real data distribution (i.e., training
dataset), and pθ(x) is the estimated probability density
function, sampling from which is challenging due to the in-
tractable Z(θ).

Prior works have developed a number of sampling-
based approaches to sample from pθ(x) efficiently, such
as MCMC and Gibbs sampling [25]. By utilizing the gra-
dient information, Stochastic Gradient Langevin Dynamics
(SGLD) [46] has been employed recently to speed up the
sampling from pθ(x) [10, 17, 39]. Specifically, to sample
from pθ(x), the SGLD follows

x0 ∼ p0(x),

xt+1 = xt − α

2

∂Eθ(x
t)

∂xt
+ αϵt, ϵt ∼ N (0,1), (3)

where p0(x) is typically a uniform distribution over [−1, 1],
whose samples are refined via a noisy gradient decent with
step-size α over a sampling chain.

Joint Energy-based Model (JEM) [17] reinterprets the
standard softmax classifier as an EBM and trains a sin-
gle network for hybrid discriminative-generative modeling.
Specifically, Grathwohl et al. [17] were the first to recog-
nize the logits fθ(x)[y] from a standard softmax classi-
fier can be considered as an energy function over (x, y),
and thus the joint density can be defined as pθ(x, y) =
efθ(x)[y]/Z(θ), where Z(θ) is an unknown normalizing
constant (regardless of x or y). Then the density of x can be
derived by marginalizing over y: pθ(x) =

∑
y pθ(x, y) =∑

y e
fθ(x)[y]/Z(θ). Subsequently, the corresponding en-

ergy function of x can be identified as

Eθ(x)=− log
∑
y

efθ(x)[y]=−LSE(fθ(x)), (4)
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where LSE(·) denotes the Log-Sum-Exp function.
To optimize the model parameter θ, JEM maximizes the

logarithm of joint density function pθ(x, y):

log pθ(x, y) = log pθ(y|x) + log pθ(x), (5)

where the first term denotes the cross-entropy objective for
classification, and the second term can be optimized by the
maximum likelihood learning of EBM as shown in Eq. 2.

However, JEM suffers from high training instability even
with a large number of SGLD sampling steps K (e.g.,
K = 20). After divergence, JEM requires to restart the
SGLD sampling with a doubled K. Recently, JEM++ [48]
proposes a number of new training techniques to improve
JEM’s accuracy, training stability and speed altogether, in-
cluding the proximal gradient clipping, YOPO-based SGLD
sampling acceleration, and informative initialization. Fur-
thermore, JEM++ enables batch norm [27] in the backbone
models, while IGEBM and JEM have to exclude batch norm
due to the high training instability incurred by it.

Flat Minima and Generalization A great number of pre-
vious works have investigated the relationship between the
flatness of local minima and the generalization of learned
models [6,12,29,32,34,45]. Now it is widely accepted and
empirically verified that flat minima tend to give better gen-
eralization performance. Based on these observations, sev-
eral recent regularization techniques are proposed to search
for the flat minima of loss landscapes [6,12,32,45]. Among
them, the sharpness-aware minimization (SAM) [12] is a
recently introduced optimizer that demonstrates promising
performance across all kinds of models and tasks, such as
ResNet [21], Vision Transformer (ViT) [6] and Language
Modeling [3]. Furthermore, score matching-based meth-
ods [26,41–43] also explore the behaviour of flat minima in
generative models and learn unnormalized statistical mod-
els by matching the gradient of the log probability density
of the model distribution to that of the data distribution. To
the best of our knowledge, we are the first to explore the
sharpness-aware optimization to improve both the discrim-
inative and generative performance of EBMs.

3. SADA-JEM
3.1. Sharpness-Aware Minimization

To train a generalizable model, SAM [12] proposes to
search for model parameters θ whose entire neighborhoods
have uniformly low loss values by optimizing a minimax
objective:

min
θ

max
∥ϵ∥2≤ρ

Ltrain(θ + ϵ) + λ∥θ∥22, (6)

where ρ is the radius of the L2-ball centered at model pa-
rameters θ, and λ is a hyperparameter for L2 regularization

on θ. To solve the inner maximization problem, SAM em-
ploys the Taylor expansion to develop an efficient first-order
approximation to the optimal ϵ∗ as:

ϵ̂(θ) = argmax
∥ϵ∥2≤ρ

Ltrain(θ) + ϵT∇θLtrain(θ)

