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Abstract

Recently, the robustness of deep neural networks has
drawn extensive attention due to the potential distribution
shift between training and testing data (e.g., deep mod-
els trained on high-quality images are sensitive to corrup-
tion during testing). Many researchers attempt to make
the model learn invariant representations from multiple
corrupted data through data augmentation or image-pair-
based feature distillation to improve the robustness. In-
spired by sparse representation in image restoration, we opt
to address this issue by learning image-quality-independent
feature representation in a simple plug-and-play manner,
that is, to introduce discrete vector quantization (VQ) to re-
move redundancy in recognition models. Specifically, we
first add a codebook module to the network to quantize
deep features. Then we concatenate them and design a
self-attention module to enhance the representation. During
training, we enforce the quantization of features from clean
and corrupted images in the same discrete embedding space
so that an invariant quality-independent feature representa-
tion can be learned to improve the recognition robustness
of low-quality images. Qualitative and quantitative experi-
mental results show that our method achieved this goal ef-
fectively, leading to a new state-of-the-art result of 43.1 %
mCE on ImageNet-C with ResNet50 as the backbone. On
other robustness benchmark datasets, such as ImageNet-R,
our method also has an accuracy improvement of almost
2%. The source code is available at https://see.
xidian.edu.cn/faculty/wsdong/Projects/
VQSA.htm

1. Introduction
The past few years have witnessed the remarkable devel-

opment of deep convolutional neural networks (DCNNs) in
many recognition tasks, such as classification [9,20,31,46],
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Figure 1. The Grad-CAM [45] maps of different models on defo-
cus blur images. (a) The clean images. (b) The maps of vanilla
ResNet50 [20] model on clean images. (c) and (d) show the maps
of QualNet50 [29] and our proposed method on defocus blur im-
ages with severity level 3. The results show that our method still
can focus on the salient object area without being seriously af-
fected by corruption. Best viewed in color.

detection [43, 48] and segmentation [5, 19]. Although
its performance has exceeded that of humans in some
datasets, its robustness still lags behind [10, 15]. Many re-
searchers [11, 21, 22, 53] have shown that the performance
of deep models trained in high-quality data decreases dra-
matically with low-quality data encountered during deploy-
ment, which usually contain common corruptions, includ-
ing blur, noise, and weather influence. For example, the
vanilla ResNet50 model has an accuracy of 76 % in the
clean ImageNet validation set, but its average accuracy is
less than 30 % in the same dataset contaminated by Gaus-
sian noise.

As shown in Fig. 1, the model’s attention map is seri-
ously affected by image quality. That is, the model pays
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close attention to an incomplete or incorrect area of the de-
focus blur image, which results in a wrong prediction. Deep
degradation prior (DDP) [55] also reveals that deep repre-
sentation space degradation is the reason for the decrease
in model performance, and finding a mapping between de-
graded and clean features will certainly benefit downstream
classification or detection tasks.

Generally, a simple and effective method is to consider
these common corruptions and to use low-quality simulated
images for augmented (fine-tuning) training. However, as
described in [29], this method does not explicitly map low-
quality features to high-quality features; instead, the model
tends to learn the average distribution among corruptions,
resulting in limited performance improvement. In addition,
when the type of corruption is unknown during training, this
approach is heavily based on well-designed augmentation
strategies to improve generalization and robustness.

To enhance the feature representation of low-quality im-
ages, another feasible solution is to use pairs of clean and
degraded images for training and align the degraded fea-
tures with the corresponding clean ones. Both DDP [55]
and QualNet [29] use high-quality features extracted from
clean images as supervision and improve low-quality fea-
tures through a distillation-like approach [1, 25, 26, 58]. Al-
though they learn the mapping relationship between low-
and high-quality feature representation, paired images are
time-consuming for training, and some irrelevant features
that are not useful for recognition are also forcibly aligned,
such as background, color, lighting, and other features
which are affected by the image quality.

