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Abstract

Video anomaly detection (VAD) is a significant computer
vision problem. Existing deep neural network (DNN) based
VAD methods mostly follow the route of frame reconstruc-
tion or frame prediction. However, the lack of mining and
learning of higher-level visual features and temporal con-
text relationships in videos limits the further performance
of these two approaches. Inspired by video codec theory,
we introduce a brand-new VAD paradigm to break through
these limitations: First, we propose a new task of video
event restoration based on keyframes. Encouraging DNN to
infer missing multiple frames based on video keyframes so
as to restore a video event, which can more effectively mo-
tivate DNN to mine and learn potential higher-level visual
features and comprehensive temporal context relationships
in the video. To this end, we propose a novel U-shaped Swin
Transformer Network with Dual Skip Connections (USTN-
DSC) for video event restoration, where a cross-attention
and a temporal upsampling residual skip connection are in-
troduced to further assist in restoring complex static and
dynamic motion object features in the video. In addition,
we propose a simple and effective adjacent frame differ-
ence loss to constrain the motion consistency of the video
sequence. Extensive experiments on benchmarks demon-
strate that USTN-DSC outperforms most existing methods,
validating the effectiveness of our method.

1. Introduction

Video anomaly detection (VAD) is a hot but challenging

research topic in the field of computer vision. One of the

most challenging aspects comes from the scarcity of anoma-

lous samples, which hinders us from learning anomalous

behavior patterns from the samples. As a result, it is hard

for supervised methods to show their abilities, as unsuper-

vised methods are by far the most widely explored direc-

tion [1, 2, 4, 8, 10, 19, 25–27, 31, 33, 37, 41–43, 47–51]. To

†Corresponding authors.
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(a) video codec (b) video event restoration

Figure 1. Video codec vs. video event restoration. Compared

to video decoding based on explicit motion information, our pro-

posed video event restoration task encourages DNN to automat-

ically mine and learn the implied spatio-temporal relationships

from several frames with key appearance and temporal transition

information to restore the entire video event.

determine whether an abnormal event occurs under unsu-

pervised, a general approach is to model a regular pattern

based on normal samples, leaving samples that are incon-

sistent with this pattern as anomalies.

Under the unsupervised framework, reconstruction and

prediction-based approaches are two of the most represen-

tative paradigms [10, 19] for VAD in the current era of

deep neural networks (DNN). The reconstruction-based ap-

proaches typically use deep autoencoder (DAE) to learn to

reconstruct an input frame and regard a frame with large

reconstruction errors as anomalous. However, the power-

ful generalization capabilities of DAE enable well recon-

struction of anomalous as well [8]. This is attributed to

the simple task of reconstructing input frames, where DAE

only memorizes low-level details rather than understand-

ing high-level semantics [17]. The idea of the prediction-

based approach assumes that anomalous events are un-

predictable and then builds a model that can predict fu-

ture frames according to past frames, and poor predictions

of future frames indicate the presence of anomalies [19].

The prediction-based approaches further consider short-

term temporal relationships to model appearance and mo-

tion patterns. However, due to the appearance and motion

variations of adjacent frames being minimal, the predic-

tor can predict the future frame better based on the past

few frames, even for anomalous samples. The inherent

lack of capability of these two modeling paradigms in min-

ing higher-level visual features and comprehensive tempo-
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ral context relationships limits their further performance im-

provement.

In this paper, we aim to explore better methods for

mining complex spatio-temporal relationships in the video.

Inspired by video codec theory [15, 18], we propose a

brand-new VAD paradigm: video event restoration based on

keyframes for VAD. In the video codec [18], three types of

frames are utilized, namely I-frame, P-frame, and B-frame.