= ρ∇θLtrain(θ)/∥∇θLtrain(θ)∥2, (7)

which is a scaled L2 normalized gradient at the current
model parameters θ. Once ϵ̂ is determined, SAM updates
θ based on the gradient ∇θLtrain(θ)|θ+ϵ̂(θ) + 2λθ at an
updated parameter location θ + ϵ̂. More recently, Kwon et
al. [32] propose an Adaptive SAM (ASAM) with the objec-
tive:

min
θ

max
∥T−1

θ ϵ∥2≤ρ
Ltrain(θ + ϵ) + λ∥θ∥22, (8)

where Tθ is an element-wise operator Tθ =
diag(|θ1|, |θ2|, . . . , |θk|) with θ = [θ1, θ2, . . . , θk]. Similar
to SAM, the Taylor expansion is leveraged in ASAM to
derive a first-order approximation to the optimal ϵ∗ with
ϵ̂(θ) = ρ Tθ sign(∇Ltrain(θ)).

As we observed from Figure 1(a) and (b), models trained
by JEM converge to very sharp local optima, which poten-
tially undermines the generalization of JEM. We therefore
incorporate the framework of SAM to the original training
pipeline of JEM [17] in order to improve the generalization
of trained models. Specifically, instead of the traditional
maximum likelihood training, we optimize the joint density
function of JEM in a minimax objective:

max
θ

min
∥ϵ∥2≤ρ

log p(θ+ϵ)(x, y) + λ∥θ∥22. (9)

For the outer maximization that involves log pθ(x), SGLD
is again used to sample from pθ(x) as in the original JEM.

3.2. Image Generation without Data Augmentation

Data augmentation is a critical technique in supervised
deep learning and self-supervised contrastive learning [5,
31]. Not surprisingly, JEM also utilizes data augmentation
in its training pipeline, such as horizontal flipping, random
cropping, and padding. Specifically, let T denote a data
augmentation operator. The actual objective function of
JEM is

log pθ(x, y) = log pθ(y|T (x)) + log pθ(T (x)), (10)

which shows that JEM maximizes the likelihood function
pθ(T (x)) rather than pθ(x). From our empirical studies,
horizontal flipping has little impact on the image generation
quality, while cropping and padding play a bigger role be-
cause the generated images contain cropping and padding
effects, which hurt the quality of generated images. This is
consistent with GANs [14], which observed that any aug-
mentation that is applied to the training dataset will get in-
herited in the generated images. Based on this observation,
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Algorithm 1 SADA-JEM Training: Given network fθ,
SGLD step-size α, SGLD noise σ, SGLD steps K, replay
buffer B, reinitialization frequency γ, SAM noise bound ρ,
and learning rate lr

1: while not converged do
2: Sample x+ and y from training dataset
3: Sample x̂0 ∼ B with probability 1 − γ, else x̂0 ∼

p0(x)
4: for t ∈ [1, 2, . . . ,K] do
5: x̂t = x̂t−1 − α · ∂E(x̂t−1)

∂x̂t−1
+ σ · N (0, I)

6: end for
7: x− = StopGrad(x̂K)
8: Lgen(θ) = E(x+)− E(x−)
9: L(θ) = Lclf(θ) + Lgen(θ) with Lclf(θ) =

xent(fθ(x), y)
10: # Apply SAM optimizer as following:
11: Compute gradient ∇θL(θ) of the training loss
12: Compute ϵ̂(θ) with ρ as in Eq. 7
13: Compute gradient g = ∇θL(θ)|θ+ ˆϵ(θ)

14: Update model parameters: θ = θ − lr · g
15: Push x− to B
16: end while

we exclude the data augmentation from pθ(T (x)) and only
retain the data augmentation for classification given its per-
vasive success in image classification. To this end, our final
objective function of SADA-JEM becomes:

log pθ(x, y) = log pθ(y|T (x)) + log pθ(x), (11)

where the first term is calculated using a mini-batch with
data augmentation, and the second term is calculated using a
mini-batch without data augmentation, which can be imple-
mented efficiently by using two data loaders. StyleGAN2-
ADA [28] proposes a type of “non-leaking” data augmenta-
tion to prevent the discriminator from overfitting, and thus
improves the image quality. However, from our empirical
studies, we find that this technique hurts the performance of
both image quality and classification accuracy.