The vector quantization (VQ) process is essentially a
special case in sparse representation, that is, the represen-
tation coefficient is a one-hot vector [50]. Similarly to the
application of sparse representation in image restoration
[13, 59], the compression-reconstruction learning frame-
work of VQ is also conducive to the removal of noisy redun-
dant information and learning essential features for recog-
nition. Inspired by this, we propose to use VQ to bridge
the gap between low- and high-quality features and learn
a quality-independent representation. Specifically, we first
add a vector quantizer (codebook) to the recognition model.
During the training process, due to the codebook update
mechanism, both low- and high-quality features will be as-
signed to the same discrete embedding space. Subsequently,
since direct hard quantization (selecting and replacing) may
lose some useful information, we choose to concatenate the
quantized features with the original ones and use a self-
attention module to further enhance the quality-independent
representation and weaken irrelevant features. In summary,
the main contributions of this paper are listed below.

• To the best of our knowledge, it is the first time
that we propose to introduce vector quantization into
the recognition model for learning quality-independent

feature representation and improving the models’ ro-
bustness on common corruptions.

• We concatenate the quantized feature vector with the
original one and use the self-attention module to en-
hance the quality-independent feature representation
instead of direct replacement in the standard vector
quantization method.

• Extensive experimental results show that our method
has achieved higher accuracy on benchmark low-
quality datasets than several current state-of-the-art
methods.

2. Related Works

2.1. Low-quality Image Recognition

There are many solutions to the recognition of low-
quality images. Data augmentation is a simple way to build
a robust model by generating diverse data with some well-
designed augmentation strategies and learning an invariant
representation. AutoAugment [8] is the first method to use
reinforcement learning to find the optimal data augmenta-
tion strategy. DeepAugment [21] used a model similar to
the generative adversarial network (GAN) to generate aug-
mented images. Augmix [23] randomly performed different
data augmentations on images and then mixed them to form
the final augmented output.

Another common practice is to restore low-quality im-
ages first, which means that the parameters of the recogni-
tion model are standard and fixed. There are many image
restoration algorithms [4, 6, 60]. However, as described in
[39], the use of dehazing methods to restore the haze image
does not help improve classification performance. The re-
stored image and the high-quality image may still have dif-
ferences in feature space. Recently, a recognition-friendly
restoration method has been proposed for low-quality im-
ages. [32] first proposed the solution to image denoising
and classification simultaneously. URIE [47] proposed a
universal image enhancement module and introduced cross-
entropy loss to train classification and image restoration
jointly.

Recently, many studies have been done to solve this
problem from the perspective of feature representation.
They proposed using paired data to learn the feature map-
ping relationship so that models can extract high-quality-
like features even from low-quality images. DDP [55] de-
signed a feature de-drifting module to align low-quality fea-
tures with the corresponding high-quality ones. QualNet
[29] used an invertible neural network as a decoder to trans-
form the paired features into the image domain, and closing
the two decoded images aligns the potential features. In ad-
dition, many studies [22,28,37] also proposed some bench-
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marks on various high-level vision tasks for low-quality im-
ages.

2.2. Vector Quantization

Sparse representation learning aims to represent in-
put signals well with a sparse coefficient vector from the
learned dictionary. The components in the dictionary can
be considered as different atoms of signals. Sparse repre-
sentation learning has many advantages, such as eliminat-
ing noise from signals, enhancing the robustness of repre-
sentation, and being used for compressed sensing. There
are many works that apply sparse representation to image
denoising [13], super-resolution [59], etc.

Vector quantization is a classic method of compressed
coding [16]. It needs a codebook and a quantization strat-
egy. In general, the mean square error (MSE) is used to
find the most similar pattern in the codebook to replace the
original input data vector. As it is a kind of distortion cod-
ing, it requires the codebook to represent the various inputs
well, like an overcomplete dictionary. Vector quantization
can be considered as discrete representation learning; that
is, the representation coefficient is a one-hot vector. Many
researchers [7, 16, 34, 38] have shown that learning discrete
representation not only contributes to visual understanding
but also improves the robustness of models. Recently. VQ-
VAE [51] used a neural network named codebook to learn
a discrete visual representation of images. This method can
learn the discrete feature distribution of an image effectively
and is widely used in many generative models. Along this
line of research, discrete representation learning has been
widely used in many vision tasks [14, 17, 35, 40–42].
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Figure 2. The process of vector quantization in compressed cod-
ing. Noted that zi ∈ Rd.