I-frame contains the complete appearance information of

the current frame, which is called a keyframe. P-frame con-

tains the motion difference information from the previous

frame, and B-frame contains the motion difference between

the previous and next frames. Based on these three types

of frames containing explicit appearance and motion rela-

tive relationships, the video can be decoded. Inspired by

this process, our idea sprang up: It should be also theoreti-

cally feasible if we give keyframes that contain only implicit

relative relations between appearance and motion, and then

encourage DNN to explore and mine the potential spatio-

temporal variation relationships therein to infer the missing

multiple frames for video event restoration. To motivate

DNN to explore and learn spatio-temporal evolutionary re-

lationships in the video actively, we do not provide frames

like P-frames or B-frames that contain explicit motion in-

formation as input cues. This task is extremely challenging

compared to reconstruction and prediction-based tasks, be-

cause DNN must learn to infer the missing multiple frames

based on keyframes only. This requires a strong regularity

and temporal correlation of the event in the video for a better

restoration. On the contrary, video restoration will be poor

for anomalous events that are irregular and random. Under

this assumption, our proposed keyframes-based video event

restoration task can be exactly applicable to VAD. Fig. 1

compares the video codec and video event restoration task

with an illustration.

To perform this challenging task, we propose a novel

U-shaped Swin Transformer Network with Dual Skip

Connections (USTN-DSC) for video event restoration

based on keyframes. USTN-DSC follows the classic U-

Net [36] architecture design, where its backbone consists of

multiple layers of swin transformer (ST) [21] blocks. Fur-

thermore, to cope with the complex motion patterns in the

video so as to better restore the video event, we build dual

skip connections in USTN-DSC. Specifically, we introduce

a cross-attention and a temporal upsampling residual skip

connection to further assist in restoring complex dynamic

and static motion object features in the video. In addition, to

ensure that the restored video sequence has the consistency

of temporal variation with the real video sequence, we pro-

pose a simple and effective adjacent frame difference (AFD)

loss. Compared with the commonly used optical flow con-

straint loss [19], AFD loss is simpler to be calculated while

having comparable constraint effectiveness.

The main contributions are summarized as follows:

• We introduce a brand-new video anomaly detection

paradigm that is to restore the video event based on

keyframes, which can more effectively mine and learn

higher-level visual features and comprehensive tempo-

ral context relationships in the video.

• We introduce a novel model called USTN-DSC for

video event restoration, where a cross-attention and a

temporal upsampling residual skip connection are in-

troduced to further assist in restoring complex dynamic

and static motion object features in the video.

• We propose a simple and effective AFD loss to con-

strain the motion consistency of the video sequence.

• USTN-DSC outperforms most existing methods on

three benchmarks, and extensive ablation experiments

demonstrate the effectiveness of USTN-DSC.

2. Related Work

2.1. Video Anomaly Detection

Over the past years, extensive works have been devoted

to solving the VAD problem [4, 8, 10, 19, 25–27, 31, 33, 41–

44,46–48,50,51], which can be mainly categorized into two

main groups based on traditional methods and deep neural

network-based methods.

VAD based on traditional methods. Traditional VAD

methods mainly utilize statistical models based on hand-

extracted features or classical machine learning techniques.

For example, Adam et al. in [1] characterized the normal

local histograms of optical based on statistical monitoring

of low-level observations at multiple spatial locations. Kim

and Grauman [13] modeled the local optical flow pattern

with a mixture of probabilistic principal component analyz-

ers and trained a space-time markov random field to infer

abnormalities. Cong et al. in [6] introduced a sparse recon-

struction cost over the normal dictionary to measure the nor-

mality of testing samples. Although these traditional meth-

ods achieve better results in specific scenarios, their perfor-

mance in some complex scenarios is severely constrained

owing to poor feature representation capabilities.

VAD based on deep learning methods. With deep learn-

ing techniques flourishing in various fields [11, 14, 32, 34,

35, 38], anomaly detection methods based on deep learning

have also been widely studied. The most prevalent of these

methods are frame reconstruction and frame prediction. For

example, Hasan et al. in [10] used the extracted features

as input to a fully connected neural network-based autoen-

coder to learn the temporal regularity in the video. A reg-

ularity score was calculated according to the reconstruction

error and used to determine whether an abnormality occurs.

Xu et al. in [45] proposed a stacked denoising autoencoder

to separately learn both the appearance and the motion fea-

tures. Liu et al. in [20] presented a video anomaly detection
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method that predicts the future frame with the U-Net archi-

tecture [36]. Yang et al. in [47] introduced a dynamic lo-

cal aggregation network with adaptive clusterer for enhanc-

ing the representation capability of normal prototypes in the

prediction paradigm. Although the approaches of frame re-

construction and frame prediction currently show promising

results, the lack of mining and learning of higher-level vi-

sual features and comprehensive temporal context relation-

ships hinder further performance improvement.

