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Abstract

Most anomaly detection (AD) models are learned using
only normal samples in an unsupervised way, which may
result in ambiguous decision boundary and insufficient dis-
criminability. In fact, a few anomaly samples are often
available in real-world applications, the valuable knowl-
edge of known anomalies should also be effectively ex-
ploited. However, utilizing a few known anomalies dur-
ing training may cause another issue that the model may
be biased by those known anomalies and fail to generalize
to unseen anomalies. In this paper, we tackle supervised
anomaly detection, i.e., we learn AD models using a few
available anomalies with the objective to detect both the
seen and unseen anomalies. We propose a novel explicit
boundary guided semi-push-pull contrastive learning mech-
anism, which can enhance model’s discriminability while
mitigating the bias issue. Our approach is based on two
core designs: First, we find an explicit and compact sepa-
rating boundary as the guidance for further feature learn-
ing. As the boundary only relies on the normal feature dis-
tribution, the bias problem caused by a few known anoma-
lies can be alleviated. Second, a boundary guided semi-
push-pull loss is developed to only pull the normal fea-
tures together while pushing the abnormal features apart
from the separating boundary beyond a certain margin re-
gion. In this way, our model can form a more explicit and
discriminative decision boundary to distinguish known and
also unseen anomalies from normal samples more effec-
tively. Code will be available at https://github.
com/xcyao00/BGAD.

1. Introduction
Anomaly detection (AD) has received widespread atten-

tion in diverse domains, such as industrial defect inspec-

*Corresponding Author.

tion [4,8,10,50] and medical lesion detection [12,38]. Most

previous anomaly detection methods [1, 3, 5, 6, 8, 10, 15, 30,

33, 47, 50–52] are unsupervised and pay much attention to

normal samples while inadvertently overlooking anomalies,

because it is difficult to collect sufficient and all kinds of

anomalies. However, learning only from normal samples

may limit the discriminability of the AD models [12, 24].

As illustrated in Figure 1(a), without anomalies, the de-

cision boundaries are generally implicit and not discrimi-

native enough. The insufficient discriminability issue is a

common issue in unsupervised anomaly detection due to the

lack of knowledge about anomalies. In fact, a few anoma-

lies are usually available in real-world applications, which

can be exploited effectively to address or alleviate this issue.

Recently, methods that can be called semi-supervised

AD [27,34,36] or AD with outlier exposure [16,17] begin to

focus on those available anomalies. These methods attempt

to learn knowledge from anomalies by one-class classifica-

tion with anomalies as negative samples [34, 36] or by su-

pervised binary classification [16,17] or by utilizing the de-

viation loss to optimize one anomaly scoring network [27].

They show a fact that the detection performance can be im-

proved significantly even with a few anomalies. However,

the known anomalies can’t represent all kinds of anomalies.

These methods may be biased by the known anomalies and

fail to generalize to unseen anomalies (see Figure 5).

Therefore, to address the two above issues, we tackle

supervised anomaly detection [12], in which a few known

anomalies can be effectively exploited to train discrimina-

tive AD models with the objective to improve detection per-

formance on the known anomalies and generalize well to

unseen anomalies. Compared with unsupervised AD, su-

pervised AD is more meaningful for real-world AD appli-

cations, because the detected anomalies can be used to fur-

ther improve the discriminability and generalizability of the

model. To this end, we propose a novel Boundary Guided

Anomaly Detection (BGAD) model, which has two core

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
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24490



Figure 1. Conceptual illustration of our method. (a) In most unsupervised AD models, the anomaly score distribution usually has ambigu-

ous regions, which makes it difficult to get one ideal decision boundary. E.g., the left boundary will cause many false negatives, while

the right boundary may induce many false positives. (b) With the normalized normal feature distribution, a pair of explicit and compact

(close to the normal distribution) boundaries can be obtained easily. (c) With the proposed BG-SPP loss, boundary guided optimizing can

be implemented to obtain an unambiguous anomaly score distribution: a significant gap between the normal and abnormal distributions.

designs as illustrated in Figure 1: explicit boundary gener-

ating and boundary guided optimizing.

