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Abstract

Deep image recognition models suffer a significant per-
formance drop when applied to low-quality images since
they are trained on high-quality images. Although many
studies have investigated to solve the issue through image
restoration or domain adaptation, the former focuses on vi-
sual quality rather than recognition quality, while the lat-
ter requires semantic annotations for task-specific training.
In this paper, to address more practical scenarios, we pro-
pose a Visual Recognition-Driven Image Restoration net-
work for multiple degradation, dubbed VRD-IR, to recover
high-quality images from various unknown corruption types
from the perspective of visual recognition within one model.
Concretely, we harmonize the semantic representations of
diverse degraded images into a unified space in a dynamic
manner, and then optimize them towards intrinsic semantics
recovery. Moreover, a prior-ascribing optimization strat-
egy is introduced to encourage VRD-IR to couple with var-
ious downstream recognition tasks better. Our VRD-IR is
corruption- and recognition-agnostic, and can be inserted
into various recognition tasks directly as an image enhance-
ment module. Extensive experiments on multiple image dis-
tortions demonstrate that our VRD-IR surpasses existing
image restoration methods and show superior performance
on diverse high-level tasks, including classification, detec-
tion, and person re-identification.

1. Introduction
We have witnessed the remarkable success made by deep

learning in image recognition tasks in recent years, such as
classification [25,33,66], detection [23,46,62,68], and seg-
mentation [9,51]. However, most of these approaches lever-
age the public datasets with high-quality images (e.g., Ima-
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Figure 1. Illustration of visual quality and recognition quality us-
ing different dehazing methods on hazy CUB [73]. The top-1 ac-
curacy is evaluated by VGG16 [66] pre-trained on clean CUB. Our
method, VRD-IR, is shown in bold. As we can see, higher visual
quality doesn’t mean higher recognition quality.

geNet [64], CoCo [47]) for training, and they suffer a signif-
icant drop when applied to low-quality images (e.g., hazy,
rainy, and noisy), since the statistical properties of pixels
are ruined by image degradation [75].

An intuitive approach to tackle this issue is to restore the
distorted images first, and then feed them into the succeed-
ing recognition models. With this line, various image en-
hancement methods have been developed to improve the hu-
man visual quality of corrupted images [15, 90]. However,
the visual quality and the recognition quality of an image
differ fundamentally from one another. As shown in Fig. 1,
the restored image with higher visual effect cannot guaran-
tee satisfactory performance on downstream high-level vi-
sion tasks [57, 67, 81].

Another feasible solution is to encourage the recognition
models to learn corruption-invariant feature representations,
which can be applied to low-quality images directly without
image recovery. For that purpose, numerous datasets have
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been created [26,50,80]. One common method is to narrow
the distribution distance between low- and high- quality im-
ages in feature space [32,37,67,81]. While promising, most
of these methods neglect the fact that the adverse impacts of
different degradation are quite different on semantic level.
On the other hand, they either assume that the task-specific
annotations is available during training, or just could han-
dle a single corruption/recognition task only, which hinders
the timely adaptation to changing external environment and
adjustment to flexible high-level tasks in real-world.

In this paper, we propose a visual recognition-driven im-
age restoration (VRD-IR) for multiple degradation, to re-
cover the recognition-friendly high-quality image from its
given degraded version without knowing the specific degra-
dation type and downstream high-level tasks. We first har-
monize the semantic features suffered from different degra-
dation into a unified representation spaces, and then opti-
mize them towards semantic recovery. Specifically, we de-
sign a model paradigm: Intrinsic Semantics Enhancement
(ISE), which can restore different degraded semantic repre-
sentations in a dynamic manner. It consists of a Degradation
Normalization and Compensation (DNC) module for map-
ping different degraded features to a degradation-invariant
space, and a Fourier Guided Modulation (FGM) for guid-
ing the feature enhancement from the statistical properties
in amplitude spectrum. For better perception of different
semantics, a prior-ascribing optimization strategy is pro-
posed. A semantic aware decoder (SAD) is first pre-trained
on both low- and high- quality images with the objective to
reconstruct the high-quality image from the corresponding
semantic features. To make full use of semantic information
and provide good guidance for ISE, a similarity ranking loss
is enforced during the pre-training of SAD. Then, we fix the
pre-trained SAD and force the ISE to improve the quality
of images reconstructed by SAD through enhancing the de-
graded semantic representations. In this way, we encourage
the ISE to modulate the degraded input features from the
perspective of machine vision.