2.2. Video Restoration

Video restoration, such as video super-resolution [3,7,9],

denoising [12], deblurring [39], and inpainting [52], has be-

come a popular research topic in recent years. It aims to

restore a clear and high quality video from a degraded low

quality video. For example, Geng et al. in [7] proposed a

real-time spatial temporal transformer to effectively incor-

porate all the spatial and temporal information for synthe-

sizing high frame rate and high resolution videos. Kim et
al. in [12] proposed a fast online video deblurring method

by efficiently increasing the receptive field of the network

without adding a computational overhead to handle large

motion blurs. Sheth et al. in [39] proposed an unsuper-

vised deep video denoiser, a convolutional neural network

architecture designed to be trained exclusively with noisy

data. Zou et al. in [52] proposed a progressive temporal

feature alignment network for video inpainting, which fills

the missing regions by making use of both temporal convo-

lution and optical flow.

Difference from these existing video restoration tasks, in

this paper, we propose a new video restoration task that re-

stores the video event based on keyframes. This task is more

challenging compared to existing video restoration tasks be-

cause the missing multiple frames result in the discontinu-

ity of temporal clues. This requires a strong regularity and

temporal correlation of the events in the video for a better

restoration. On the contrary, there will be a large restora-

tion error for anomalous events, as it is irregular and ran-

dom. Therefore, the task of restoring the video event based

on keyframes can be well applied to VAD.

3. Method
In the unsupervised VAD framework, most approaches

devote to designing models that characterize normal behav-

ior patterns and consider deviations from them as anomaly

classes. To explore a superior approach to modeling normal

behavior, inspired by video codec theory [15], we propose

a novel normal behavior modeling paradigm for VAD: Re-

store video event based on Keyframes to detect anomalies.

Concretely, given a video sequence of length T , we take L
keyframes in the video sequence as input, aiming to recover

the missing T − L frames according to these keyframes.

Compared with reconstruction or prediction tasks, it is more

challenging but better to motivate DNN to mine and learn

the higher-level visual features and comprehensive tempo-

ral context relationships in video sequences. To meet this

challenging task, we propose a novel model called USTN-

DSC for video event restoration. Next, we will describe the

architecture and workflow of USTN-DSC in detail.

3.1. Network Overview

USTN-DSC follows the U-Net [36] architecture design,

which consists of four parts: a feature extractor, an encoder,

a decoder, and an output head. The feature extractor and

output head mainly consist of 2D convolutional layers, and

the encoder and decoder are a combination of swin trans-

former (ST) [21] and 2D convolutional layers.

Fig. 2 illustrates the overall framework of USTN-DSC.

Given a video sequence S =
{
It|It ∈ R

H× W× C
}T

t=1
,

where T denotes the length of the video sequence and

H,W,C denote the height, width and number of channels

of a video frame, respectively. Following the video codec

theory [18], we first select the first and last frames of the

video sequence as keyframes. To encourage USTN-DSC to

automatically learn potential appearance and motion evolu-

tion relationships in the video sequence, instead of giving P-

frames and B-frames with explicit motion information, we

take the intermediate frame of video sequences as tempo-

ral transition frame for spatio-temporal relationship devel-

opment. Therefore, we take I1, I(T−1)/2+1, and IT of the

video sequence S as the three keyframes of the input, and

stack them up in chronological order as X ∈ R
3×H×W×C .

Then, the input X is first processed by the feature extraction

module Fe for initial feature extraction and dimensionality

reduction. Next is the encoding part, and the encoder con-

sists of four stages, denoted by En, n = 0, 1, 2, 3 , each

of which is a stack of ST encoder block EST
n followed

by a convolution layer ϕn , except for the final stage E3.

Symmetrically with the encoder, the decoder is denoted by

Dn, n = 0, 1, 2, 3, each of which is a stack of ST decoder

block DST
n followed by a deconvolution layer ϕ−1

n , except

for the first stage D0. Finally, the output of the decoder is

further transformed by the output head Fout to obtain the

restored video sequence Ŝ =
{
It|It ∈ R

H× W× C
}T

t=1
.