• Explicit Boundary Generating. We first employ nor-

malizing flow [14] to learn a normalized normal feature dis-

tribution, and obtain an explicit separating boundary, which

is close to the normal feature distribution edge and con-

trolled by a hyperparameter β (i.e., the normal boundary

in Figure 1(b)). The obtained explicit separating boundary

only relies on the normal distribution and has no relation

with the abnormal samples, thus the bias problem caused

by the insufficient known anomalies can be mitigated.

• Boundary Guided Optimizing. After obtaining the

explicit separating boundary, we then propose a boundary

guided semi-push-pull (BG-SPP) loss to exploit anomalies

for learning more discriminative features. With the BG-

SPP loss, only the normal features whose log-likelihoods

are smaller than the boundary are pulled together to form

a more compact normal feature distribution (semi-pull);

while the abnormal features whose log-likelihoods are

larger than the boundary are pushed apart from the bound-

ary beyond a certain margin region (semi-push).

In this way, our model can form a more explicit and dis-

criminative separating boundary and also a reliable margin

region for distinguishing anomalies more effectively (see

Figure 1(c), 6). Furthermore, rarity is a critical problem

of anomalies and may cause feature learning inefficient. We

thus propose RandAugment-based Pseudo Anomaly Gener-

ation, which can simulate anomalies by creating local irreg-

ularities in normal samples, to tackle the rarity challenge.

In summary, we make the following main contributions:

1. We propose a novel Explicit Boundary Guided super-

vised AD modeling method, in which both normal and ab-

normal samples are exploited effectively by well-designed

explicit boundary generating and boundary guided optimiz-

ing. With the proposed AD method, higher discriminability

and lower bias risk can be achieved simultaneously.

2. To exploit a few known anomalies effectively, we pro-

pose a BG-SPP loss to pull together normal features while

pushing abnormal features apart from the separating bound-

ary, thus more discriminative features can be learned.

3. We achieve SOTA results on the widely-used

MVTecAD benchmark, with the performance of 99.3%

image-level AUROC and 99.2% pixel-level AUROC.

2. Related Work

Unsupervised Approaches. Most anomaly detection

methods are unsupervised and only learn from normal sam-

ples, such as AutoEncoder [6, 26, 49], GAN [1, 29, 37, 39,

40, 53] and one-class-classification (OCC) based methods

[35,42,46,50]. Recently, most superior methods utilize pre-

trained deep models, such as DeepKNN [3], GaussianAD

[31], SPADE [8], PaDiM [10] and PatchCore [32]. There

are also some anomaly detection methods based on knowl-

edge distillation [5, 38, 47], feature reconstruction [48], and

normalizing flows [15, 33, 51, 55]. Our method is signifi-

cantly different from these works [15, 33, 51, 55] in the fol-

lowing three aspects: (1) New Motivation: our work aims

to learn knowledge from a few anomalies to address the in-

sufficient discriminability issue and also mitigate the bias

issue. (2) Novel Method: we only use the normalizing flow

model as a basic likelihood estimation network, and are the

first to propose Explicit Separating Boundary and BG-SPP

loss to achieve higher discriminability and also lower bias.

(3) Different Task: [55] focuses on out-of-distribution de-

tection and [15, 33, 51] focus on unsupervised anomaly de-

tection (AD), whereas our work focuses on supervised AD.

Supervised Approaches. Currently, a few existing

works are similar to ours, i.e., AD with outlier exposure

[16, 17] and deep semi-supervised AD [24, 34, 36]. In [16],
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Hendrycks, et al. term random nature images from the large

scale datasets that are likely not nominal as outlier expo-

sure, and explore how to utilize such data to improve un-

supervised AD. The method presented in [17] utilizes thou-

sands of OE samples to achieve state-of-the-art results on

standard image AD benchmarks. DeepSAD [36] is the first

deep model utilizing a few anomalies by generalizing the

unsupervised DeepSVDD [35] method to a semi-supervised

AD setting. In [34], Ruff, et al. further modify the Deep-

SAD based on cross-entropy classification that concentrates

nominal samples, this modification significantly improves

the performance of DeepSAD. FCDD proposed in [24] ex-

tends the pseudo-Huber loss in [34] to construct a semi-

supervised anomaly localization framework. Some works

[27, 28] utilize the deviation loss to optimize an anomaly

scoring network, in which the anomaly scores of normal

samples are imposed to approximate scalar scores drawn

from the prior while that of anomaly samples are enforced

to have significant deviations from these normal scores.