Algorithm 1 provides the pseudo-code of SADA-JEM
training, which follows a similar design of JEM [17] and
JEM++ [48] with a replay buffer. For brevity, only one
real sample and one generated sample are used to optimize
model parameters θ. But it is straightforward to general-
ize the pseudo-code below to a mini-batch setting, which
we use in the experiments. It is worth mentioning that
we adopt the Informative Initialization in JEM++ to ini-
tialize the Markov chain from p0(x), which enables the
batch norm and plays a crucial role in the tradeoff between
the number of SGLD sampling steps K and overall per-
formance, including the classification accuracy and training
stability.

4. Experiments

We train SADA-JEM with the Wide-ResNet 28-10 [49]
backbone on CIFAR10 and CIFAR100, and evaluate its per-
formance on a set of discriminative and generative tasks, in-
cluding image classification, generation, calibration, out-of-
distribution (OOD) detection, and adversarial robustness.
Our code is built on top of JEM++ [48] 1 (given its im-
proved performance over JEM) and SAM 2. For a fair com-
parison, our experiments largely follow the settings of JEM
and JEM++, with details provided in the supplementary ma-
terial. All our experiments are conducted using PyTorch on
a single Nvidia RTX GPU.

4.1. Hybrid Modeling

We first compare the performance of SADA-JEM with
state-of-the-art hybrid models, stand-alone discriminative
models, and generative models on CIFAR10 and CI-
FAR100, with the results reported in Table 1 and 2. In-
ception Score (IS) [40] and Fréchet Inception Distance
(FID) [23] are employed to measure the quality of generated
images. It can be observed from Table 1 that SADA-JEM
(K =5) outperforms JEM (K =20) and JEM++ (M =20)
in classification accuracy (95.5%) and the FID score (9.41)
on CIFAR10, where the FID score of SADA-JEM is a dra-
matic improvement over that of JEM/JEM++’s (37.1). Sim-
ilarly, Table 2 shows that the improvement of SADA-JEM
over JEM/JEM++ on CIFAR100 is also significant: the FID
score is improved from 33.7 to 14.4. Moreover, we find
that SADA-JEM is superior in training stability too. For in-
stance, SADA-JEM (K=5) outperforms JEM++ (M=20)
in classification accuracy, while exhibiting a much higher
training stability than JEM/JEM++ 3. Example images gen-
erated by SADA-JEM for CIFAR10 and CIFAR100 are pro-
vided in Figure 2.

(a) CIFAR10 (b) CIFAR100

Figure 2. Generated samples from SADA-JEM.
1https://github.com/sndnyang/jempp
2https://github.com/davda54/sam
3JEM (K=20) and JEM++ (M=5) can easily diverge at early epochs.
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Table 1. Results on CIFAR10

Model Acc % ↑ IS ↑ FID ↓
SADA-JEM (K=5) 95.5 8.77 9.41
SADA-JEM (K=10) 96.0 8.63 11.4
SADA-JEM (K=20) 96.1 8.40 13.1

Single Hybrid Model
IGEBM (K=60) [10] 49.1 8.30 37.9
JEM (K=20)* [17] 92.9 8.76 38.4
JEM++ (M=5)* [48] 91.1 7.81 37.9
JEM++ (M=10) [48] 93.5 8.29 37.1
JEM++ (M=20) [48] 94.1 8.11 38.0
JEAT [51] 85.2 8.80 38.2

Other EBMs
CF-EBM (K=50) [50] - - 16.7
ImCD (K=40) [9] - 7.85 25.1
DiffuRecov (K=30) [13] - 8.31 9.58
VAEBM (K=6) [47] - 8.43 12.2
VERA [18] 93.2 8.11 30.5

Other Models
Softmax 96.2 - -
Softmax + SAM 97.2 - -
SNGAN [37] - 8.59 21.7
StyleGAN2-ADA [28] - 9.74 2.92

* The training is unstable and regularly diverged.

Table 2. Results on CIFAR100

Model Acc % ↑ IS ↑ FID ↓
SADA-JEM (K=5) 75.0 11.63 14.4
SADA-JEM (K=10) 76.4 10.95 15.1
SADA-JEM (K=20) 77.3 10.78 19.9

JEM (K=20)* [17] 72.2 10.22 38.1
JEM++ (M=5)* [48] 72.1 8.05 38.9
JEM++ (M=10)* [48] 74.2 9.97 34.5
JEM++ (M=20)* [48] 75.9 10.07 33.7
VERA (α=100)* [18] 72.2 8.25 29.5
VERA (α=1)* [18] 48.7 7.84 25.1

Softmax 81.3 - -
Softmax + SAM 83.4 - -
SNGAN [37] - 9.30 15.6
BigGAN [4] - 11.0 11.7

* No official IS and FID scores are reported. We run the official code with
the default settings and report the results.