2.3. Self-attention

The attention mechanism is widely used in deep learn-
ing. If all the information in the image is learned without
any priority, the model tends to overfit, resulting in poor
generalization ability in new test data. Therefore, espe-
cially for recognition tasks, researchers hope that the model
can pay more attention to the salient object itself in the im-
age while ignoring the background and other irrelevant in-

formation. SE-Net [27] proposed a channel-wise attention
module, and CBAM [56] combined channel attention with
spatial attention in a convolutional block attention module.
These methods are widely used in the design of model struc-
tures.

The self-attention module in the transformer was first
proposed in [54] in natural language processing (NLP). It
does not rely on the traditional recurrent neural networks
(RNNs) or DCNNs architecture but can perform many NLP
tasks such as machine translation excellently. Inspired by its
success, many works [12, 18, 33, 49] introduced this archi-
tecture in computer vision tasks, called Vision Transformers
(ViTs). This makes the performance of machine learning in
many vision tasks continue to reach new levels [3, 18, 33].
And researches also revealed that the self-attention module
can strengthen relevant features, ignore local differences,
and improve the model robustness [36, 62].

3. Method
In this section, we first introduce some preliminaries and

background of low-quality image recognition and vector
quantization in Sec. 3.1. Then our proposed vector quan-
tization with self-attention for the quality-independent rep-
resentation learning method is explained in detail in Sec. 3.2
and 3.3. Finally, Sec. 3.4 introduces the overall architecture
and training objective of our method.

3.1. Preliminaries

Low-quality Image Recognition: For the low-quality
image recognition problem, given a clean dataset D =
{(x, y)} with image x and the corresponding label y, we
can generate various corrupted images using multiple types
of degradation functions Φ = {φ1, φ2, ..., φn}. Therefore,
the corrupted image can be formulated as follows.

x̃ = φk(x). (1)

Note that the identity function is also contained in the set
Φ to preserve the clean original images. Generally, these
images will be sent to the model for augmented training,
expecting good generalization performance on various com-
mon corruptions.

Suppose that the feature extracted from the backbone
network is marked as z, we have the cross-entropy loss
function as the training objective:

Lce = − log
exp(H(z)c)∑
c exp(H(z)c)

, (2)

where N is the number of examples in the mini-batch, H(·)
represents the head network, its output is the logit vector,
and c is the label of the feature z.
Vector Quantization: As shown in Fig. 2, for an input data
vector z, suppose that we have a learned codebook E ∈
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Figure 3. The overall architecture of our proposed method. The mini-batch of input contains both clean and corrupted images. Features
extracted from the backbone network are quantized by the codebook module. Then z and ẑ are concatenated and pooled. Subsequently,
after being enhanced by the SA module, the features are input into the head network to get the final output results.

Rn×d containing multiple patterns, we can obtain its code
k using the following formula:

ẑ =E(z) = ek,

where k = argmin
i

||z − ei||22,
(3)

where n represents the number of vectors in the codebook
and d denotes the dimension of each one. ei is the i-th item
in the codebook. When decoding, the vector ek is extracted
from the codebook with the index k to complete VQ, and
ek is usually denoted by ẑ, that is, the quantized vector.

It is obvious that a good codebook plays a key role
in vector quantization. VQ-VAE [51] proposed a varia-
tional autoencoder with a learnable codebook neural net-
work module to represent an image. They used a straight-
through estimator [2] with VQ loss, commitment loss, and
reconstruction loss to train the entire model end-to-end. In
this paper, we use the codebook module to represent fea-
tures, hoping to learn a quality-independent feature for low-
quality image recognition.