However, these methods simply push abnormal features

apart from the normal patterns as far as possible, which may

cause bias in the model for the known anomalies. The re-

cent work DRA [12] is the most similar to ours, which also

considers the model’s generalization to unseen anomalies.

The DRA model can learn disentangled representations of

anomalies to enable generalizable detection.

3. Our Proposed Approach
Problem Statement. Different from the general un-

supervised AD setting, the training set of supervised AD

is composed of normal images and a few anomalies, de-

noted as Itrain = In ∪ Ia, where In = {Ini }N0
i=1 and

Ia = {Iaj }M0
j=1(M0 � N0) indicate the collection of nor-

mal samples and abnormal samples. The M0 anomalies are

randomly sampled from the seen anomaly classes Ss ⊂ S ,

where S = Ss ∪Su means all the seen and unseen anomaly

classes. The goal is to learn a model m : I → R that

can assign larger anomaly scores to both seen and unseen

anomalies than normal samples.

Overview. Figure 2 overviews our proposed method.

The model consists of four parts: Feature Extractor f : I →
X , Conditional Normalizing Flow (CNFlow) ϕθ : X → Z ,

Explicit Boundary Generating and Boundary Guided Op-

timizing. We refer the features extracted by the feature

extractor as input features for CNFlow, and denote these

features as X = Xn ∪ X a, where Xn = {xn
i }Ni=1 and

X a = {xa
j }Mj=1 are normal and abnormal features, respec-

tively. The training procedure can be divided into two

phases as shown in Figure 2: explicit boundary generating

and boundary guided optimizing. In the testing procedure,

the CNFlow can assign corresponding log-likelihoods for

input features, and the log-likelihoods can be converted to

anomaly scores (see Sec. 3.2).

3.1. Learning Normal Feature Distribution by Nor-
malizing Flow

In order to find one anomaly-independent separating

boundary, one simplified distribution of normal features

should be learned firstly. Normalizing flow [13, 14] is em-

ployed to learn normal feature distribution in our method.

Conditional Normalizing Flow. Formally, we denote

ϕθ : X ∈ R
d → Z ∈ R

d as our normalizing flow. It

is built as a composition of coupling layers [13] such that

ϕθ = ϕL ◦ · · · ◦ ϕ2 ◦ ϕ1, where θ is the trainable pa-

rameters and L is the total number of layers. Defining d-

dimensional input and output features of normalizing flow

as y0 = x ∈ X and yL = z ∈ Z , the latents can be com-

puted as yl = ϕl(yl−1), where {yl}L−1
l=1 are the intermediate

outputs. The input distribution estimated by model pθ(x)
can be calculated according to the change of variables for-

mula as follows [13, 14]:

logpθ(x) = logpZ(ϕθ(x)) +
∑L

l=1
log

∣∣detJϕl
(yl−1)

∣∣
(1)

where Jϕl
(yl−1) =

∂ϕl(yl−1)
∂yl−1

is the Jacobian matrix of the

transformation ϕl at yl−1, and det means determinant. Nor-

malizing flow can approximate the feature distribution pX
with pθ(x). The set of parameters θ is obtained by optimiz-

ing the log-likelihoods across the training distribution pX :

θ∗ = argmin
θ∈Θ

Ex∼pX [−logpθ(x)] (2)

The coupling layers in normalizing flow are usually im-

plemented by fully connected layers, so the spatial position

relationship will be destroyed because the 2D feature maps

are flattened to 1D. To preserve the positional information,

we follow [15] to add 2D-aware position embeddings.

Learning Normal Feature Distribution. We then em-

ploy normalizing flow to learn normal feature distribution

by maximum likelihood optimization. The latent variable

distribution pZ(z), z ∈ R
d can generally be assumed to

obey the multivariate Gaussian distribution [15] as follows:

pZ(z) = (2π)−
d
2 det(Σ− 1

2 )e−
1
2 (z−μ)TΣ−1(z−μ) (3)

where μ is the mean and Σ is the covariance. When train-

ing normal features, the latent variables for normal features

can be assumed to obey N (0, I) for further simplicity. By

replacing pZ(z) = (2π)−
d
2 e−

1
2 z

T z in formula (1), the op-

timization objective in the formula (2) can be rewritten as:

θ∗ = argmin
θ∈Θ

Ex∼pX

[d
2
log(2π) +

1

2
ϕθ(x)

Tϕθ(x)

−
∑L

l=1
log

∣∣detJϕl
(yl−1)|

]
(4)
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Figure 2. Model overview. The extracted feature maps are transformed into a latent space using a conditional normalizing flow (CNFlow),

which is then used to generate an anomaly score for each feature. The training procedure can be divided into two phases: explicit boundary

generating and boundary guided optimizing. In the first phase, only normal samples and ML loss (E.q.(5)) are utilized for model training

to obtain a relatively stable normal log-likelihood distribution, and then one explicit separating boundary can be obtained based on the

learned distribution. In the second phase, with the explicit separating boundary and the BG-SPP loss (E.q.(8)), both normal and abnormal

samples are utilized for model training to learn more discriminative features.

The maximum likelihood loss function for learning nor-

mal feature distribution can be defined as:

Lml = Ex∈Xn

[d
2
log(2π) +

1

2
ϕθ(x)

Tϕθ(x)

−
∑L

l=1
log

∣∣detJϕl
(yl−1)|

]
(5)

3.2. Finding an Explicit and Compact Separating
Boundary

With the learned normal feature distribution, we can fur-

ther find one explicit and compact separating boundary.

However, due to the high dimensional characteristics of

the features, we therefore consider finding the boundary

from the anomaly score distribution. Since the loglikeli-

hoods generated by the CNFlow can be equivalently con-

verted to anomaly scores, we select the boundary on the

log-likelihood distribution.

Anomaly Scoring. The advantage of normalizing flow

is that we can estimate the exact log-likelihood logp(x) for

each input feature x as follows:

logp(x) = −d

2
log(2π)− 1

2
ϕθ(x)

Tϕθ(x)

+
∑L

l=1
log

∣∣detJϕl
(yl−1)| (6)

With the estimated log-likelihood logp(x), we can con-

vert it to likelihood via exponential function. As we maxi-

mize log-likelihoods for normal features in E.q.(5), the like-

lihood can directly measure the normality. Thus, we can

generate the anomaly score as follows:

s(x) = 1− exp(logp(x)) (7)

where the s(x) means the anomaly score of x. Because ex-

ponential function is monotonic, the log-likelihood can be

equivalently converted to the anomaly score. Thus, the sep-

arating boundary in log-likelihood distribution is equivalent

to the boundary in anomaly score distribution.

Finding Explicit Separating Boundary. We then ob-

tain the separating boundary based on log-likelihood distri-

bution. We build the boundary through the following steps:

1. Building normal log-likelihood distribution. We

can employ the log-likelihood estimation formulation in

E.q.(6) to obtain all log-likelihoods of normal features

Pn = {logpi}Ni=1. The Pn can be used to approximate the

log-likelihood distribution of all normal features.

2. Finding explicit normal and abnormal boundary.
How to find a suitable boundary is a dilemma. If we set

the boundary too close to the distribution center, the sam-

ples in the tail of the normal distribution are more likely

to be misclassified as abnormal. Meanwhile, if the bound-

ary is far away from the distribution center, more anomalies

would be determined as normal ones. Thus, we define a

position hyperparameter β to control the distance from the

boundary to the center. We select the β-th percentile (e.g.,
β = 1) of sorted normal log-likelihood distribution as the

normal boundary bn, which also indicates the upper bound

of the normal false positive rate is β%. To make the feature

learning more robust, we further introduce a margin hyper-

parameter τ (e.g., τ = 0.1) and define an abnormal bound-

ary ba = bn− τ (see Figure 2). We provide hyperparameter

sensitivity analysis for β and τ in App. Table 12, it shows

that our model is not very sensitive to β and τ .
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3.3. Learning More Discriminative Features by
Boundary Guided Semi-Push-Pull

With the explicit normal and abnormal boundary, we

propose a boundary guided semi-push-pull (BG-SPP) loss

for more discriminative feature learning. Our BG-SPP loss

can utilize the boundary bn as the contrastive target (bound-

ary guided), and only pull together normal features whose

log-likelihoods are smaller than bn (semi-pull) while push-

ing abnormal features whose log-likelihoods are larger than

ba apart from bn at least beyond the margin τ (semi-push).