One interesting phenomenon we observed from our ex-
periments is that the image quality often drops as number of
SGLD sampling steps K increases, as shown in Figure 3(b).
A similar observation has been reported in IGEBM [10],
where the authors found that a large K can facilitate the

(a) Accuracy (b) FID (the lower the better)

Figure 3. The learning curves of SADA-JEM on CIFAR10 with
different SGLD sampling steps K.

convergence of SGLD to high likelihood modes of an en-
ergy landscape, but often leads to saturated images and thus
degraded image quality. Unlike IGEBM, SADA-JEM is a
hybrid model that trains one single network for image clas-
sification and generation. As we can see from Figure 3,
as K increases the classification accuracy of SADA-JEM
increases (insignificantly), while the image quality drops.
Therefore, it seems there is a performance trade-off between
classification accuracy and image generation quality, and
SADA-JEM’s performances on both tasks are not always
positively correlated after certain points (e.g., K). This is
an interesting observation that we believe is worthy of fur-
ther investigation.

4.2. Calibration

While modern classifiers are growing more accurate,
recent works show that their predictions could be over-
confident due to increased model capacity [19]. Typically,
the confidence of a model’s prediction can be defined as
maxy p(y|x) and is used to decide whether to output a pre-
diction or not. However, incorrect but confident predictions
can be catastrophic for safety-critical applications, which
necessitates calibration of uncertainty especially for models
of large capacity. As such, a well-calibrated but less ac-
curate model can be considerably more useful than a more
accurate but less-calibrated model.

In this experiment, all models are trained on the CI-
FAR10 dataset for a fair comparison. We compare the
Expected Calibration Error (ECE) score [19] of SADA-
JEM to those of the standard softmax classifier and JEM.
We utilize the reliability diagram to visualize the discrep-
ancy between the true probability and the confidence, with
the results shown in Figure 4. We find that the model
trained by SADA-JEM (K = 10) achieves a much smaller
ECE (2.04% vs. 4.2% of JEM and 5.5% of softmax clas-
sifier), demonstrating SADA-JEM’s predictions are better
calibrated than the competing methods. Similar to image
quality, we notice that a larger K also undermines the cali-
bration quality slightly. Due to page limit, more results are
relegated to the supplementary material.
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(a) Softmax (w/o BN) (b) JEM (K=20) (c) JEM++ (M=10) (d) SADA-JEM (K=10)

Figure 4. Calibration results on CIFAR10. The smaller ECE is, the better.

Table 3. OOD detection results. Models are trained on CIFAR10. Values are AUROC.

sθ(x) Model SVHN CIFAR10 Interp CIFAR100 CelebA

log pθ(x)

WideResNet [35] .91 - .87 .78
IGEBM [10] .63 .70 .50 .70

JEM (K=20) [17] .67 .65 .67 .75
JEM++ (M=20) [48] .85 .57 .68 .80

VERA [18] .83 .86 .73 .33
ImCD [9] .91 .65 .83 -

SADA-JEM (K=5) .91 .79 .90 .82
SADA-JEM (K=10) .95 .81 .90 .88
SADA-JEM (K=20) .98 .83 .92 .95

maxy pθ(y|x)

WideResNet .93 .77 .85 .62
IGEBM [10] .43 .69 .54 .69

JEM (K=20) [17] .89 .75 .87 .79
JEM++ (M=20) [48] .94 .77 .88 .90
SADA-JEM (K=5) .92 .77 .88 .81

SADA-JEM (K=10) .93 .78 .89 .78
SADA-JEM (K=20) .96 .80 .91 .84

4.3. Out-Of-Distribution Detection

Formally, the OOD detection is a binary classification
problem, which outputs a score sθ(x) ∈ R for a given
query x. The model should be able to assign lower scores
to OOD examples than to in-distribution examples such
that it can be used to distinguish OOD examples from in-
distribution ones. Following the settings of JEM [17], we
use the Area Under the Receiver-Operating Curve (AU-
ROC) [22] to evaluate the performance of OOD detection.
In our experiments, two score functions are considered: the
input density pθ(x) [38], and the predictive distribution
pθ(y|x) [22].