Moreover, the proposed VRD-IR can be plugged into
pre-trained recognition models directly as a data enhance-
ment module. Compared with feature distillation-based
methods that require task-specific annotations for training,
our VRD-IR enjoys better flexibility and practicality.

We summarize our main contributions as follows:

• To the best of our knowledge, VRD-IR is the first
attempt towards a pure universal image restoration
framework for high-level vision. As the VRD-IR can
be integrated with various recognition models directly,
it is more practical in real world scenario.

• Considering the adverse impacts of different degrada-
tion in semantics, we design an Intrinsic Semantic En-
hancement (ISE) module to modulate the degraded se-

mantic representation in a dynamic manner.

• A prior-ascribing optimization strategy is proposed to
endow VRD-IR with capability to perceive degrada-
tion effects on semantic level. Guided by this, our ISE
can modulate degraded features from the perspective
of machine vision.

• We verify the effectiveness of our framework on di-
verse high-level vision tasks, including classification,
detection, and person re-identification. Experiments
results show the superiority of our method in recogni-
tion tasks under multiple degradation.

2. Related Works
2.1. Image Restoration

Image Restoration for Single Degradation. Image
Restoration methods for single degradation (IRSD) focus
on recovering clean images from those suffer from a spe-
cific degradation. SRCNN [15] is the first work to introduce
convolution neural network (CNN) to image restoration.
After that, numerous image restoration methods emerge
and have achieved great success, such as super-resolution
(SR) [36, 45, 91, 92], denoising [1, 3, 6, 22, 55, 90], dehaz-
ing [2,10,17,18,24,38,40,48,86], deraining [19,43,52,58,
61,79,87], and deblurring [5,11,21,34,35,63]. Some works
also try to handle multiple kinds of degradation with one
designed network, such as DnCNN [88], MPRNet [85], and
HINet [8]. Recently, transformer [72] is also applied in im-
age restoration tasks [44, 76, 84]. However, these methods
cannot handle multiple degradation simultaneously, which
limits their application in real-world.
Image Restoration for Multiple Degradation. Recently,
image restoration for multiple degradation (IRMD) meth-
ods are proposed to handle different types of degradation
simultaneously with a single network. All-in-One Net-
work [42] is proposed to remove different weather degra-
dation with one network. IPT [7] achieve all-in-one image
restoration with multiple heads, multiple tails, and a shared
transformer-based backbone. AirNet [39] distinguishes dif-
ferent image degradation in latent space with contrastive
learning. TransWeather [70] uses transformer to handle var-
ious weather degradation. Although these methods enjoy
better flexibility, they consider less on recognition quality.

2.2. High-level Vision in Degraded Scenarios.

With the development of the autonomous driving and
surveillance analysis, robust visual recognition under dif-
ferent distorted scenes has garnered increasing attention in
recent years. Some works [13, 14, 71] have revealed that
the performance of high-level task based on CNN will de-
crease when facing corrupted images. DDP [75] recon-
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Figure 2. Architecture of the proposed VRD-IR, consisting of an intrinsic semantic enhancement (ISE) module and a semantic aware
decoder (SAD). Given an unknown degradation image, we first get the semantic representation, and then send the obtained feature to ISE
to enhance semantics in a dynamic manner with its statistical properties on amplitude spectrum. Finally, we feed the restored features
to SAD to reconstruct the recognition-friendly image. The entire training is based on our designed prior-ascribing optimization strategy,
which is instantiated as a two-stage training: the SAD is pre-trained at the first stage; then we fix SAD and train ISE at the second stage.

structs the shallow features of low-quality images for de-
graded images classification. QualNet [32] try to achieve
quality-agnostic feature learning with invertible decoder.
URIE [67] aims to handle various image degradation with
a task-specific recognition model. SFDUNet [81] attempts
to reconstruct high-quality features from low-quality im-
ages by self-feature distillation and uncertainty modeling.
FIFO [37] encourage the segmentation model to learn fog-
invariant features with a fog-pass filter module. However,
these methods require task-specific annotations for training.
SACC [74] directly recover recognition-friendly normal im-
ages from low-light images with a self-supervised pre-text
task. Despite this, it only considers single degradation.

