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Figure 1. Top: UniSim takes recorded sensor data from a data collection platform and creates manipulable digital twins. Bottom: UniSim
generates realistic, temporally consistent sensor simulations for new scenarios, enabling closed-loop autonomy evaluation. The autonomy
system reactively interacts with the scenario, receives new sensor data, and changes lanes (see planned trajectory inset). All images and
LiDAR in figure simulated by UniSim. Please refer to our project page https://waabi.ai/research/unisim/ for more results.

Abstract

Rigorously testing autonomy systems is essential for
making safe self-driving vehicles (SDV) a reality. It requires
one to generate safety critical scenarios beyond what can
be collected safely in the world, as many scenarios happen
rarely on our roads. To accurately evaluate performance,
we need to test the SDV on these scenarios in closed-loop,
where the SDV and other actors interact with each other
at each timestep. Previously recorded driving logs provide

*Indicates equal contribution.

a rich resource to build these new scenarios from, but for
closed loop evaluation, we need to modify the sensor data
based on the new scene configuration and the SDV’s deci-
sions, as actors might be added or removed and the tra-
jectories of existing actors and the SDV will differ from the
original log. In this paper, we present UniSim, a neural
sensor simulator that takes a single recorded log captured
by a sensor-equipped vehicle and converts it into a realistic
closed-loop multi-sensor simulation. UniSim builds neural
feature grids to reconstruct both the static background and
dynamic actors in the scene, and composites them together
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to simulate LiDAR and camera data at new viewpoints, with
actors added or removed and at new placements. To better
handle extrapolated views, we incorporate learnable priors
for dynamic objects, and leverage a convolutional network
to complete unseen regions. Our experiments show UniSim
can simulate realistic sensor data with small domain gap
on downstream tasks. With UniSim, we demonstrate, for the
first time, closed-loop evaluation of an autonomy system on
safety-critical scenarios as if it were in the real world.

1. Introduction
While driving along a highway, a car from the left sud-

denly swerves into your lane. You brake hard, avoiding
an accident, but discomforting your passengers. As you
replay the encounter in your mind, you consider how the
scenario would have gone if the other vehicle had acceler-
ated more, if you had slowed down earlier, or if you had
instead changed lanes for a more comfortable drive. Hav-
ing the ability to generate such “what-if” scenarios from a
single recording would be a game changer for developing
safe self-driving solutions. Unfortunately, such a tool does
not exist and the self-driving industry primarily test their
systems on pre-recorded real-world sensor data (i.e., log-
replay), or by driving new miles in the real-world. In the
former, the autonomous system cannot execute actions and
observe their effects as new sensor data different from the
original recording is not generated, while the latter is neither
safe, nor scalable or sustainable. The status quo calls for
novel closed-loop sensor simulation systems that are high
fidelity and represent the diversity of the real world.

Here, we aim to build an editable digital twin of the real
world (through the logs we captured), where existing ac-
tors in the scene can be modified or removed, new actors
can be added, and new autonomy trajectories can be exe-
cuted. This enables the autonomy system to interact with
the simulated world, where it receives new sensor obser-
vations based on its new location and the updated states
of the dynamic actors, in a closed-loop fashion. Such a
simulator can accurately measure self-driving performance,
as if it were actually in the real world, but without the
safety hazards, and in a much less capital-intensive manner.
Compared to manually-created game-engine based virtual
worlds [15, 62], it is a more scalable, cost-effective, realis-
tic, and diverse way towards closed-loop evaluation.

Towards this goal, we present UniSim, a realistic closed-
loop data-driven sensor simulation system for self-driving.
UniSim reconstructs and renders multi-sensor data for novel
views and new scene configurations from a single recorded
log. This setting is very challenging as the observations are
sparse and often captured from constrained viewpoints (e.g.,
straight trajectories along the roads). To better handle ex-
trapolation from the observed views, we propose a series of
enhancements over prior neural rendering approaches. In

particular, we leverage multi-resolution voxel-based neural
fields to represent and compose the static scene and dy-
namic agents, and volume render feature maps. To better
handle novel views and incorporate scene context to reduce
artifacts, a convolutional network (CNN) renders the fea-
ture map to form the final image. For dynamic agents, we
learn a neural shape prior that helps complete the objects to
render unseen areas. We use this sparse voxel-based rep-
resentations to efficiently simulate both image and LiDAR
observations under a unified framework. This is very useful
as SDVs often use several sensor modalities for robustness.