Input Density We can use the input density pθ(x) as
sθ(x). Intuitively, examples with low p(x) are considered
to be OOD samples. Quantitative results can be found in
Table 3 (top row), where CIFAR10 is the in-distribution
data, and SVHN, an interpolated CIFAR10, CIFAR100 and
CelebA are the out-of-distribution data, respectively. More-
over, the corresponding visualization are shown in Table 4.
As we can see, SADA-JEM performs better in distinguish-

ing the in-distribution samples from OOD ones, outper-
forming JEM, JEM++ and most of the other models by sig-
nificant margins.

Predictive Distribution Another useful OOD score func-
tion is the maximum probability from a classifier’s predic-
tive distribution: sθ(x) = maxy pθ(y|x). Hence, OOD
performance using this score is highly correlated with a
model’s classification accuracy. Table 3 (bottom row) re-
ports the results of this method. Again, SADA-JEM outper-
forms JEM and all the other models in majority of cases.

Table 3 (top row) also shows that JEM and JEM++ have
even worse performance than a standard classifier in OOD
detection. This is likely because both JEM and JEM++
maximize pθ(T (x)) with data augmentation T , which un-
desirably enlarges the span of estimated pθ(x) and makes
it less distinguishable to the OOD samples. In contrast,
VERA, ImCD, and SADA-JEM exclude the data augmen-
tation from their training pipelines, and consistently, they
all demonstrate improved OOD detection performance over
JEM and JEM++.
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JEM

cifar10
svhn

cifar10
cifar100

cifar10
celeba

JEM++ (M=10)

cifar10
svhn

cifar10
cifar100

cifar10
celeba

SADA-JEM (K=10)

cifar10
svhn

cifar10
cifar100

cifar10
celeba

Table 4. Histograms of log pθ(x) for OOD detection. Green corresponds to in-distribution dataset, while red corresponds to OOD dataset.

4.4. Robustness

DNNs are known to be vulnerable to adversarial exam-
ples [16, 44] in the form of tiny but sensitive perturbations
to the inputs that trick the model to yield incorrect predic-
tions. To mitigate this security threat posed by adversarial
examples, a variety of defense algorithms have been pro-
posed in the past few years to improve the robustness of
deep networks [1, 7, 11, 15, 20, 36]. Existing works [17, 24]
have verified empirically that JEM is more robust than the
softmax classifiers trained in standard procedures. Since
SADA-JEM promotes the smoothness of energy landscape,
it would be interesting to measure if SADA-JEM can also
improve model robustness.

The white-box PGD attack [36] under an L∞ or L2-
norm constraint is the most common approach to evaluate
the robustness of a classifier. However, Athalye et al. [2]
found that the defense methods using gradient obfusca-
tion always report overrated robustness, and the defense
can be overcome with minor adjustments to the standard
PGD attacks. Therefore, to better evaluate the robustness
of EBMs, Mitch Hill et al. [24] proposed the Expectation-
Over-Transformation (EOT) attack and Backward Pass Dif-
ferentiable Approximation (BPDA) attack specifically for
EBMs. We therefore employ these two attacks in our ex-
periments with the results reported in Figure 5.

As we can see, SADA-JEM achieves a similar robust-
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Figure 5. Adversarial robustness under the PGD attacks.

ness as JEM under the L∞ and L2 PGD attacks, while
both are more robust than the standard softmax classifiers.
Moreover, we find that a larger K undermines the robust-
ness significantly, even though it can boost the accuracy on
clean data. Similar observation has been reported by Yao et
al. [51], who found that EBM learns a smooth energy func-
tion around real data by increasing the energy of SGLD-
sampled points; however, a larger K can generate samples
of lower energy which are closer to real data distribution,
and thus leads to a sharper energy landscape around real
data after optimizing on both real and generated samples.
As such, the models trained with a larger K are less robust
than the ones with a smaller K. In addition, JEM (K = 20)
diverges regularly, and it needs to restart the training by
doubling K (e.g., K = 40), while SADA-JEM (K = 20)
is very stable. With a smaller K SADA-JEM achieves even
higher robustness than JEM (K = 20).
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4.5. Ablation Study