3. Methods
In this section, we will give a detailed introduction to our

proposed VRD-IR. We first overview the whole pipeline of
our VRD-IR in Sec. 3.1, and then introduce the Intrinsic
Semantic Enhancement (ISE) and the prior-ascribing opti-
mization strategy in Sec. 3.2 and Sec. 3.3, respectively.

3.1. Overview

We denote the training set with N kinds of degradation
as D = {(xi,j , yi,j)

Mi
j=1}Ni=1, where xi,j is the j-th image

from i-th degradation, yi,j is the ground-truth image of xi,j ,
and Mi represents the number of samples in i-th degrada-
tion. Given a degradation-agnostic image xdeg , we aim to
recover the recognition-friendly high-quality image Ihq .

As illustrated in Fig. 2, the proposed VRD-IR com-
prises an intrinsic semantic enhancement module fISE and
a semantic-awared decoder fSAD. The entire training pro-
cess is based on our prior-ascribing scheme, which is in-
stantiated as a two-stage training scheme.

For the degraded image xdeg , we can get the degraded
feature Fdeg through a fix-weight feature extractor. Then,
the Fdeg is mapped to a degradation-invariant space through
the multi-branch Degradation Normalization and Compen-
sation (DNC) modules. A Fourier Guided Modulation
(FGM) is introduced to guide the restoration of Fdeg based
on its statistical characteristics, which is detailed in Sec. 3.2.

Moreover, a prior-ascribing training strategy is intro-
duced. Specifically, the semantic aware decoder fSAD is
first pre-trained on both clean and degraded images with a
similarity ranking loss to perceive different semantics. And
then, we fixed the pre-trained fSAD, and train our feature
enhancement module fISE with a semantic maximum loss,
which is described in detail in Sec. 3.3.

As for the feature extractor fext, we utilize the
shallow layers of classical network (e.g., VGG16 [66],
ResNet50 [25]) pre-trained on large-scale datasets (e.g., Im-
ageNet [64], CoCo [47]) to provide a representation space
rich in semantic information. So, we can get the set D

′
=

{(Fi,j , yi,j)
Mi
j=1}Ni=1, where Fi,j is the semantic feature of

xi,j extracted by fext. Note that Fi,j and xi,j are one-to-one
correspondence since fext is fixed-weight during training.
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Figure 3. The t-SNE map of the amplitude spectrum of semantic
features suffered from different degradation.

3.2. Intrinsic Semantic Enhancement

As shown in Fig. 2, we implement our ISE module
with two main parts: the Degradation Normalization and
Compensation (DNC) that is designed for mapping various
degradation features to degradation invariant feature space,
and the Fourier Guided Modulation (FGM) which is pro-
posed to integrate the outputs of multi-branch DNC based
on the statistical properties of the input feature.

Degradation Normalization and Compensation.
Since the effects of various degradation differ significantly
on semantic level, we introduce Instance Normalization
(IN) to align different distorted features. Given a degraded
semantic feature Fi that belongs to i-th degradation
(i ∈ {1, ..., N}), we employ IN to map it to the degradation
invariant feature space:

Fn
i = IN(xi) = γ

Fi − μ(Fi)

σ(Fi)
+ β, (1)

where μ(·) and σ(·) denote the mean and standard devia-
tion, and γ, β ∈ R

c are the parameters learned from data.
IN could filter out instance-specific style information [31].
Since each degradation can be viewed as a kind of style,
different degradation features can be aligned through IN by
decreasing the discrepancy between them in style.

However, IN inevitably discards discriminative informa-
tion [29, 31, 56] for semantic restoration and image recon-
struction. To alleviate this problem, we integrate the origi-
nal features before normalization and those go through IN
to guarantee the integrity of information [49]. For the fea-
ture Fn

i , we concatenate it with its counterpart before nor-
malization (i.e., Fi) in the channel dimension. We utilize
a SE-like [28] channel attention integrate them adaptively
and get the output F̃i, as shown in Fig. 2.