3.2. Quality-independent Representation Learning

Motivation: As mentioned in Sec. 1 and 2, many re-
searchers have shown that the degradation of features is the
cause of the decrease in the recognition performance of low-
quality images. Therefore, the key idea of this paper is to
make the model learn a quality-independent feature repre-
sentation. Assume that the quality-independent feature vec-
tor ẑ of an image is a linear combination of a series of fea-
tures (atoms):

ẑ =

n∑
i=0

αi · ei = α0 · e0 + α1 · e1 + · · ·+ αn · en. (4)

If the atoms form an overcomplete space E ∈ Rn×d, it can
be sparsely represented by E as:

α̂ = arg min
α

||α||0, s.t. E ·α ≈ ẑ. (5)

For a degraded image, the obtained feature can be con-
sidered as the noisy version of ẑ, that is, z = ẑ + ϵ, where
ϵ observes a Gaussian distribution with mean zero and stan-
dard deviation σ. Recovering ẑ from z is a maximum a
posteriori probability (MAP) problem. Through sparse rep-
resentation, we can solve this problem by the following op-
timization objective:

α̂ = arg min
α

||z − E ·α||22 + λ · ||α||0. (6)

Then the quality-independent feature is given by ẑ = E · α̂.
Similar to sparse representation learning, we can make the
model learn the essential feature and eliminate redundant
information by constructing an overcomplete feature space
and sparse representation coefficients.
Method: But there are two variables to learn in Eq. (6): the
overcomplete space E and the coefficient α. The conven-
tional sparse dictionary learning update algorithm is com-
plex and end-to-end training in deep neural networks is dif-
ficult. Inspired by the discrete vector quantization (VQ),
we can directly set the coefficient α as a one-hot vector, so
that the latter term in Eq. (6) becomes a constant. Although
this operation may cause some distortion of the feature vec-
tor, we will improve it later in Sec. 3.3. Replacing E · α
with ẑ in Eq. (6), we have min||z − ẑ||22 to learn such a
discrete representation space. This optimization objective
is the same as the VQ-loss function in VQ-VAE. They use
a parameterized module called codebook to learn a discrete
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representation space. The VQ-loss function for updating the
codebook parameters is as follows:

Lvq = ||ẑ − sg(z)||22, (7)

where sg(·) represents the stop-gradient operation, ẑ is the
quantized vector or the quality-independent feature in our
method.

Combining Eqs. (7) and (3) as our training objectives, we
can use deep neural networks to learn the codebook end-to-
end. Therefore, from the above discussion, we choose to
introduce the codebook module into our recognition model
to learn a quality-independent, essential feature representa-
tion through a large number of augmented data containing
clean and degraded images, simultaneously.

3.3. Enhance the Representation by Self-attention

In standard vector quantization, it usually replaces the
feature z with the quantized vector ẑ directly and inputs it
into the subsequent network. But, as shown in Eq. (3) and
Sec. 2, vector quantization uses the one-hot coding vector,
that is, always select the closest vector from the codebook
space, which will inevitably lead to the loss of some use-
ful information. The experimental results also show that
although ẑ contains quality-independent features, perfor-
mance improvement is limited. And some information may
be lost due to the one-hot coding vector, the direct replace-
ment operation, or the incomplete codebook in the early
training stage. Based on this consideration, we choose to
fuse z and ẑ to supplement lost information and further im-
prove representation. Through the results of the carefully
designed ablation experiment described in Sec. 4.1, we fi-
nally choose to concatenate the quantized vector ẑ with the
feature z.

As described in Sec. 2, for low-quality image recogni-
tion task, we hope that the model can pay more attention
to the features of the object itself in the image while ignor-
ing the background and other irrelevant information. To en-
hance the extracted quality-independent feature, we input
the fused feature representation concat(ẑ, z) into a self-
attention module. Specifically, we use three MLP networks
to generate K,Q, V , respectively. Then the output zsa can
be formulated as:

zsa = softmax (K ·QT /
√
2) · V. (8)

Through the self-attention module, the model can adap-
tively further retain key information and improve the
quality-independent representation described in Sec. 3.2.
The feature will then be sent to the head network to pro-
duce the final classification results.

3.4. Overall Architecture and Training Strategy

The general structure of our approach is shown in Fig. 3.
The batch input of the model includes clear images and sim-

ulated low-quality degraded images for augmented training.
The data are generated by Eq. (1) as described in Sec. 3.1.
As described in Sec. 3.1, the similarity between the feature
z extracted from the backbone network and the item in the
codebook was calculated, and the most similar item is se-
lected as the quantized feature ẑ. The vector quantization
process can be expressed by the formulation Eq. (3). And
we use Eq. (7) to optimize the parameters in the codebook
module.