Specifically, in USTN-DSC, Fe first extracts the features

fX ∈ R
3×H

′×W
′×C

′
from X . Then, EST

0 first takes fX

as input and obtains fe
0 = EST

0 (fX) ∈ R
3×H

′×W
′×C

′
and

then follows a convolutional layer to obtain e0 = ϕ0(f
e
0 ) ∈

R
3×H

′
/2×W

′
/2×C

′
. Subsequently, we have⎧⎪⎨

⎪⎩
fe
n = EST

n (en−1), n = 1, 2, 3

en = ϕn(f
e
n), n = 1, 2

e3 = fe
3

. (1)

During the encoding phase, each en corresponds to the

output features maps of the three keyframes, i.e. en ≡
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Figure 2. The overview architecture of USTN-DSC. (a) The complete network structure of USTN-DSC. TU represents the temporal

upsampling module. (b) The structure of ST Encoder Block. LN represents Layer Normalization. W-MSA and SW-MSA are multi-head

self-attention modules with regular and shifted windowing configurations, respectively. (c) The structure of ST Decoder Block. W-MCA

and SW-MCA are multi-head cross-attention modules with regular and shifted windowing configurations, respectively.

{
e1n, e

(T−1)/2+1
n , eTn

}
. After obtaining the final output e3

from the encoder, a temporal upsampling (TU) module lo-

cated at the bottleneck generates the initial features q0 =
TU(e3) based on e3 for subsequent restoration of missing

frames. Then, q0 is further divided into two parts qf0 and

qb0. qf0 represents the initial features of the missing frames

between I1 and I(T−1)/2+1, and qb0 represents the one be-

tween I(T−1)/2+1 and IT . For the features corresponding

to the timestamps of I1, I(T−1)/2+1, and IT , we directly

keep following the ones on the corresponding time points

in e3. Eventually, the prototype features used for decoder

input are represented as Q := (e13, q
f
0 , e

(T−1)/2+1
3 , qb0, e

T
3 ).

Next, we move on to the decoding phase. First, DST
3 in

D3 takes e3 and Q as input and obtains fd
3 = DST

3 (e3, Q)
and then follows a deconvolution layer to obtain d3 =
ϕ−1
3 (fd

3 ). It is noted that DST
n here differs from the orig-

inal ST block which only compute self-attention, we con-

struct a skip connection from the encoder to compute cross-

attention, which is the first channel of the dual skip con-

nections. Next, we construct the second skip connection.

The features e2 from the encoder are temporally upsampled

into eu2 = TU(e2) using the TU module. Then, similar to

the synthesis process of the prototype features Q, eu2 and

e2 are temporally dimensionally concatenated to obtain the

combined features er2. Then, er2 are added to d3 in the form

of residual and fed into DST
2 followed by a deconvolution

layer ϕ2
−1. The operation of the subsequent layers is simi-

lar and we formulate them as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
d3 = ϕ−1

3 (DST
3 (e3, Q)),

ern = TU(en)
⋃

en, n = 0, 1, 2

dn = ϕ−1
n (DST

n (en, dn+1 + ern)) n = 1, 2

d0 = DST
0 (e0, d1 + er0)

. (2)

Finally, the output features d0 are transformed into the re-

stored video sequence Ŝ =
{
It|It ∈ R

H× W× C
}T

t=1
by

the output head Fout. we show the specific structure of the

Fe and Fout in the supplementary materials.