Our experiments show that UniSim realistically simu-
lates camera and LiDAR observations at new views for
large-scale dynamic driving scenes, achieving SoTA perfor-
mance in photorealism. Moreover, we find UniSim reduces
the domain gap over existing camera simulation methods on
the downstream autonomy tasks of detection, motion fore-
casting and motion planning. We also apply UniSim to aug-
ment training data to improve perception models. Impor-
tantly, we show, for the first time, closed-loop evaluation of
an autonomy system on photorealistic safety-critical scenar-
ios, allowing us to better measure SDV performance. This
further demonstrates UniSim’s value in enabling safer and
more efficient development of self-driving.

2. Related Work
Simulation Environments for Robotics: The robotics
community has a long history of building simulators for
safer and faster robot development [14, 29, 34, 45, 70, 80].
Early works focused on modeling robot dynamics and phys-
ical forces for parameter identification and controller mod-
elling [29, 49]. Several works then developed accurate
physics engines for improving robot design and motion
planning [7,12,14,27,31], and for specific domains such as
grasping [33], soft robotics [26], and SDVs [80]. But to en-
able end-to-end testing of full autonomy systems, we must
also simulate realistic sensor observations of the 3D envi-
ronment for the robot to perceive, interact with its surround-
ings, and plan accordingly [18]. Most prior sensor simula-
tion systems use 3D-scanned or manually built synthetic en-
vironments for small indoor environments [31, 34, 61], and
perform rasterization or ray-tracing [53,63] to simulate var-
ious sensor data [19, 21, 28]. For high-speed robots such as
SDVs, simulators such as CARLA and AirSim [15, 62] ap-
plied a similar approach. But due to the costly manual effort
in creating scenes, these simulators have difficulty scaling
to all the areas we may want to test in, have limited asset
diversity (e.g., roads, vehicles, vegetation) compared to the
real world, and generate unrealistic sensor data that require
substantial domain adaptation for autonomy [25, 79].

Novel View Synthesis: Recent novel view synthesis
(NVS) work has achieved success in automatically generat-

1390



ing highly photorealistic sensor observations [1, 32, 40, 46,
51, 52, 57, 58]. Such methods aim to learn a scene repre-
sentation from a set of densely collected observed images
and render the scene from nearby unseen viewpoints. Some
works perform geometry reconstruction and then warp and
aggregate pixel-features from the input images into new
camera views, which are then processed by learning-based
modules [1, 54, 58, 59]. Others represent the scene implic-
itly as a neural radiance field (NeRF) and perform volume
rendering with a neural network [4,46,71,83]. These meth-
ods can represent complex geometry and appearance and
have achieved photorealistic rendering, but focus on small
static scenes. Several representations [8, 39, 43, 47, 48, 55,
56, 69, 88] partition the space and model the volume more
efficiently to handle large-scale unbounded outdoor scenes.
However, these works focus primarily on the NVS task
where a dense collection of images are available and most
test viewpoints are close to the training views, and focus on
the static scene without rendering dynamic objects such as
moving vehicles. In contrast, our work extends NVS tech-
niques to build a sensor simulator from a single recorded
log captured by a high-speed mobile platform. We aim to
render image and LiDAR observations of dynamic traffic
scenarios from new viewpoints and modified scene config-
urations to enable closed-loop autonomy evaluation.

Data-driven Sensor Simulation for Self Driving: Sev-
eral past works have leveraged computer vision techniques
and real world data to build sensor simulators for self-
driving. Some works perform 3D reconstruction by ag-
gregating LiDAR and building textured geometry primi-
tives for physics-based rendering [17, 42, 68, 82], but pri-
marily simulate LiDAR or cannot model high-resolution
images. Another line of work perform object reconstruc-
tion and insertion into existing images [10, 72, 78, 83] or
point clouds [16,73,84,85], but these methods are unable to
render sensor data from new views for closed-loop interac-
tion. DriveGAN [30] represents the scene as disentangled
latent codes and generates video from control inputs with
a neural network for differentiable closed-loop simulation,
but is limited in its realism and is not temporally consis-
tent. AADS [35] and VISTA 2.0 [2, 3, 76], perform multi-
sensor simulation via image-based warping or ray-casting
on previously collected sensor data to render new views of
the static scene, and then insert and blend CAD assets into
the sensor data to create new scenarios. These approaches,
while promising, have visual artifacts for the inserted ac-
tors and rendered novel views, resulting in a large domain
gap. Neural Scene Graphs (NSG) [52] and Panoptic Neural
Fields (PNF) [32] represent the static scene and agents as
multi-layer perceptrons (MLPs) and volume render photo-
realistic images of the scene. However, the single MLP has
difficulties modelling large scale scenes. These prior works
also focus on scene editing and perception tasks where the