Fourier Guided Modulation. Although the DNC align
different representation coarsely, we need to modulate them
further. Based on the observation that, the distribution
of different degradation in amplitude spectrum via deep
Fourier transform differs significantly (see Fig. 3), we pro-
pose a Fourier guided modulation (FGM) to utilize the sta-
tistical properties of input to guide the feature adjustment.

Given the degraded input Fi, we first transform it from
the spatial domain to its frequency domain Fourier transfor-

mation F(Fi):

F(Fi)(u, v) =
H−1∑
h=0

W−1∑
w=0

Fi(h,w)e
−j2π( h

H u+ w
W v), (2)

The F(Fi) is denoted as F(Fi) = R(Fi) + jI(Fi), where
R(Fi) and I(Fi) are the real and imaginary part of F(Fi).

As the distorted effects caused by degradation mainly
manifest in the amplitude spectrum [83], we can get the am-
plitude spectrum A(Fi) by:

A(Fi)(u, v) = [R2(Fi)(u, v) + I2(Fi)(u, v)]
1/2. (3)

We extract the degraded information from A(Fi) using a
1× 1 convolution, which is formulated by:

A′
(Fi)(u, v) = A(Fi)(u, v) ∗ kernel1, (4)

where ∗ denotes the convolution operator, and kernel1
means the 1 × 1 convolution kernel. We can also get the
F ′

(Fi) corresponding to A′
(Fi).

Finally, we transform the frequency domain feature
F ′

(Fi) back to the spatial domain feature by inverse Fourier
transform, and get the guidance map M through a convolu-
tion followed by softmax.

Joint Training for ISE. In order to handle diverse degra-
dation more flexibly, we propose a multi-branch DNC archi-
tecture [94], as shown in Fig. 2(a). Specifically, we prepare
a DNC for each degradation, and pre-train each DNC with
degradation-specific data independently.

After that, we fine-tune the whole ISE with both DNCs
and the FGM. Given an unknown degraded feature F , we
send it to the multi-branch DNCs and get a set of features
[F̃1, ..., F̃N ]. Then, we fuse them with the guidance map M

generated by FGM: F
′
= M ⊗ [F̃1, ..., F̃N ].

To further maintain the semantic property of the inte-
grated feature F

′
, we propose a Semantic Maximum Con-

straint for feature distillation between F
′

and the clean fea-
tures F

′
cle. We first extract the most semantic parts through

max pooling, then we utilize cosine similarity to measure
their semantic distance:

Lsmc = 1− f
′

‖f ′‖2
· f

′
cle∥∥f ′
cle

∥∥
2

, (5)

where ‖·‖2 is the L2 normalization, f
′

and f
′
cle represent the

max pooling results of F
′

and F
′
cle, respectively. Unlike the

common-used L1 or L2 regularization that treat each pixel
equally, Lsmc maintains the semantic consistency between
the restored feature F

′
and the corresponding clean feature

F
′
cle, which encourages ISE to modulate degraded features

from the perspective of semantics rather than visualization.
The reconstruction loss in image-level is also computed

to regularize the restoration of ISE:

Lrec. = ‖fSAD(fISE(F ))− y‖1 , (6)
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Figure 4. Illustration of the prior-ascribing training strategy. The
SAD is first pre-trained on both degraded and clean images. Then,
we fix the SAD and train ISE with degraded image.

where ‖·‖1 denotes the L1 regularization, y means the clean
image of F , and fSAD is a pre-trained decoder in advance,
which will be described in Sec. 3.3. So the whole training
loss for ISE is defined as:

LISE = Lsmc + Lrec., (7)

Note that we assign a DNC for each degradation and pre-
train them independently. This is because the distribution
information of various degradation is quite different, using
different DNCs in different degradation can better preserve
degradation intrinsic properties for semantic recovery. And
then, we fine-tune the ISE with a statistical properties-based
guidance generated by FGM to aggregate multiple parallel
DNCs dynamically, which are input dependent. It not only
endows the VRD-IR with more representation power than
methods [39, 42] based on static network, but also encour-
ages the ISE to explore correlations between the procedures
of correcting different degradation implicitly.