The formulation of the BG-SPP loss is defined as:

Lbg−spp =
N∑
i=1

|min((logpi − bn), 0)|

+
M∑
j=1

|max((logpj − bn + τ), 0)| (8)

We define BG-SPP loss as �1 norm based formulation to

encourage the sparse log-likelihood distribution in the mar-

gin region (ba, bn), because any log-likelihood logpi fallen

into the margin region (ba, bn) will increase the value of

Lbg−spp. Since the log-likelihoods can range from (−∞, 0],
the large region makes it difficult to select the margin hy-

perparameter τ . Thus, we define a large enough normal-

izer αn (e.g., αn = 10) and employ it to normalize the

log-likelihoods to the range [−1, 0]. We denote that the

extremely small log-likelihoods (less than −1) can be ex-

cluded outside the BG-SPP loss in E.q.(8), as these log-

likelihoods can be easily divided into anomalies. There-

fore, minimizing the BG-SPP loss will encourage all log-

likelihoods P to distribute in the regions [−1, ba] or [bn, 0].
We further analyze the difference between our BG-SPP loss

and the hinge loss in Appendix.

In the second training phase, the objective function is as

follows:

L = Lml + λLbg−spp (9)

3.4. Generalization Capability to Unseen Anomalies

Previous supervised AD methods are usually modeled

as binary classification tasks regarding anomalies as posi-

tive samples. However, these models rely heavily on the

known anomalies. Consequently, these models can over-

fit the known anomalies, failing to generalize to unseen

anomalies. The serious bias issue can be mitigated by our

method for three reasons: 1). The obtained explicit separat-

ing boundary only relies on the normal feature distribution

and has no relation with the abnormal samples, this means

that the final decision boundary mainly depends on the nor-

mal distribution rather than being affected greatly by the

anomalies (see Table 4). 2). Our method still employs the

normal distribution to determine anomalies, and our method

can form a more compact and discriminative normal fea-

ture distribution (this is also conducive to detecting unseen

anomalies), rather than the decision boundary between the

normals and the known anomalies (see Figure 5). 3). The

semi-push-pull mechanism in our method doesn’t enforce

the anomalies to deviate from the normal distribution as far

as possible, which may lead to overfitting of the model for

the known anomalies, but only pushes the anomalies outside

the margin region (see ablations in Table 6).

3.5. RandAugment-based Pseudo Anomaly Gener-
ation

Anomalies are generally much less than normal sam-

ples, this may cause feature learning inefficient. We thus

propose a RandAugment-based Pseudo Anomaly Genera-

tion (RPAG) strategy, which can simulate anomalies by ran-

domly creating local irregularities, to improve the quantity

and diversity of irregular patterns. The whole procedure is

shown in Appendix (Figure 8) and summarized as follows:

Constructing Augmentation Sets. Adapted from

RandAugment [9], we first select K available image

transformations to construct an augmentation set T :=
{T1, . . . , TK |Tk : I → I}: {Flip, Rotate, Transpose,

Noise, Distortion, Brightness, Sharpness, Translate, Blur}.

Random Augmentation. We randomly select an aug-

mentation subset TRS ⊂ T containing S transformations to

augment an abnormal sample: (Ia)′ = TRS(I
a), Ia ∈ Ia.

Selecting Pasting Locations. Considering that anoma-

lies generally only appear in object regions, thus to guaran-

tee the semantics of simulated anomalies, we should limit

the locations of simulated anomalies in the object regions.

We adopt a foreground masking strategy, in which we can

use grayscale binary thresholding algorithms to effectively

locate the foreground objects MI = Binary(In), In ∈
In. Then, we can select a random pasting location ra =
Rand(MI = 1) from the object regions (MI = 1) to avoid

anomalous regions generated in the background.

Cutting Anomalies. We cut the anomalous regions of

the augmented abnormal sample: Ra = Cut((Ia)′).
Pasting Anomalies. We paste the cropped anomalous

regions back to the normal sample In at the selected loca-

tion ra to generate a simulated abnormal sample: Isa =
Paste(In,Ra, ra).

In DRAEM [52] and NSA [41], the authors also attempt

to utilize synthetic anomalies, we ablate our RPAG strategy

with their strategies and show results in App. Table 9.