In addition to Eq. (7), there is a commitment loss in stan-
dard vector quantization as an additional constraint on the
encoder (backbone). The commitment loss can be formu-
lated as follows.

Lcmt = ||z − sg(ẑ)||22. (9)

This loss is used to optimize the parameters in the backbone
network and aims to prevent collapse and make the output
of the backbone network consistent with the codebook em-
bedding space.

Subsequently, we concatenate z with ẑ, transform it as a
vector through global average pooling (GAP), and then in-
put them into the self-attention module. The output feature
can be obtained from Eq. (8). Then the enhanced feature
representation passes through two fully connected layers to
get the final classification result. The overall training ob-
jective of our method consists of three losses, as stated in
Eqs. (2), (7) and (9), that is, cross-entropy loss, VQ loss,
and commitment loss. Total loss can be formulated as:

Ltotal = Lvq + β · Lcmt + λ · Lce, (10)

where β is the weight of commitment loss, we set β = 0.25
according to the original setting in [51], λ is the weight of
loss balance, we empirically set it at 1. Finally, the model
uses the total loss function for end-to-end training.

4. Experiments
Dataset: The ImageNet-C benchmark dataset [22] con-
tains 19 types of common corruptions in 5 severity levels.
Among them, 15 corruption types (Gaussian / shot / impulse
noise, glass / motion / defocus / zoom blur, contrast, elas-
tic, JPEG, pixelate, frost, fog, snow, and brightness) are in
4 categories for augmented training and 4 corruption types
(speckle noise, Gaussian blur, spatter, and saturate) to test
the robustness of the model.

In Sec. 4.1 - 4.2, we use the 15 types of degradation func-
tion and the identity function as described in Sec. 3.1 to
generate the training data. Then we tested the performance
on the ImageNet-C validation set. The mean corruption er-
ror (mCE) is the metric for low-quality image classification,
which can be calculated using the following.

mCE =
1

15

15∑
c=1

∑5
s=1 Errc,s∑5

s=1 ErrAlexNet
c,s

, (11)
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where c represents the index of corruption type, s is the
severity level. Note that the error is normalized by the
vanilla AlexNet error in the same validation set.

In Sec. 4.3, we first compare the robustness of our
method with other methods on 4 types of unseen cor-
ruption in ImageNet-C through direct testing. Then we
adopt the same augmentation strategy and training settings
in [21] to train and test the robustness of the distribution
shift validation set ImageNet-R [21] and the adversarial
dataset ImageNet-A [24]. ImageNet-R contains sketches,
art, painting, toys, and other style images, while ImageNet-
A provides adversarial examples.
Training Settings: In our method, we used ResNet-50 [20]
and ResNeXt-101 [57] as our backbone. For the codebook
E ∈ Rn×d , we set n = 10000 and d = 2048. We employed
Adam [30] as the optimizer with an initial learning rate of
0.001. The cosine annealing function was adopted as the
learning rate adjustment strategy. The batch size was set
at 512 and 4× Nvidia GeForce RTX 3090 were used for
training. Noted that some results of the comparison method
in this section are reproduced according to their paper.

4.1. Ablation Study

First of all, we conducted several experiments to inves-
tigate the impact of each module in our proposed method
on the performance of low-quality image recognition. We
roughly divide our module into three parts, namely the
codebook, the fusion mode, and the self-attention module.
Without codebook means, we use the corrupted generated
data to fine-tune the vanilla model. For feature fusion, we
adopted three different modes, ”replace” means directly re-
placing the original feature vector with the quantized one as
standard vector quantization, ”add” means that we add the
codebook item to the original feature, and the concatenate
operation we finally used is denoted by ”concat”.