3.3. Prior-Ascribing Optimization Strategy

Our goal is to recover recognition-friendly images with
acceptable visual quality. The challenge lies in narrowing
the semantic gap between low- and high- quality images. To
tackle this issue, we propose a prior-ascribing optimization
strategy, which is instantiated as a two-stage training sheme.
A semantic-awared decoder (SAD) is first pre-trained as a
pretext task to perceive the semantics at the first stage, then
we fix the SAD and encourage the ISE to bridge the seman-
tic gap between degraded and clean images at the second
stage, as shown in Fig. 4.

Specifically, given a clean image Icle and a degraded one
Ideg , we can get their semantic feature Fcle, Fdeg through
the fixed feature extractor. Then we feed them into the se-
mantic aware decoder fSAD to self-reconstruct the input
images Ireccle and Irecdeg , respectively: Ireccle = fSAD(Fcle),
and Irecdeg = fSAD(Fdeg). A reconstruction loss is computed
to ensure the reconstruction ability of the SAD:

Ls
rec. = ‖Ireccle − Icle‖1 + λ · ∥∥Irecdeg − Ideg

∥∥
1
. (8)

... ... ...

SAD SAD SAD
Feature
Space

Image
Space

Feature
Space

Image
Space Feature

Space
Image
Space

Clean 

Feature/Image

Degradation 1 

Feature/Image
... Degradation N 

Feature/Image
Abnormal Image

(a) (b) (c)

Figure 5. Illustration of different training strategy for SAD. (a)
training on clean images only, (b) training on both clean and de-
graded images with objective to reconstruct both of them accu-
rately, (c) training with our proposed similarity ranking loss.

where λ is the weighting parameter.
In fact, we hope the reconstructed images from clean se-

mantic features are much better than those from degraded
semantic features, which makes the SAD sensitive to the
input semantic features. To this end, we design a similarity
ranking loss. For the clean images, we calculate the relative
similarity between Icle and Ireccle :

A(Icle, I
rec
cle ) =

Icle · Ireccle

‖Icle‖2 · ‖Ireccle ‖2
(9)

A(·) denotes the relative similarity calculation function be-
tween two images. Similarly, we perform the same tech-
nique to the degraded images Ideg and Irecdeg and get the sim-
ilarity A(Ideg, I

rec
deg).

After that, we employ a ranking metric [27] to measure
the distance between two similarity and construct a similar-
ity ranking loss based on it:

Lsr = max
(
0,−(A(Icle, I

rec
cle )−A(Ideg, I

rec
deg)) +m

)
,

(10)
where m represents a threshold value.

The total optimization objective for pre-training SAD is
defined as:

LSAD = Ls
rec. + Lsr, (11)

We endow the SAD with ability to perceive both clean
and degraded semantic representation through pre-training,
which can serve as a semantic prior to supervise the ISE
training. After pre-training, we fix the pre-trained SAD, and
force the ISE to improve the quality of images reconstructed
by SAD through modulating the degraded features with the
training objective in Eq. 7.

The similarity ranking loss Lsr guarantees the fSAD to
be monotonic, which is critical to the SAD pre-training, as
shown in Fig. 5(c). We also show two possible alterna-
tive pre-training schemes in Fig. 5(a) that trains fSAD on
clean images only, and Fig. 5(b) which trains fSAD with
both clean and degraded images with the objective to recon-
struct all of them accurately. However, they either cannot
ensure the sensitivity of fSAD to degraded semantics, or re-
quires larger number of parameter and a complex structure
for fSAD. We will analyze this in details in the Appendix.
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Table 1. Performance comparisons with state-of-the-art IRSD (i.e., image restoration for single degradation) and IRMD (i.e., image
restoration for multiple degradation) approaches for image classification on CUB dataset among three different degradation. “Top-1 V”
and “Top-1 R” refer to the Top-1 Accuracy (%) on pre-trained VGG16 and ResNet50, respectively. The best results are marked as bold
and the second ones are masked by underline. More comparison results can be found in Appendix.