We study the impacts of SAM and data augmentation
(DA) to the performance of SADA-JEM on image classi-
fication and generation in this section. The results on CI-
FAR10 are reported in Table 5. It can be observed that
SAM can improve the classification accuracy and gener-
ation quality of JEM/JEM++, while the improvements on
classification accuracy are more pronounced. Secondly, by
further excluding data augmentation T from pθ(T (x)) of
JEM++, which leads to SADA-JEM, the FID score is im-
proved dramatically from 35.0 to 11.4. Prior works on
EBMs [17, 39, 48] include DA to their training pipelines to
stabilize the training. However, DA introduces the artifacts
to the training images, leading to foggy synthesized images.
As a result, by excluding DA, SADA-JEM optimizes on
pθ(x) and improves image generation quality significantly,
while still being very stable due to the SAM optimizer.
We further experiment replacing SAM in SADA-JEM with
the energy L2 regularization proposed in IGEBM [10] to
weakly regularize energy magnitudes of both positive and
negative samples. We found that the L2 regularization
fails to improve the classification accuracy and degrades the
training stability.

We also study the impact of the noise radius ρ to the per-
formance of SADA-JEM in image classification and gen-
eration, with the results reported in Table 6. It can be ob-
served that SAM with ρ = 0.2 achieves an overall good
performance in classification and image quality, and thus is
chosen as default in all our experiments.

Table 5. Ablation study of SADA-JEM. All the models are trained
on CIFAR10 with K = 10.

Ablation Acc% ↑ FID ↓
JEM 89.5 36.2
JEM +SAM 90.1 35.0
JEM++ 93.5 37.1
JEM++ +SAM 94.1 36.6
JEM++ w/o DA 93.6 12.9
JEM++ w/o DA +L2* 93.4 -
SADA-JEM 96.0 11.4

* It fails to generate realistic images after 110 epochs.

5. Limitations

It is challenging to train SGLD-based EBMs, including
IGEBM, JEM, JEM++ and SADA-JEM, on complex high-
dimensional data. IGEBM, JEM and many prior works have
investigated methods to stabilize the training of EBM, but
they require an extremely expensive SGLD sampling with a
large K. Our SADA-JEM can stabilize the training on CI-
FAR10 and CIFAR100 with a small K (e.g., K=5). How-
ever, when the image resolution scales up (e.g., from 32x32

Table 6. Ablation study of SADA-JEM on ρ. All the models are
trained on CIFAR10 with K = 10.

Ablation Acc % ↑ FID ↓

ASAM (ρ = 0.5) 94.2 12.1
ASAM (ρ = 1) 94.5 11.9
ASAM (ρ = 2) 94.8 11.7
ASAM (ρ = 4) 95.3 11.5
ASAM (ρ = 8) Diverged after 2nd epoch

SAM (ρ = 0.05) 94.8 10.9
SAM (ρ = 0.1) 95.5 11.4
SAM (ρ = 0.2) 96.0 11.4
SAM (ρ = 0.4) 95.1 14.1
SAM (ρ = 0.8) 91.9 19.5

to 224x224), SADA-JEM has to increase K accordingly to
improve image generation quality. Hence, the trade-off be-
tween generation quality and computational complexity still
limits the application of SADA-JEM to large-scale bench-
marks, including ImageNet [8].

Besides, the computation bottleneck of SADA-JEM is
not SAM as SAM is only used to optimize model param-
eters θ (the outer maximization in Eq. 9). Instead, the K
SGLD sampling steps (typically K = 10) is the most ex-
pensive operation (the inner minimization in Eq. 9). SAM
doubles the cost of θ optimization, which is insignificant
compared to K SGLD steps. Overall, the training speed
of SADA-JEM is comparable to JEM/JEM++. Therefore,
a more efficient sampling method is required to scale up
SADA-JEM to large-scale applications.

6. Conclusion
We propose SADA-JEM to bridge the classification ac-

curacy gap and the generation quality gap of JEM. By incor-
porating the framework of SAM to JEM and excluding the
undesirable data augmentation from the training pipeline of
JEM, SADA-JEM promotes the energy landscape smooth-
ness and hence the generalization of trained models. Our
experiments verify the effectiveness of these techniques on
multiple benchmarks and demonstrate the state-of-the-art
results in most of the tasks of image classification, genera-
tion, uncertainty calibration, OOD detection and adversarial
robustness. As for the future work, we are interested in im-
proving the scalability of EBMs to large-scale benchmarks,
such as ImageNet and NLP tasks.

7. Acknowledgement
We would like to thank the anonymous reviewers for

their comments and suggestions, which helped improve the
quality of this paper. We would also gratefully acknowl-
edge the support of Cisco Systems, Inc. for its university
research fund to this research.