CNN
z

Hypernet

Sampled pts

Actor model

Background 
feature grid

Sensor

Rendered 
feature

Figure 2. Overview of our approach: We divide the 3D scene
into a static background (grey) and a set of dynamic actors (red).
We query the neural feature fields separately for static background
and dynamic actor models, and perform volume rendering to gen-
erate neural feature descriptors. We model the static scene with a
sparse feature-grid and use a hypernetwork to generate the repre-
sentation of each actor from a learnable latent. We finally use a
convolutional network to decode feature patches into an image.

SDV does not deviate significantly from the original record-
ing. Instead, we focus on multi-sensor simulation for closed
loop evaluation of autonomy systems, and specifically de-
sign our system to better handle extrapolation.

3. Neural Sensor Simulation
Given a log with camera images and LiDAR point clouds

captured by a moving platform, as well as their relative
poses in a reference frame, our goal is to construct an ed-
itable and controllable digital twin, from which we can gen-
erate realistic multi-modal sensor simulation and counter-
factual scenarios of interest. We build our model based
on the intuition that the 3D world can be decomposed as a
static background and a set of moving actors. By effectively
disentangling and modeling each component, we can ma-
nipulate the actors to generate new scenarios and simulate
the sensor observations from new viewpoints. Towards this
goal, we propose UniSim, a neural rendering closed-loop
simulator that jointly learns shape and appearance represen-
tations for both the static scene and dynamic actors from the
sensor data captured from a single pass of the environment.

We unfold this section by first reviewing the basic build-
ing blocks of our approach. Next, we present our compo-
sitional scene representation, and detail how we design our
background and dynamic actor models. We then describe
how to generate simulated sensor data with UniSim. Fi-
nally, we discuss how to learn the model from real-world
data. Fig. 2 shows an overview of our approach.

3.1. Preliminaries

Neural feature fields: A feature field refers to a con-
tinuous function f that maps a 3D point x ∈ R3 and a
view direction d ∈ R2 to an implicit geometry s ∈ R
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and a Nf -dimensional feature descriptor f ∈ RNf . Since
the function is often parameterized as a neural network
fθ : R3 × R2 → R × RNf , with θ the learnable weights,
we call it neural feature field (NFF). NFFs can be seen as
a superset of several existing works [44, 46]. If we repre-
sent the implicit geometry as volume density s ∈ R+ and
the feature descriptor as RGB radiance f ∈ R3, NFFs be-
come NeRFs [46]. If we enforce the implicit geometry to
be the probability of occupancy, NFFs become occupancy
functions [44]. Importantly, NFFs naturally support com-
position [22, 32, 50], enabling the combination of multiple
relatively simple NFFs to form a complex field.

Multi-resolution features grid: To improve the expres-
siveness and speed of NFFs, past works [11, 47, 67, 87]
further combined learnable multi-resolution features grid
{Gl}Ll=1 with a neural network f . Specifically, given a
query point x ∈ R3, the 3D feature grid at each level is
first trilinearly interpolated. The interpolated features are
then concatenated with the view direction d ∈ R2, and the
resulting features are processed with an MLP head to obtain
the geometry s and feature descriptor f :

s, f = f
(
{interp(x,Gl)}Ll=1,d

)
. (1)

These multi-scale features encode both global context and
fine-grained details, providing richer information compar-
ing to the original input x. This also enables using a smaller
f , which significantly reduces the inference time [66,67]. In
practice, we optimize the features grid using a fixed number
of features F , and map the features grid {Gl}Ll=1 to F with
a grid index hash function [47]. Hereafter, we will use F
and {Gl}Ll=1 interchangeably.