Method
Dehazing Method IRMD Method

DehazeNet [4] AODNet [40] EPRN [60] FDGAN [16] DDP [75] MPRNet [85] AirNet [39] VRD-IR
Top-1 V (%) 6.67 24.01 12.05 62.04 48.26 69.59 68.19 72.11
Top-1 R (%) 17.24 42.06 25.93 74.23 63.02 78.15 76.81 80.55
PSNR/SSIM 14.29/0.5225 13.28/0.6415 14.39/0.6864 16.76/0.7545 15.32/0.7002 18.83/0.8000 16.97/0.7692 17.64/0.7790

(a) dehazing

Method
Denoising Method IRMD Method

CBM3D [12] DnCNN [88] IRCNN [89] FFDNet [90] BRDNet [69] MPRNet [85] AirNet [39] VRD-IR
Top-1 V (%) 20.16 24.48 26.98 22.69 25.05 25.18 27.77 32.00
Top-1 R (%) 25.41 38.92 43.37 37.51 41.96 42.51 45.72 50.26
PSNR/SSIM 22.67/0.5237 23.01/0.5474 25.52/0.7121 25.16/0.6982 26.28/0.7552 26.74/0.7764 26.42/0.7653 26.41/0.7669

(b) denosing

Method
Deraining Method IRMD Method

DIDMDN [87]UMRL [82] SIRR [77] MSPFN [30] LPNet [20] MPRNet [85] AirNet [39] VRD-IR
Top-1 V (%) 50.29 55.89 73.34 73.46 73.56 74.25 73.08 74.68
Top-1 R (%) 62.35 68.59 81.19 81.26 81.37 82.03 81.65 82.21
PSNR/SSIM 18.63/0.6845 20.80/0.7197 27.56/0.8655 27.68/0.8664 27.73/0.8692 28.54/0.8844 27.45/0.8693 27.41/0.8805

(c) deraining

(a) Hazy (b) DehazeNet (c) AODNet (d) EPRN (e) FDGAN (f) DDP (g) MPRNet (h) AirNet (i) VRD-IR (j) GT 

Figure 6. Qualitative results of different methods for dehazing on the CUB dataset. Our method is shown in bold.

(a) Noisy (b) CBM3D (c) DnCNN (d) IRCNN (e) FFDNet (f) BRDNet (g) MPRNet (h) AirNet (i) VRD-IR (j) GT

Figure 7. Qualitative results of different methods for denoising on the CUB dataset. Our method is shown in bold.

4. Experiments

4.1. Implementation Details

To evaluate the effectiveness of our method, we test
our method on three different recognition tasks, involving
classification, detection, and person re-identification, across
three types of degradation, hazy, noisy, and rainy.
Datasets. For training datasets, we follow the setting in
[39] for fair comparison. To be specific, we use the com-

bination of BSD400 [54] and WED [53] as training set for
image denoising. For image deraining, we conduct experi-
ments on Rain100L [78]. And for image dehazing, we uti-
lize the RESIDE [41] as the training datasets. More details
about datasets are provided in Appendix.

Training Details. The proposed VRD-IR is trained by
Adam optimizer, where β1 , β2, and γ are set to 0.9, 0.999,
and 0.5, respectively. The initial learning rate is set to
2 × 10−4 and reduced as the training epoch increases. The
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Table 2. Performance comparisons with state-of-the-art IRSD and IRMD approaches for object detection on CrowdHuman dataset among
three different degradation. ↑ means higher the better. The best results are marked as bold and the second ones are masked by underline.
More comparison results can be found in Appendix.

Method
Dehazing Method IRMD Method

DehazeNet [4] AODNet [40] EPRN [60] FDGAN [16] FFANet [59] MPRNet [85] AirNet [39] VRD-IR
AP ↑ 46.77 61.08 55.45 74.75 74.71 78.64 78.24 79.33
JI ↑ 41.39 53.18 47.69 63.43 63.11 66.52 65.87 67.58

MR ↓ 85.53 75.79 81.04 65.32 65.56 63.60 64.03 63.21
PSNR/SSIM 13.13/0.4935 12.13/0.5638 13.26/0.5784 17.27/0.7956 17.35/0.7986 19.27/0.8569 19.00/0.8427 18.25/0.8256

(a) dehazing

Method
Denoising Method IRMD Method

CBM3D [12] DnCNN [88] IRCNN [89] FFDNet [90] BRDNet [69] MPRNet [85] AirNet [39] VRD-IR
AP ↑ 48.51 56.48 59.08 57.88 58.05 58.98 59.36 59.80
JI ↑ 41.93 48.89 50.76 50.63 50.98 51.61 51.95 52.57