15739



References
[1] Naveed Akhtar, Jian Liu, and Ajmal Mian. Defense against

universal adversarial perturbations. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018. 7

[2] Anish Athalye, Nicholas Carlini, and David Wagner. Obfus-
cated gradients give a false sense of security: Circumventing
defenses to adversarial examples. In International Confer-
ence on Machine Learning (ICML), 2018. 7

[3] Dara Bahri, Hossein Mobahi, and Yi Tay. Sharpness-aware
minimization improves language model generalization. In
Annual Meeting of the Association for Computational Lin-
guistics (ACL), 2022. 3

[4] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale GAN training for high fidelity natural image synthe-
sis. In International Conference on Learning Representa-
tions (ICLR), 2019. 5

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learn-
ing of visual representations. In International Conference on
Machine Learning (ICML), 2020. 3

[6] Xiangning Chen, Cho-jui Hsieh, and Boqing Gong. When
vision transformers outperform resnets without pre-training
or strong data augmentations. In International Conference
on Learning Representations (ICLR), 2022. 3

[7] Ping-yeh Chiang, Renkun Ni, Ahmed Abdelkader, Chen
Zhu, Christoph Studer, and Tom Goldstein. Certified de-
fenses for adversarial patches. In International Conference
on Learning Representations (ICLR) 2020, 2020. 7

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2009. 8

[9] Yilun Du, Shuang Li, Joshua Tenenbaum, and Igor Mor-
datch. Improved Contrastive Divergence Training of En-
ergy Based Models. In International Conference on Machine
Learning (ICML), 2021. 5, 6

[10] Yilun Du and Igor Mordatch. Implicit generation and gen-
eralization in energy-based models. In Neural Information
Processing Systems (NeurIPS), 2019. 1, 2, 5, 6, 8

[11] Gintare Karolina Dziugaite, Zoubin Ghahramani, and
Daniel M Roy. A study of the effect of jpg compression on
adversarial images. arXiv preprint arXiv:1608.00853, 2016.
7

[12] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam
Neyshabur. Sharpness-aware minimization for efficiently
improving generalization. In International Conference on
Learning Representations, 2021. 1, 3

[13] Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, and
Diederik P. Kingma. Learning Energy-Based Models by Dif-
fusion Recovery Likelihood. In ICLR, 2021. 5

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Neural In-
formation Processing Systems (NeurIPS), 2014. 3

[15] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. In Inter-

national Conference on Learning Representations (ICLR),
2015. 7

[16] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. In Inter-
national Conference on Learning Representations (ICLR),
2015. 7

[17] Will Grathwohl, Kuan-Chieh Wang, Joern-Henrik Jacobsen,
David Duvenaud, Mohammad Norouzi, and Kevin Swer-
sky. Your classifier is secretly an energy based model and
you should treat it like one. In International Conference on
Learning Representations (ICLR), 2020. 1, 2, 3, 4, 5, 6, 7, 8

[18] Will Sussman Grathwohl, Jacob Jin Kelly, Milad Hashemi,
Mohammad Norouzi, Kevin Swersky, and David Duvenaud.
No mcmc for me: Amortized sampling for fast and stable
training of energy-based models. In ICLR, 2021. 1, 5, 6

[19] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger.
On calibration of modern neural networks. In International
Conference on Machine Learning (ICML), 2017. 5

[20] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens
Van Der Maaten. Countering adversarial images using input
transformations. arXiv preprint arXiv:1711.00117, 2017. 7

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2016. 1, 3

[22] Dan Hendrycks and Kevin Gimpel. A baseline for detect-
ing misclassified and out-of-distribution examples in neural
networks. In International Conference on Learning Repre-
sentations (ICLR), 2016. 6

[23] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. In Neural Information Processing Systems (NeurIPS),
2017. 4

[24] Mitch Hill, Jonathan Craig Mitchell, and Song-Chun Zhu.
Stochastic security: Adversarial defense using long-run dy-
namics of energy-based models. In International Conference
on Learning Representations (ICLR), 2021. 7

[25] Geoffrey E Hinton. Training products of experts by mini-
mizing contrastive divergence. Neural computation, 2002.
2

[26] Aapo Hyvärinen. Estimation of non-normalized statistical
models by score matching. Journal of Machine Learning
Research, 2005. 3

[27] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International Conference on Machine Learn-
ing (ICML), 2015. 3