3.2. Encoder

The encoder of USTN-DSC mainly consists of stacked

multiple ST encoder blocks followed by a convolutional

layer. The detailed structure of the ST encoder block is
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shown in Fig. 2(b). Although we deal with video data here,

we do not use the division of the 3D shifted windows as

in the video swin transformer [22] for capturing the tempo-

ral relationships, as this is a bit trivial for the input of only

three frames. In order to use a more simple way to equip

the ST with the ability to learn long-range spatio-temporal

dependencies, we calculate the local window attention by

combining all the windows on the space corresponding to

the current window simultaneously. Specifically, given an

input video sequence of size 3 × H
′ × W

′ × C
′
, a ST

block partitions it into non-overlapping windows of size

3×
⌈
H

′

M

⌉
×
⌈
W

′

M

⌉
×C

′
. Here we choose, H

′
= W

′
= 64,

M = 4 and C
′
= 96. Then, we reshape the video frame

features with divided windows into H
′
W

′

M2 × 3M2 × C
′
,

where H
′
W

′

M2 is the total number of windows. Next, the re-

shaped features are first layer normalized (LN) and followed

by a window-based multi-head self-attention (W-MSA) [21]

to compute the local attention of each window. Immediately

after, a multi-layer perception (MLP) follows another LN

layer for further features transformations. Then, an addi-

tional ST block with shifted window-based multi-head self-

attention (SW-MSA) [21] is applied to implement cross-

window interactions to learn long-range dependency infor-

mation. In this second ST block, every module is the same

as the previous block except that input features are shifted

by
⌊
M
2

⌋× ⌊
M
2

⌋
before window partitioning. Using this al-

ternating regular and shifting window partitioning way, it

not only makes the ST block requires less computationally

cost but also enables the ST block to have the cross-window

interaction capability, thus capturing long-range dependen-

cies in both spatial and temporal dimensions. Finally, the

outputs of such ST blocks are downsampled by a convolu-

tional layer with a stride of two, serving as the input of the

next encoder stage.

3.3. Decoder

Symmetrically with the encoder part, the decoder of the

USTN-DSC also consists of four stages with Dn, n =
0, 1, 2, 3, each of which in turn is followed by ST de-

coder block with a deconvolution layer for upsampling.

The detailed structure of the ST decoder block is shown

in Fig. 2(c). We restore the missing frames in the decod-

ing phase mainly by means of the conversion of the features

from the keyframes extracted from the encoder part. For the

missing video frames, they contain both slow moving ob-

jects, whose differences with keyframes are minimal, and

objects with large motion, which need to be synthesized by

inference of spatio-temporal relationship of the keyframes.

In order to cope with these two different motion patterns for

better restoration of missing video frames, we introduce the

dual skip connections in the decoder section. First, we in-

sert a corresponding multi-head cross-attention (MCA) af-

ter the regular and shifted windows-based multi-head self-

attention. The MCA receives the features from the output of

the previous decoding layer as query, and the features from

the corresponding level of the encoder as key and value. By

querying the features at different scales and distances in the

encoder part of the corresponding level, MCA enables the

decoder to assist in the generation of certain fast-motion ob-

ject features of the missing frames. Second, we design a TU

module consisting of a 3D deconvolution layer with a ker-

nel size of (T − 3) × 3 × 3 and stride size of 1 × 1 × 1
to upsample the features generated by the encoder to ob-

tain the features of the intermediate missing frames. (Note

that the TU module in the skip connection shares weights,

except for the one in the bottleneck section.) Then, the fea-

tures at the timestamps of the corresponding keyframes are

filled with the original features from the encoder. Finally,

the combined features are added to the output of the corre-

sponding level of the decoder in the form of residual. This

operation can compensate for the lack of original detail fea-

tures query in the cross-attention connection and can further

facilitate the decoder to better restore the detail information

of background and slow objects in video sequence.

3.4. Loss Function

We mainly consider the loss function from both appear-

ance and motion aspects. First, we use the charbonnier

loss [16], which compensates for the shortcomings of the

L1 and L2 losses, to compute the RGB differences between

the corresponding output frame It and the real frame Ît for

appearance constraint:

Lcb(Ît, It) =

√∥∥∥Ît − It

∥∥∥2 + ε2, (3)

where ε is set to 10−3 in our experiments. For the motion

constraint, we introduce a simple and effective AFD loss:

Lfd(
{
Ît

}T

t=1
, {It}Tt=1) =

T−1∑
t=1

√∥∥∥∥∥∥∥Ît − Ît+1

∥∥∥2 − ‖It − It+1‖2
∥∥∥∥
2

+ ε2.

(4)

AFD loss directly promotes motion consistency by con-

straining the difference between the pixel of adjacent frames

of the restored video sequence and the real video sequence.