3.2. Compositional Neural Scene Representation

We aim to build a compositional scene representation
that best models the 3D world including the dynamic ac-
tors and static scene. Given a recorded log captured by
a data collection platform, we first define a 3D space vol-
ume over the traversed region. The volume consists of a
static background B and a set of dynamic actors {Ai}Ni=1.
Each dynamic actor is parameterized as a bounding box of
dimensions sAi

∈ R3, and its trajectory is defined by a
sequence of SE(3) poses {Tt

Ai
}Tt=1. We then model the

static background and dynamic actors with separate multi-
resolution features grid and NFFs. Let the static background
be expressed in the world frame. We represent each ac-
tor in its object-centroid coordinate system (defined at the
centroid of its bounding box), and transform their features
grid to world coordinates to compose with the background.
This allows us to disentangle the 3D motion of each actor,
and focus on representing shape and appearance. To learn
high-quality geometry [74,86], we adopt the signed distance
function (SDF) as our implicit geometry representation s.
We now describe each component in more detail.

Sparse background scene model: We model the whole
static scene with a multi-resolution features grid Fbg and
an MLP head fbg. Since a self-driving log often spans
hundreds to thousands of meters, it is computationally and
memory expensive to maintain a dense, high-resolution
voxel grid. We thus utilize geometry priors from LiDAR
observations to identify near-surface voxels and optimize
only their features. Specifically, we first aggregate the static
LiDAR point cloud from each frame to construct a dense 3D
scene point cloud. We then voxelize the scene point cloud
and obtain a scene occupancy grid Vocc. Finally, we apply
morphological dilation to the occupancy grid and coarsely
split the 3D space into free vs. near-surface space. As the
static background is often dominated by free space, this can
significantly sparsify the features grid and reduce the com-
putation cost. The geometric prior also allows us to better
model the 3D structure of the scene, which is critical when
simulating novel viewpoints with large extrapolation. To
model distant regions, such as sky, we follow [5, 88] to ex-
tend our background scene model to unbounded scenes.

Generalized actor model: One straightforward way to
model the actors is to parameterize each actor Ai with a
features grid FAi

and adopt a shared MLP head fA for
all actors. In this design, the individual features grid en-
codes instance-specific geometry and appearance, while the
shared network maps them to the same feature space for
downstream applications. Unfortunately, such a design re-
quires large memory for dense traffic scenes and, in prac-
tice, often leads to overfitting — the features grid does not
generalize well to unseen viewpoints. To overcome such
limitations, we propose to learn a hypernetwork [23] over
the parameters of all grids of features. The intuition is
that different actors are observed from different viewpoints,
and thus their grids of features are informative in differ-
ent regions. By learning a prior over them, we can capture
the correlations between the features and infer the invisible
parts from the visible ones. Specifically, we model each ac-
tor Ai with a low-dimensional latent code zAi and learn a
hypernetwork fz to regress the features grid FAi

:

FAi
= fz(zAi

). (2)

Similar to the background, we adopt a shared MLP head
fA to predict the geometry and feature descriptor at each
sampled 3D point via Eq. 1. We jointly optimize the actor
latent codes {zAi

} during training.

Composing neural feature fields: Inspired by works that
composite solid objects [22, 52] into a scene, we first trans-
form object-centric neural fields of the foreground actors to
world coordinates with the desired poses (e.g., using Tt

Ai

for reconstruction). As the static background is a sparse
features grid, we then simply replace the free space with the
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actor feature fields. Through this simple operation, we can
insert, remove, and manipulate the actors within the scene.

3.3. Multi-modal Sensor Simulation

Now that we have a composed scene representation of
the static and dynamic world, the next step is to render it
into the data modality of interest. In this work, we focus on
camera images and LiDAR point clouds, as they are the two
main sensory modalities employed by modern SDVs.

Camera simulation: Following recent success in NVS
[9, 50], we adopt a hybrid volume and neural rendering
framework for efficient photorealistic image simulation.
Given a ray r(t) = o+ td shooting from the camera center
o through the pixel center in direction d, we first sample
a set of 3D points along the ray and extract their features
and geometry (Eq. 1). We then aggregate the samples and
obtain a pixel-wise feature descriptor via volume rendering:

f(r) =

Nr∑
i=1

wifi, wi = αi

i−1∏
j=1

(1− αj). (3)

Here, αi ∈ [0, 1] represents opacity, which we can derive
from the SDF si using an approximate step function α =
1/(1+exp(β ·s)), and β is the hyper-parameter controlling
the slope. We volume render all camera rays and generate a
2D feature map F ∈ RHf×Wf×Nf . We then leverage a 2D
CNN grgb to render the feature map to an RGB image Irgb:

grgb : F ∈ RHf×Wf×Nf → Irgb ∈ RH×W×3. (4)

In practice, we adopt a smaller spatial resolution for the fea-
ture map Hf ×Wf than that of the rendered image H×W ,
and rely on the CNN grgb for upsampling. This allows us to
significantly reduce the amount of ray queries.