[28] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine,
Jaakko Lehtinen, and Timo Aila. Training generative adver-
sarial networks with limited data. In Proc. Neural Informa-
tion Processing Systems (NeurIPS), 2020. 4, 5

[29] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal,
Mikhail Smelyanskiy, and Ping Tak Peter Tang. On large-
batch training for deep learning: Generalization gap and
sharp minima. In International Conference on Learning Rep-
resentations (ICLR), 2017. 3

15740



[30] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. Technical report, Cite-
seer, 2009. 1

[31] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. Imagenet classification with deep convolutional neu-
ral networks. In Neural Information Processing Systems
(NeurIPS), 2012. 3

[32] Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and
In Kwon Choi. Asam: Adaptive sharpness-aware minimiza-
tion for scale-invariant learning of deep neural networks.
In International Conference on Machine Learning (ICML),
2021. 3

[33] Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and
F Huang. A tutorial on energy-based learning. Predicting
structured data, 2006. 2

[34] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom
Goldstein. Visualizing the Loss Landscape of Neural Nets.
In Neural Information Processing Systems (NeurIPS), 2018.
1, 2, 3

[35] Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li.
Energy-based out-of-distribution detection. Advances in
Neural Information Processing Systems (NeurIPS), 2020. 6

[36] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. In International
Conference on Learning Representations, 2018. 7

[37] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative ad-
versarial networks. In International Conference on Learning
Representations (ICLR), 2018. 5

[38] Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Di-
lan Gorur, and Balaji Lakshminarayanan. Do deep gener-
ative models know what they don’t know? arXiv preprint
arXiv:1810.09136, 2018. 6

[39] Erik Nijkamp, Song-Chun Zhu, and Ying Nian Wu. Learning
non-convergent short-run mcmc toward energy-based model.
In Neural Information Processing Systems (NeurIPS), 2019.
2, 8

[40] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, and Xi Chen. Improved techniques
for training gans. In Neural Information Processing Systems
(NeurIPS), 2016. 4

[41] Yang Song and Stefano Ermon. Generative modeling by es-
timating gradients of the data distribution. In Neural Infor-
mation Processing Systems (NeurIPS), 2019. 3

[42] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-based
generative modeling through stochastic differential equa-
tions. In International Conference on Learning Represen-
tations, 2020. 3

[43] Kevin Swersky, David Buchman, Nando D Freitas, Ben-
jamin M Marlin, et al. On autoencoders and score match-
ing for energy based models. In International Conference on
Machine Learning (ICML), 2011. 3

[44] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. In-
triguing properties of neural networks. In International Con-
ference on Learning Representations (ICLR), 2014. 7

[45] Colin Wei, Sham Kakade, and Tengyu Ma. The implicit and
explicit regularization effects of dropout. In International
Conference on Machine Learning (ICML), 2020. 3

[46] Max Welling and Yee W Teh. Bayesian learning via stochas-
tic gradient langevin dynamics. In International Conference
on Machine Learning (ICML), 2011. 2

[47] Zhisheng Xiao, Karsten Kreis, Jan Kautz, and Arash Vahdat.
VAEBM: A Symbiosis between Variational Autoencoders
and Energy-based Models. In International Conference on
Learning Representations (ICLR), 2021. 5

[48] Xiulong Yang and Shihao Ji. JEM++: Improved Techniques
for Training JEM. In International Conference on Computer
Vision (ICCV), 2021. 1, 3, 4, 5, 6, 8

[49] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. In BMVC, 2016. 4

[50] Yang Zhao, Jianwen Xie, and Ping Li. Learning energy-
based generative models via coarse-to-fine expanding and
sampling. In International Conference on Learning Repre-
sentations (ICLR), 2021. 5

[51] Yao Zhu, Jiacheng Ma, Jiacheng Sun, Zewei Chen, Rongxin
Jiang, and Zhenguo Li. Towards Understanding the Genera-
tive Capability of Adversarially Robust Classifiers. In IEEE
International Conference on Computer Vision (ICCV), 2021.
5, 7

15741


	. Introduction
	. Related Work
	. SADA-JEM
	. Sharpness-Aware Minimization
	. Image Generation without Data Augmentation

	. Experiments
	. Hybrid Modeling
	. Calibration
	. Out-Of-Distribution Detection
	. Robustness
	. Ablation Study

	. Limitations
	. Conclusion
	. Acknowledgement