Compared with the computationally expensive optical flow

constraint method, AFD loss is not only simple to compute

but also has a comparable temporal constraint effect. Fi-

nally, the overall loss function is given as follows:

Lall = Lcb + Lfd. (5)

3.5. Anomaly Detection on Testing Data

During the testing phase, we take T -frames as the pro-

cessing unit, but we do not use the error between each re-
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stored frame It and the real frame Ît as its corresponding

anomaly indicator. Because we find experimentally that

the keyframes and frames adjacent to the keyframes have

very slight errors with the real frames, even for anomalous

events. Therefore, we take the PSNR corresponding to

the frame with the largest mean square error between the

T -frames and the real frames as the anomaly detection in-

dicator for this video sequence, formulated as follows:

⎧⎨
⎩
t∗ = max

1≤t≤T

1
K

∑K
i=0(Ît,i − It,i)

2

PSNR(Ît∗ , It∗) = 10log10
[maxÎt∗

]2

1
K

∑K
i=0(Ît∗,i−It∗,i)2

,

(6)

where K is the total number of image pixels and maxÎt∗
is the maximum value of image pixels. We assign the

same PSNR value to each frame of a processing unit for

anomaly metric calculation. To quantify the probability of

anomalies occurring, we normalize each PSNR, following

work [29], to obtain anomaly scores in the range [0, 1]:

S(t) = 1− PSNR(Ît, It)−mintPSNR(Ît, It)

maxtPSNR(Ît, It)−mintPSNR(Ît, It)
.

(7)

4. Experiments
4.1. Experimental Setup

Datasets. We evaluate the performance of our method on

three classic benchmark datasets widely used in the VAD

community. (1) Ped2 [28]. It contains 16 training videos

and 12 testing videos in fixed scenarios. Abnormal events

include riding a bicycle, skateboarding, and driving a ve-

hicle on the sidewalk. (2) Avenue [24]. It consists of

16 training videos and 21 testing videos with 47 abnormal

events including throwing a bag, moving toward or away

from the camera, and running on the sidewalk. (3) Shang-

haiTech [26]. It contains 330 training videos and 107 testing

videos with 130 abnormal events, such as affray, robbery,

fighting, etc., distributed in 13 different scenes.

Evaluation Metric. Following the widely used evaluation

metrics in the field of VAD, we use the frame-level area

under the curve (AUC) of receiver operation characteristic

to evaluate the performance of our proposed method.

Training Details. In the training phase, we first resize each

frame to the size of 256× 256, while the values of the pix-

els in all frames are normalized to [0, 1]. Then, we use the

Adam optimizer with L2 and decoupled weight decay [23]

by setting β1 = 0.9 and β2 = 0.99 to train the USTN-

DSC. The initial learning rate is set to 2 × 10−4 and is

gradually decayed following the scheme of cosine anneal-

ing. The length of the output video sequence T is set to 9.

The ST block depth N of each stage in USTN-DSC is set

to 6. Training epochs are set to 100, 150, 200 on Ped2, Av-

Methods Ped2 Avenue SHTech

o
th

er
s

SCL [24] N/A 80.9 N/A

Unmasking [41] 82.2 80.6 N/A

AnomalyNet [51] 94.9 86.1 N/A

DeepOC [43] 96.9 86.6 N/A

MPED-RNN [30] N/A N/A 73.4

Scene-Aware [40] N/A 89.6 74.7

R
.

Conv-AE [10] 90.0 70.2 60.9

ConvLSTM-AE [25] 88.1 77.0 N/A

Stacked RNN [26] 92.2 81.7 68.0

AMC [31] 96.2 86.9 N/A

MemAE [8] 94.1 83.3 71.2

CDDA [5] 96.5 86.0 73.3

MNAD [33] 90.2 82.8 69.8

Zhong et al. [50] 97.7 88.9 70.7

P.