LiDAR simulation: LiDAR point clouds encode 3D
(depth) and intensity (reflectivity) information, both of
which can be simulated in a similar fashion to Eq. 3. We as-
sume the LiDAR to be a time-of-flight pulse-based sensor,
and model the pulses transmitted by the oriented LiDAR
laser beams as a set of rays. We slightly abuse the notation
and let r(t) = o+td be a ray casted from the LiDAR sensor
we want to simulate. Denote o as the center of the LiDAR
and d as the normalized vector of the corresponding beam.
We then simulate the depth measurement by computing the
expected depth of the sampled 3D points:

D(r) =

Nr∑
i=1

witi. (5)

As for LiDAR intensity, we volume render the ray feature
(using Eq. 3) and pass it through an MLP intensity decoder
gint to predict its intensity lint(r) = gint(f(r)).

3.4. Learning

We jointly optimize all grids of features F∗ (including
latent codes {zAi

}, the hypernetwork fz, the MLP heads
(fbg, fA) and the decoders (grgb, gint) by minimizing the dif-
ference between the sensor observations and our rendered
outputs. We also regularize the underlying geometry such
that it satisfies real-world constraints. Our full objective is:

L = Lrgb + λlidarLlidar + λregLreg + λadvLadv.

In the following, we discuss in more detail each term.

Image simulation Lrgb: This objective consists of a ℓ2
photometric loss and a perceptual loss [75, 89], both mea-
sured between the observed images and our simulated re-
sults. We compute the loss in a patch-wise fashion:

Lrgb =
1

Nrgb

Nrgb∑
i=1

∥∥∥Irgb
i − Îrgb

i

∥∥∥
2
+ λ

M∑
j=1

∥∥∥V j(Irgb
i )− V j (̂Irgb

i )
∥∥∥
1

 , (6)

where Irgb
i = frgb(Fi) is the rendered image patch (Eq. 4)

and Îrgb
i is the corresponding observed image patch. V j de-

notes the j-th layer of a pre-trained VGG network [64].

LiDAR simulation Llidar: This objective measures the ℓ2
error between the observed LiDAR point clouds and the
simulated ones. Specifically, we compute the depth and in-
tensity differences:

Llidar =
1

N

N∑
i=1

(∥∥D(ri)−Dobs
i

∥∥
2
+

∥∥∥lint(ri)− l̂int
i

∥∥∥
2

)
. (7)

Since LiDAR observations are noisy, we filter outliers and
encourage the model to focus on credible supervision. In
practice, we optimize 95% of the rays within each batch
that have smallest depth error.

Regularization Lreg: We further apply two additional
constraints on the learned representations. First, we encour-
age the learned sample weight distribution w (Eq. 3) to con-
centrate around the surface. Second, we encourage the un-
derlying SDF s to satisfy the Eikonal equation, which helps
the network optimization find a smooth zero level set [20]:

Lreg =
1

N

N∑
i=1

( ∑
τi,j>ϵ

∥wij∥2 +
∑

τi,j<ϵ

(
∥∇s(xij)∥2 − 1

)2)
, (8)

where τi,j = |tij −Dgt
i | is the distance between the sample

xij and its corresponding LiDAR observation Dgt
i .

Adversarial loss Ladv: To improve photorealism at un-
observed viewpoints, we train a discriminator CNN Dadv
to differentiate between our simulated images at observed
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Figure 3. Qualitative comparison. We show simulation results in both the interpolation (rows 1, 3) and lane-shift test settings (rows 2, 4).