MR ↓ 83.69 78.62 78.12 78.27 78.20 76.89 77.08 75.89
PSNR/SSIM 20.15/0.5426 22.59/0.5529 24.10/0.6739 23.94/0.6773 24.52/0.6874 24.98/0.7221 24.66/0.7126 24.69/0.7160

(b) denosing

Method
Deraining Method IRMD Method

DIDMDN [87]UMRL [82] SIRR [77] MSPFN [30] LPNet [20] MPRNet [85] AirNet [39] VRD-IR
AP ↑ 74.44 76.36 78.05 78.21 78.28 78.49 77.76 78.68
JI ↑ 63.10 64.49 66.26 66.54 66.68 66.81 66.29 67.20

MR ↓ 67.89 66.51 64.47 63.99 63.79 63.73 64.53 63.51
PSNR/SSIM 22.72/0.7865 23.16/0.8089 26.21/0.8651 26.44/0.8720 26.48/0.8731 27.41/0.8934 26.61/0.8792 26.53/0.8886

(c) deraining

mini-batch is set to 40, and the images are resized, cropped
to 128×128 with being flipped horizontally randomly. The
λ in Eq. 8 and m in Eq. 11 is set to 0.1 and 1.0, respectively.
The whole model is trained with one 3090Ti GPU.

4.2. Improvement on Image Classification.

In this section, we show the superiority of our VRD-IR
by comparing with other image restoration methods on the
most fundamental machine analysis: image classification.
Following the DDP [75], we choose CUB [73] as our test
dataset and synthesize the degraded images as [26]. We use
VGG16 [66] and ResNet50 [25] pre-trained on clean CUB
as the recognition models to evaluate images restored by
different methods. To be fair, we compare the VRD-IR with
both IRSD and IRMD methods , where IRMD methods are
trained following the setting in [39], and can handle various
degradation simultaneously. Unlike [32, 67, 81], we do not
introduce any task-specific annotation during training.

Tab. 1 shows that our VRD-IR has better performance
than compared restoration methods in two recognition mod-
els among three different degradation on the CUB test
set. Ordinary restoration methods enhance degraded in-
put images from the perspective of visual quality rather
than high-level vision, thus leading to higher performance
in PSNR/SSIM but unsatisfying results in accuracy. The
performance improvement is more noticeable on denoising
(see Tab. 1b), which is the most challenging tasks among
three degradation restoration for machine vision. On image
deraining where the advantage is not obvious, the VRD-IR

still holds the lead of MPRNet by 0.43%/0.18% accuracy
improvement (see Tab. 1c). Fig. 6 and Fig. 7 describe the
qualitative results of different methods along with their fea-
ture maps on image dehazing and denoising, respectively.

Table 3. Performance (%) comparisons of different methods for
person ReID on Market1501 dataset in dehazing and denoising.
We show more comparison results in Appendix.

Category Method mAP (%)

Dehazing

FDGAN [16] 72.98
FFANet [59] 73.74
MPRNet [85] 75.12
AirNet [39] 74.21

VRD-IR 75.83

Denoising

FFDNet [90] 53.33
BRDNet [69] 52.89
MPRNet [85] 54.56
AirNet [39] 54.45

VRD-IR 55.64

4.3. Improvement on Object Detection

The VRD-IR can also benefit the object detection. To
demonstrate this, we test different methods on CrowdHu-
man [65], a benchmark for human detection. RetinaNet [46]
is employed as the downstream recognition model. The
synthesis of degraded images for detection is the same as
that for image classification.

As illustrated in Tab. 2, the VRD-IR outperforms all
compared baseline networks in detection among all three
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types of degradation. Note that the VRD-IR for classifica-
tion (in Tab. 1) and detection (in Tab. 2) are shared parame-
ters. It further verifies that VRD-IR can achieve better prac-
ticality and generalization ability for high-level vision. In-
terestingly, Tab. 1 and Tab. 2 exhibit a similar phenomenon
that, the restoration of diverse corruptions for visual qual-
ity and machine analysis differs significantly. For example,
denoising can benefit PNSR better but fail in recognition
tasks, while dehazing does the opposite. We conjecture that
this is due to the various effects of diverse degradation on
different frequency bands of the image.