FFP [19] 95.4 84.9 72.8

AnoPCN [48] 96.8 86.2 73.6

MNAD [33] 97.0 88.5 70.5

ROADMAP [42] 96.3 88.3 76.6
MPN [27] 96.9 89.5 73.8

AMMC-Net [4] 96.9 86.6 73.7

DLAN-AC [47] 97.6 89.9 74.7

USTN-DSC 98.1 89.9 73.8

Table 1. Quantitative comparison with the state of the art for

anomaly detection. We measure the average AUC (%) on Ped2

[28], Avenue [24], and ShanghaiTech [26] datasets. The compar-

ison methods are listed in chronological order. (’R.’ and ’P.’ indi-

cate the reconstruction and prediction tasks, respectively.)

enue, and ShanghaiTech, respectively, with batch size set to

4. We train our model on a single NVIDIA RTX 3090 GPU.

4.2. Experiment Results

Comparison with Existing Methods. We compare the per-

formance of USTN-DSC with various state-of-the-art meth-

ods under different paradigms in Tab. 1. It can be seen from

Tab. 1 that the performance of our method on Ped2 and

Avenue datasets achieve state-of-the-art compared to other

methods and has a substantial improvement over the pio-

neer methods based on the deep learning reconstruction [10]

and prediction [19] paradigms. This demonstrates that our

method is a more effective modeling paradigm for learn-

ing normal behavior patterns to distinguish anomalies. For

the ShanghaiTech dataset, the performance of our method

does not achieve the optimum, but it is quite competitive

compared with other methods. Because the ShanghaiTech

dataset contains 13 different scenes, where the backgrounds

and motion objects involved are quite complex and variable.

This poses a higher demand on the ability of the model to

learn the spatio-temporal relationships. However, we ana-

lyze the effect of different ST block depth N on the model

performance in sec.4.3 and demonstrate that USTN-DSC is
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(a) Ped2

(b) Avenue

(c) ShanghaiTech

Figure 3. Examples of video events restoration on three datasets. For each dataset, the first row is the real video event sequence, the second

row is the restoration results of our method based on keyframes, and the third row is the restoration error map. The frames with red borders

are keyframes.

(b) Frame reconstruction (c) Frame prediction (d) Video events restoration(a) Target frame 

Figure 4. Compare the output results of USTN-DSC with recon-

struction and prediction-based methods for anomalous samples.

able to further improve the model performance as the depth

N continues to increase. In addition, USTN-DSC follows a

simple U-Net architecture design. We do not employ other

assists such as optical flow [4], adversarial training [19],

extraction of the foreground objects [30], or memory en-

hancement [8, 33]. Nevertheless, compared to these well-

equipped methods, USTN-DSC still surpassed them, which

further validates the effectiveness of our method.

Qualitative Results. We present the results of our method

to restore video sequences based on keyframes of abnor-

mal video samples on the ped2, avenue, and ShanghaiTech

datasets, respectively, in Fig. 3. It can be observed that for

the normal regions in the video frames, our method is able

to restore them well, while drastic errors occur for abnor-

mal event regions. Then, Fig. 4 shows the results of video

frames restored by our method compared with the output

of existing reconstruction-based [33] and prediction-based

methods [19]. It can be seen that the frame (located in

the middle of two keyframes) of the anomalous samples re-

stored by our method have much large distortion and defor-

mation errors in the anomalous region compared to the out-

put of the previous two methods. This can further demon-

strate that our approach, which considers the evolutionary

relationship between appearance and motion over the long

term, is able to effectively learn the more discriminative

behavioral patterns in normal videos and thus be able to

more accurately distinguish abnormalities. Fig. 5 shows

the anomaly score curves of some video clips on the three

datasets. Obviously, there is a sharp jump in the anomaly

score with the occurrence of anomalous events, and the

anomaly curve returns to flat when the anomalous events

disappear. This further demonstrates that our method has

excellent sensitivity to anomalies and can effectively detect

anomalous events.

4.3. Ablation Study and Analysis

In this section, we analyze the impact of several key

components, network parameters, and loss functions on the

performance of our method. Due to limited space, the anal-
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(a) Ped2 (b) Avenue (c) ShanghaiTech

Figure 5. Anomaly score curves of several test samples of our method on three benchmark datasets.