Methods Interpolation Lane Shift

PSNR↑ SSIM↑ LPIPS↓ FID↓ @ 2m FID↓ @ 3m

FVS [58] 21.09 0.700 0.299 112.6 135.8
NSG [52] 20.74 0.600 0.556 319.2 343.0
Instant-NGP [47] 24.03 0.708 0.451 192.8 220.1
Ours 25.63 0.745 0.288 74.7 97.5

Table 1. State-of-the-art image comparison

Methods Interpolation Lane Shift

PSNR↑ SSIM↑ LPIPS↓ FID↓ @ 2m FID↓ @ 3m

NFF only 24.93 0.717 0.393 153.7 173.5
+ Actor model 25.80 0.744 0.364 84.1 111.8
+ CNN 25.99 0.762 0.341 78.8 103.3
+ VGG & GAN loss 25.63 0.745 0.288 74.7 97.5

Table 2. Ablation of UniSim enhancements

Median ℓ2 Error (m)↓ Hit Rate↑ Intensity RMSE↓
LiDARsim [42] 0.11 92.2% 0.091
Ours 0.10 99.6% 0.065

Table 3. State-of-the-art LiDAR comparison

viewpoints and unobserved ones. Specifically, we de-
note the set of rays to render an image patch as R =
{r(o,dj)}P×P

j=1 , and randomly jitter the ray origin to create
unobserved ray patches R′ = {r(o + ϵ,dj)}P×P

j=1 , where
ϵ ∈ N (0, σ). The discriminator CNN Dadv minimizes:

− 1

Nadv

Nadv∑
i=1

logDadv(I
rgb,R
i ) + log(1−Dadv(I

rgb,R′

i )), (9)

where Irgb,R
i = frgb(F(Ri)) and Irgb,R′

i = frgb(F(R
′
i))

are the rendered image patches at observed and unobserved
viewpoints, respectively. We then define the adversarial loss
Ladv to train the CNN RGB decoder grgb and neural feature
fields to improve photorealism at unobserved viewpoints as:

Ladv =
1

Nadv

Nadv∑
i=1

log(1−Dadv(I
rgb,R′

i )). (10)

Implementation details: We identify actors along ren-
dered rays using the AABB ray-box intersection [41].
When sampling points along the ray, we adopt a larger step
size for background regions and a smaller one for inter-
sected actor models to ensure appropriate resolution. We
leverage the scene occupancy grid Vocc to skip point sam-
ples in free space. During learning, we also optimize the ac-
tor trajectories to account for noise in the initial input. For
vehicle actors, we also leverage the shape prior that they are
symmetric along their length. Please see supp. for details.

4. Experiments
In this section we begin by introducing our experimental

setting, and then compare our model against state-of-the-art
methods to evaluate the sensor simulation realism and do-
main gap with real data, and also ablate our model compo-
nents. We then show that our method can generate diverse
sensor simulations to improve vehicle detection. Finally,
we demonstrate UniSim for evaluating an autonomy system
trained only on real data in closed-loop.

4.1. Experimental Details
Dataset: We evaluate our method on the publicly avail-
able PandaSet [81] which contains 103 driving scenes
captured in urban areas in San Francisco. Each scene is
composed of 8 seconds (80 frames, sampled at 10hz) of
images captured from a front-facing wide angle camera
(1920×1080) and point clouds from 360◦ spinning LiDAR.
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Real LiDARsim UniSim

Figure 4. Comparison of LiDAR simulation. UniSim produces
higher-fidelity LiDAR simulation with less noise and more contin-
uous beam rings that are closer to real LiDAR compared to [42].

Baselines: We compare our model against several SoTA
methods. FVS [58] is an NVS method that uses recon-
structed geometry (aggregated LiDAR in our implementa-
tion) as a “proxy” to re-project pixels from the input images
into new camera views, where they are blended by a neu-
ral network. We enhance FVS to model dynamic actors.
Instant-NGP [47] is a NeRF-based method that adopts
multi-resolution hashing encoding for compact scene repre-
sentation and efficient rendering. We enhance it by adding
LiDAR depth supervision for better geometry and extrapo-
lation. NSG [52] is a camera simulation method that models
the scene with separate NeRF representations for the static
background and each dynamic actor. See supp. for details.

4.2. UniSim Controllability

We first highlight in Fig. 1 the power of UniSim to per-
form all the capabilities for closed-loop sensor simulation.
We can not only render the original scene, but because of
our decomposed actor and background representations, we
can also remove all the actors, and change their positions.
With enhanced extrapolation capabilities, we can change
the SDV’s location or test new sensor configurations. See
supp. for more results, including highway scenes.