The experimental results are shown in Table 1. ”clean”
and ”mCE” represent the top-1 accuracy and mCE results
on clean and corrupted images, respectively. From the ta-
ble, we can obtain that concat is the best mode for feature
fusion. The reason may be that the original feature and the
quantized item can complement each other with useful in-
formation. However, direct replacement or addition will
cause the lost or mixture of key information, which may
affect subsequent recognition. Moreover, the experimental
results also show that each module in our proposed method
contributes to the improvement of recognition performance.

We also calculated the parameters and FLOPS of our
method for training. Since our method is plug-and-play, the
increased parameters and FLOPS are mainly from the code-
book and self-attention module. These results are shown in
Table 1. We can conclude that, compared to the baseline
model and QualNet, the additional parameters and FLOPS
required by our method are acceptable. We have also stud-

ied the setting of the codebook size n, as detailed in the
supplementary material Sec. B.

CodeBook Fusion mode SA clean ↑ mCE ↓
- - - 73.1 53.7
✓ replace - 74.3 50.1
✓ add - 74.7 48.9
✓ concat - 76.2 45.7
✓ concat ✓ 76.6 43.1

Table 1. The ablation study of our method on each module. With-
out codebook means the fine-tuning method. ”replace” means di-
rectly replace z with ẑ, ”add” represents we add ẑ to z, and the
concatenate operation we finally used is denoted by ”concat”. The
best result are indicated in bold.

Model mCE ↓ # Params. # FLOPS
Baseline [20] 53.7 2.5× 107 4.11G
QualNet [29] 50.3 1.2× 108 14.46G

Ours 43.1 5.8× 107 4.13G

Table 2. The mCE value, number of parameters, and the FLOPS
of different models for training. Noted that the backbone network
of all models is ResNet50.

4.2. Comparison with State-Of-The-Art Methods

In this section, we have compared our proposed method
with other state-of-the-art methods to demonstrate the ef-
fectiveness of our model in low-quality image recognition.
We selected several recent methods, such as DDP [55],
URIE [47], and QualNet [29]. The experimental training
settings are consistent with these methods. We tested the
accuracy (higher is better) and mCE (lower is better) of the
ImageNet-C validation set on two backbone network archi-
tectures, ResNet-50 and ResNeXt-101.

Method Backbone Clean Known UnKnown mCE ↓
Vanilla [20]

ResNet50

76.1 39.1 46.7 76.7
DDP [55] 72.1 48.2 50.7 62.78
URIE [47] 73.8 55.1 56.5 55.7
QualNet [29] 75.4 61.1 58.1 50.3
Ours 76.6 65.6 60.2 43.1
Vanilla [20]

ResNeXt101
79.6 47.1 55.5 69.7

QualNet [29] 77.8 65.5 63.3 42.6
Ours 80.3 68.6 64.5 37.9

Table 3. The average top-1 accuracy of clean images, 15 types of
corrupted images that are known in training, 4 types of unknown
corrupted images, and the mCE value over ImageNet-C. We com-
pared our method with others in ResNet50 and ResNeXt101 back-
bone network. The best results are indicated in bold.

As shown in Table 3, ”clean”, ”known”, and ”unknown”
represent the average top-1 accuracy on clean images, im-
ages with 15 types of corruption that are known during
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Figure 4. The detailed top-1 accuracy results of the different methods for each corruption type in benchmark dataset ImageNet-C. Best
viewed in color.

training, and 4 types of unknown corruption, respectively.
”mCE” is the mean Corruption Error which is already nor-
malized as described at the beginning of Sec. 4. The de-
tailed top-1 accuracy of the 15 types of corruption can be
seen in Fig. 4. On the basis of the above results, we find that
not only does our method perform better on low-quality im-
ages but also improves the accuracy of clean images, from
which we can verify the superiority of our method.

4.3. Model Robustness

In this section, we tested the robustness of our pro-
posed method. First, we applied our model directly to four
types of corruption (speckle noise / Gaussian blur / spatter
/ saturation) that were unknown during ImageNet-C train-
ing [22]. All comparison methods were conducted in the
same training settings as us. From the results shown in Ta-
ble 4, we can see that our method has better recognition
accuracy on low-quality images than other methods.