Ped2 Avenue ShanghaiTech

w/o DSC 91.1 83.2 67.4

w CAC 96.4(+5.3) 87.9(+4.7) 71.2(+3.8)

w TUC 95.2(+4.1) 85.4(+2.2) 70.6(+3.2)

w DSC 98.1(+7.0) 89.9(+6.7) 73.8(+6.4)

Table 2. The AUC(%) obtained by USTN-DSC with different skip

connection configurations on Ped2 [28], Avenue [24] and Shang-

haiTech [26] datasets. (DSC: dual skip connections, CAC: cross

attention connection, TUC: temporal upsampling connection)

Ped2 Avenue ShanghaiTech

w/o AFDL 97.2 88.5 71.5

w AFDL 98.1(+0.9) 89.9(+1.4) 73.8(+2.3)

Table 3. The AUC(%) obtained by USTN-DSC with or without

adjacent frames difference loss (AFDL) on Ped2 [28], Avenue [24]

and ShanghaiTech [26] datasets.

ysis of the selection of different video sequence lengths T
is given in the supplementary materials.

Dual Skip Connections Analysis. In Tab. 2, we show the

variation of the performance of our proposed network on the

three datasets from without any skip connection to equip-

ping two skip connections one by one. As we can see from

Tab. 2, for the encoder-decoder network without any skip

connection, its performance is quite unsatisfactory. When

adding these two skip connections in turn, the performance

of our method is significantly improved. Especially for the

addition of cross-attention skip connection, it boosts the

performance on Ped2, Avenue, and ShanghaiTech datasets

by 5.3%, 4.7%, and 3.8%, respectively. This shows that the

construction of dual skip connections plays a critical role in

contributing to video event restoration. More detailed anal-

ysis can be referenced in the supplementary materials.

AFD loss Analysis. Tab. 3 shows the performance differ-

ences on ped2, avenue, and ShanghaiTech datasets with and

without AFD loss. It can be seen that the AFD loss has

a performance boost on all three datasets, especially for

the ShanghaiTech dataset, where it improves the AUC by

2.3%. This is because the ShanghaiTech dataset involves 13

different scenarios with complex motion patterns of fore-

ground objects that have a higher dependence on motion

constraints. This demonstrates the effectiveness of our pro-

Ped2 Avenue ShanghaiTech

N=2 97.1 87.8 71.5

N=4 97.7(+0.6) 89.2(+1.4) 72.6(+1.1)

N=6 98.1(+1.0) 89.9(+2.1) 73.8(+2.3)

Table 4. The AUC(%) obtained by USTN-DSC with different ST

block depth N on Ped2 [28], Avenue [24], and ShanghaTech [26].

posed AFD loss for motion constraints.

ST Block Depth N Analysis. As shown in Tab. 4, we show

the performance variation on the Ped2, Avenue, and Shang-

haiTech datasets by setting N to 2, 4, 6. From the Tab. 4,

we can find that the performance of USTN-DSC on all three

datasets gradually improves as N increases. Interestingly,

for the Ped2 dataset, the performance improvement from

increasing N is quite slight, while the improvement is very

obvious for the Avenue and ShanghaiTech datasets. This

can be explained by the fact that the scenes in the Ped2

dataset are fixed and the motion patterns are relatively sim-

ple, so a shallow network can meet the modeling require-

ments. For the Avenue and ShangahiTech datasets, their

scenes are more complex and diverse, and place higher de-

mands on the modeling capabilities of the network. Due to

hardware constraints, we are not attempting to set a larger

N currently. However, it can be expected that the perfor-

mance on Avenue and ShanghaiTech datasets can be further

improved as N continues to increase.

5. Conclusions

In this paper, we introduced a brand-new video anomaly

detection paradigm that is to restore a video event based on

keyframes. To this end, we proposed a novel model called

USTN-DSC for video events restoration, where a cross-

attention and a temporal upsampling residual skip connec-

tion are introduced to further assist in restoring complex dy-

namic and static motion object features in the video. In ad-

dition, we introduced a temporal loss function based on the

pixel difference of adjacent frames to constrain the motion

consistency of the video sequence. Extensive experiments

on three benchmark datasets show that our method outper-

forms most existing state-of-the-art methods, demonstrating

the effectiveness of our method.
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