4.3. Realism Evaluation
Sensor simulation should not only reconstruct nearby

views, but also generate realistic data at significantly dif-
ferent viewpoints. Here we evaluate both settings. Similar
to other NVS benchmarks [38], we subsample the sensor
data by two, training on every other frame and testing on
the remaining frames, dubbed “interpolation” test. We re-
port PSNR, SSIM [77], and LPIPS [89]. We also evaluate
extrapolation by simulating a new trajectory shifted later-
ally to the left or right by 2 or 3 meters, dubbed “lane shift”
test. Since ground-truth is unavailable, we report FID [24].

Camera Simulation: We report image-similarity metrics
against SoTA in Table 1. Due to computational costs of
the baseline NSG, we select 10 scenes for evaluation. Our
method outperforms the baselines in all metrics, and the gap
is more significant in extrapolation settings. FVS performs
well on LPIPS and InstantNGP on PSNR in the interpola-
tion setting, but both have difficulty when rendering at ex-
trapolated views. Fig. 3 shows qualitative results. NSG pro-
duces decent results for dynamic actors but fails on large
static scenes, due to its sparse multi-plane representation.
Note UniSim is more realistic than the baselines.

Lane shift Lane shift

FVS Ours

replay replay

Figure 5. Real2Sim Qualitative on replay and lane shift settings.

Log Replay Lane Shift

Method Real2Sim Sim2Real Real2Sim Sim2Real

FVS [58] 36.9 38.7 30.3 32.2
Instant-NGP [47] 22.6 34.0 18.1 26.5
Ours 40.2 39.9 37.0 37.1

Table 4. Detection domain gap, mAP. Real2Real = 40.9.

Instant-NGP [47] FVS [58] Ours

Sim 32.4 39.2 41.4
Real + Sim 40.1 41.1 42.9

Table 5. Augmenting with simulation, mAP. Real2Real = 40.9.

Det. Agg. ↑ Pred. ADE ↓ Plan Cons. ↓
FVS [58] 0.80 2.35 6.15
Instant-NGP [47] 0.42 3.24 13.44
Ours 0.82 1.68 6.09

Table 6. Open-Loop Real2Sim Autonomy Evaluation

Ablation: We validate the effectiveness of several key
components in Tab. 2. Both the actor model and the CNN
decoder improve the overall performance over the neural
features grid base model. The CNN is especially effective
in the extrapolation setting, as it improves the overall image
quality by spatial relation reasoning and increases model ca-
pacity. Adding perceptual and adversarial losses results in a
small performance drop for interpolation, but improves the
lane shift results. Please see supp. for more visual results.

LiDAR Simulation: We also evaluate the fidelity of our
LiDAR simulation and compare with SoTA approach Li-
DARsim [42]. For LiDARsim, we reconstruct surfel assets
using all training frames, place actors in their original sce-
nario in test frames, and perform ray-casting. Both methods
use the real LiDAR rays to generate a simulated point cloud.
We evaluate the fraction of real LiDAR points that have a
corresponding simulated point (i.e., Hit rate), the median
per-ray ℓ2 error and the average intensity simulation errors.
As shown in Tab. 3, UniSim outperforms LiDARsim in all
metrics suggesting it is more accurate and has better cover-
age. Fig. 4 shows a visual comparison. Please see supp. for
additional autonomy results and qualitative examples.

4.4. Perception Evaluation and Training

In addition to image-similarity, sensor simulation should
be realistic with respect to how autonomy perceives it. To
verify if UniSim reduces the domain gap for perception
tasks, we leveraged the SoTA camera-based birds-eye-view
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Figure 6. Closed-loop Evaluation. From left to right: With UniSim, we can create a safety-critical scenario (e.g., incoming actor),
simulate the sensor data, run autonomy on it, update the SDV’s viewpoint and other actor locations, and simulate the new sensor data.

(BEV) detection model BEVFormer [37]. We consider
two setups (a) Real2Sim: evaluating the perception model
trained on real data on simulated data; (b) Sim2Real: train-
ing perception models with simulated data data and testing
on real data. Specifically, we evaluate the real model on 24
simulated validation logs for Real2Sim and train perception
models with 79 simulated training logs for Sim2Real.

We consider both replay and lane shift test settings. In
replay, we replay all actors and SDV with their original tra-
jectories. In lane shift, we shift the SDV trajectory laterally
by 2 meters and simulate images at extrapolated views. We
report detection mean average precision (mAP).