Method speckle noise gaussian blur spatter saturate
Vanilla [20] 35.5 49.2 41.9 60.2
AugMix [23] 50.6 47.2 53.3 61.5
ANT [44] 58.1 43.1 52.4 61.3
DeepAugment [21] 61.1 52.1 53.8 61.5
QualNet [29] 63.1 50.5 54.0 62.3
Ours 68.4 54.1 55.7 62.8

Table 4. The detailed average top-1 accuracy results on 4 types of
unknown corruptions during training. This group of experiments
is designed to test the robustness of the model. The best results
are indicated in bold.

To further explore the robustness of our method, we also
performed experiments on another common benchmark
dataset ImageNet-R [21], ImageNet-A [24]. The ImageNet-

Method Clean ImageNet-C ↓ ImageNet-A ImageNet-R
Vanilla [20] 76.1 76.7 0.0 36.2
+ Ours 76.6 71.1 3.7 38.6
DeepAugment [21] 76.6 60.4 3.5 42.2
+ AugMix [23] 75.8 53.5 3.9 46.8
+ DAT [35] 77.1 50.8 6.8 47.8
DAu+AM+Ours 77.4 48.7 5.9 49.3

Table 5. The top-1 accuracy results on ImageNet-A and ImageNet-
R (higher is better). For ImageNet-C, we still use mCE value to
evaluate the performance of the model (lower is better). It’s worth
noting that in these experiments, we just use the same augmented
training strategy as the baseline model without any corrupted im-
ages. The best results are indicated in bold.

R dataset contains multiple styles of images, such as sketch,
toy, and painting, and is used for testing the model’s gener-
alization ability on distribution shift data. ImageNet-A gen-
erates the corresponding adversarial samples for the images
in the ImageNet validation set. Due to the plug-and-play
property of our method, in these experiments, we combined
our method with others to investigate whether it can con-
tinue to bring gains. It is worth noting that in these ex-
periments we just use the same augmented training strategy
as the baseline model without using any corrupted images.
The experimental results are shown in Table 5. It is obvi-
ous that the performance of these distribution shift data is
further improved after combining our methods. The result
of our method on ImageNet-A is slightly less than that of
DAT [35] because it used adversarial training.

4.4. Analysis of Quality-Independent Features

In this section, we performed visualization analysis to
show that our method can learn a quality-independent fea-
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Figure 5. Corruption-wise feature distribution. Symbols with different colors are from different corruptions.
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Figure 6. Class-wise feature distribution. Symbols with similar colors have the same labels.

ture representation.

First, we created t-SNE [52] visualization to show the
learned feature distribution of our proposed VQ-based
method. The results are shown in Fig. 5 and Fig. 6, respec-
tively. In Fig. 5, “Before”: Although the features are ex-
tracted from images with the same label, their distribution
is divided, and this may result in poor recognition perfor-
mance on low-quality images. ”After”: The feature distri-
bution becomes relatively centralized through our method.
In Fig. 6, marks with large color differences represent dif-
ferent labels of image features. Dot marks denote clean fea-
tures, while triangle marks indicate degraded ones. It shows
that whether the images are clean or degraded, our method
can better aggregate features in the same class. These re-
sults show that the features extracted by our method are in-
dependent of image quality.

We also performed Grad-CAM [45, 61] on the model to
show the attention map. From Fig. 1 we find that, compared
to other methods, our model can still focus on class-relevant
regions without interference from low-quality images. This
qualitative result also proves that our method can extract
quality-independent features, and the model has better ro-
bustness against common corruption. More Grad-CAM re-
sults can be found in our supplementary material in Sec. A.

5. Limitations & Conclusion
This paper has presented a plug-and-play method for

low-quality image recognition through vector quantization
and self-attention. Among them, VQ can map clean and
multiple degraded features to the same discrete space to ex-
tract quality-independent features, which is beneficial for
robust recognition. Experimental results in various settings
verified the superiority of our method. Despite the promis-
ing results of our VQ-based approach, the optimality of a
strategy that simply selects the most similar item in the
codebook to quantify the input is questionable. We have
experimentally attempted to select multiple items (e.g., top-
k similar items), but the results did not improve. Therefore,
the optimization of VQ-based quality-independent repre-
sentation learning deserves further study.
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