4.4. Improvement on Person Re-Identification

We further conduct experiments on a fine-grained image
retrieval task, person re-identification (ReID). We evaluate
different methods on Market1501 [93]. The recognition
baseline is the ResNet50 pre-trained on clean data. Tab. 3
shows that the VRD-IR attains the best performance.

4.5. Ablation Study

In this section, we perform comprehensive ablation stud-
ies to demonstrate the effectiveness of our designs in the
proposed VRD-IR. Here, we conduct experiments on CUB
classification to validate each component. More results of
ablation studies are provided in Appendix.

Effectiveness of the ISE. To demonstrate the benefits of
the proposed instrinsic semantic enhancement which con-
sists of degradation normalization and compensation and
Fourier guided modulation module, we design several vari-
ants as shown in Tab. 4. Among them, “VRD-IR w/o DNC”
represents we replace DNC with a couple a convolution
block which has the same number of parameter as DNC.
We do a similar operation for “VRD-IR w/o FGM”. “Base-
line” means that both DNC and FGM are replaced.

As we can see, “VRD-IR w/o DNC” and “VRD-IR
w/o FGM” outperform “Baseline” by 3.39%/1.76% and
5.24%/3.48% in terms of Top-1 Accuracy on pre-trained
VGG16 in dehazing/denoising, respectively. With both two
modules, “VRD-IR” achieves 72.11%/32.00% in dehaz-
ing/denoising classification, which demonstrates that DNC
and FGM are complementary and both vital to VRD-IR,
joinly resulting in a superior performance.

Effectiveness of the Prior-Ascribing Optimization
Strategy. As described in Tab. 5, the VRD-IR without PA
has a significant performance drop on classification, where
“VRD-IR w/o PA” means we train ISE and SAD in an end-
to-end manner. Obviously, our prior-ascribing optimization
strategy can help image recovery from the perspective of
machine vision. We have shown three different training
strategies for SAD in Fig. 5. We will further investigate
the influence of them and show more results in Appendix.

Effectiveness of the Semantic Maximum Constraint.
In order to better maintain semantic properties of modu-

Table 4. The ablation results of several variants of VRD-IR on
CUB classification in dehazing and denoising. “Dehaze” and “De-
noise” means Top-1 Accuracy (%) on pre-trained VGG16 in de-
hazing and denoising classification.

Model DNC FGM Dehaze Denoise
Baseline × × 61.18 25.17

VRD-IR w/o DNC × √
64.57 26.93

VRD-IR w/o FGM
√ × 66.42 28.65

VRD-IR
√ √

72.11 32.00

Table 5. Effectiveness of the prior-ascribing strategy in our VRD-
IR on CUB. “Dehaze”, “Denoise” and “Derain” means Top-1 Ac-
curacy (%) on pre-trained VGG16 in dehazing, denoising and de-
raining classification.

Model Dehaze Denoise Derain
VRD-IR w/o PA 67.55 25.14 73.23
VRD-IR w PA 72.11 32.00 74.68

lated features, we introduce a semantic maximum constraint
(SMC), which is implemented by calculating the cosine
similarity of two features after max pooling. Previous meth-
ods adopt L1 or mean square error (MSE) [75] as their se-
mantic loss function. In this section, we compare SMC with
other possible solutions. As shown in Tab. 6, the SMC out-
performs L1 by 3.15%/2.47% in Dehaze/Denoise on clas-
sification, which also surpasses MSE by 3.28%/2.24% in
Dehaze/Denoise. Compared with L1 or MSE that treat each
pixel in features equally, our SMC can better maintain the
semantic consistency since it explores the most valuable se-
mantic correspondence between two features.

Table 6. Effectiveness of the SMC in our VRD-IR.

Constraint Dehaze Denoise Derain
No Constraint 63.51 23.79 71.06

L1 68.96 29.53 73.59
MSE 68.83 29.76 73.88
SMC 72.11 32.00 74.68

5. Conclusion
In this paper, we develop a Visual Recognition-Driven

Image Restoration (VRD-IR) for multiple degradation, to
recover degraded image from the perspective of high-level
vision. It consists of a Intrinsic Semantic Enhancement
(ISE) module and a Prior-Ascribing Optimization Strategy.
Our VRD-IR can be plugged into existing recognition tasks
as a image enhancement module. Extensive experiment on
multiple degradation and diverse high-level tasks demon-
strate the effectiveness of our method.
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