Domain Gap in Simulation: As shown in Table 4,
our approach achieves the smallest domain gap in both
Real2Sim and Sim2Real setups, on both replay and lane
shift settings, while other existing approaches result in
larger domain gaps, hindering their applicability to evalu-
ate and train autonomy. This is especially evident in the
more challenging lane shift setting, where there is a larger
performance gap between UniSim and the baselines. Fig. 5
shows the Real2Sim detection performance for both replay
and lane shift settings compared to FVS [58].

Data Augmentation with Simulation Data: We now
study if our simulated data boosts performance when used
for training. Specifically, we use all PandaSet training logs
to generate simulation variations (replay, lane shift 0.5 and
2 meters) to train the detectors. As shown in Table 5, using
UniSim data only to train the perception model is even bet-
ter than training with all real data. Note we only increase the
rendered viewpoints and do not alter the content. We then
combine the real data with the simulation data and retrain
the detector. Table 5 shows UniSim augmentation yields
a significant performance gain. In contrast, baseline data
augmentation brings marginal gain or harms performance.

4.5. Full Autonomy Evaluation with UniSim
Domain gap evaluation: Sensor simulation not only af-
fects perception tasks, but also downstream tasks such as
motion forecasting and planning. We report domain gap
metrics by evaluating an autonomy system trained on real
data on simulated images of the original scenario. The au-
tonomy system under evaluation is a module-based system,
with BEVFormer [37] taking front-view camera images as
input and producing BEV detections that are matched over

time to produce tracks via greedy association as the percep-
tion module. These are then fed to a motion forecasting
model [13] that takes in BEV tracks and a map raster and
outputs bounding boxes and 6 second trajectory forecasts.
Finally a SoTA sampling-based motion planner [60] takes
the prediction output and map to plan a maneuver. We re-
port open-loop autonomy metrics (detection agreement @
IoU 0.3, prediction average displacement error (ADE), and
motion plan consistency at 5 seconds) in Table 6. Com-
pared to other methods, our approach has the smallest do-
main gap. Please see supp. for details.

Closed-loop Simulation: With UniSim, we can create
new scenarios, simulate the sensor data, run the autonomy
system, update the state of the actors in a reactive manner
and the SDV’s location, and execute the next time step (see
Fig. 6). This gives us a more accurate measure of the SDV’s
performance to how it would behave in the real world for
the same scenario. Fig. 1 shows additional simulations of
the autonomy on safety critical scenarios such as an actor
cutting into our lane or an oncoming actor in our lane. The
SDV then lane changes, and with UniSim we can simulate
the sensor data realistically throughout the scenario. Please
see supp. video for complete visuals.

5. Conclusion
In this paper, we leveraged real world scenarios col-

lected by a mobile platform to build a high-fidelity virtual
world for autonomy testing. Towards this goal, we pre-
sented UniSim, a neural sensor simulator that takes in a
sequence of LiDAR and camera data and can decompose
and reconstruct the dynamic actors and static background
in the scene, allowing us to create new scenarios and ren-
der sensor observations of those new scenarios from new
viewpoints. UniSim improves over SoTA and generates re-
alistic sensor data with much lower domain gap. Further-
more, we demonstrated that we can use it to evaluate an au-
tonomy system in closed loop on novel safety-critical sce-
narios. We hope UniSim will enable developing safer au-
tonomy systems more efficiently and safely. Future work
involves explicitly modelling and manipulating scene light-
ing [6, 65, 90], weather [36], and articulated actors [72].
Acknowledgements: We thank Ioan-Andrei Barsan for
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road lidar simulation with data-driven terrain primitives. In
ICRA, 2018. 3

[69] Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Prad-
han, Ben Mildenhall, Pratul P. Srinivasan, Jonathan T. Bar-
ron, and Henrik Kretzschmar. Block-NeRF: Scalable large
scene neural view synthesis. In CVPR, 2022. 3

[70] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A
physics engine for model-based control. In IROS, 2012. 2

[71] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler,
Jonathan T Barron, and Pratul P Srinivasan. Ref-nerf: Struc-
tured view-dependent appearance for neural radiance fields.
In CVPR, 2022. 3

[72] Jingkang Wang, Sivabalan Manivasagam, Yun Chen, Ze
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