4. Experiments
4.1. Datasets and Metrics

Datasets. In this work, we focus on anomalies in real-

world applications, such as industrial defect inspection and

medical lesion detection. Specifically, we evaluate six real-
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world anomaly detection datasets, including four industrial

defect inspection datasets: MVTecAD [4], BTAD [25], AI-
TEX [43] and ELPV [11]; and two medical image datasets

for detecting lesions on different organs: BrainMRI [38]

and HeadCT [38]. A more detailed introduction to these

datasets is provided in Appendix.

Evaluation Metrics. For evaluation, the standard metric

in anomaly detection, AUROC, is used [4, 6, 40]. Image-

level AUROC is used for anomaly detection and a pixel-

level AUROC for evaluating anomaly localization. In or-

der to weight ground-truth anomaly regions of various sizes

equally, we also adopt the Per-Region-Overlap (PRO) curve

metric proposed in [5].

4.2. Experimental Settings

Multi-Class Setting is designed to evaluate the per-

formance of AD models in detecting the known anomaly

classes. In this setting, the known anomalies are a few

abnormal samples randomly drawn from existing anomaly

classes in the test set. Then, we carefully exclude these

added abnormal samples from the test set during testing.

One-Class Setting is designed to evaluate the generaliz-

ability of AD models in detecting unseen anomaly classes.

In this setting, the known anomalies are randomly sampled

only from one anomaly class, and all anomaly samples of

this class are removed from the test set to ensure that the

test set only contains unseen anomaly classes.

As anomalies are usually rare, our BGAD is trained with

ten random abnormal samples per category by default (we

also generate some pseudo anomalies by RPAG based on

these known anomalies for training). After removing the

known anomalies, the test set in our settings is different

from the original test set. Thus, for a fair comparison, we

re-run all the compared unsupervised and supervised AD

methods with the publicly available implementations under

the same experimental setup as our BGAD. Other imple-

mentation details can be found in Appendix.

4.3. Results under the Multi-Class Setting

MVTecAD. We compare our BGAD with the SOTA AD

methods, including unsupervised (PaDiM [10], DRAEM

[52], MSFD [47], PatchCore [32] and CFA [20]) and super-

vised methods (FCDD [24], DevNet [27] and DRA [12]).

The detailed comparison results of all categories are shown

in Table 1 and Table 2. We also implement a variant

BGADw/o, which is optimized by the first part of the BG-

SPP loss without anomalies. Compared with NFAD, our

BGADw/o can achieve better results, this shows that our

boundary guiding mechanism is also beneficial to improve

the AD performance under the unsupervised setting. Our

BGAD reaches the best performance under all three evalu-

ation metrics and can further surpass unsupervised baseline

NFAD by 2.5% and 1.3% AUROC, and 3.0% PRO. The

largest gain in PRO demonstrates that our BGAD is more

suitable for anomaly localization to better locate the anoma-

lous areas (see Figure 4). Compared with supervised AD

methods, our method can also surpass these SOTA methods

significantly. This shows that our boundary guiding mech-

anism can exploit a few known anomalies more effectively

to learn a more discriminative AD model.

BTAD. We compare our BGAD with three baseline

methods reported in [25]: AE-MSE, AE-SSIM, and VT-

ADL. Following [25], we evaluate anomaly localization

performance and report pixel-level AUROCs. The results

are shown in Table 3. Our BGAD can achieve 98.6% mean

pixel-level AUROC, which surpasses other methods by a

large margin (8.6%) and surpasses unsupervised baseline

NFAD by 0.8%. What’s more, BGAD can achieve 82.4%

PRO which surpasses unsupervised NFAD by 4.6%.

Other Datasets. Here, we compare our BGAD with six

recent and closely related SOTA methods reported in [12]:

unsupervised KDAD [47], and supervised DevNet [27],

FLOS [22], SAOE [44], MLEP [23] and DRA [12]. Fol-

lowing [12], we evaluate anomaly detection performance

and report image-level AUROCs. Same as [12], all models

are trained with one known anomaly sample. The compar-

ison results are shown in Figure 3. Our model can achieve

the best AUROC performance on the two industrial defect

inspection datasets (AITEX and ELPV), and comparable re-

sults with the SOTA methods on the two medical lesion de-

tection datasets (BrainMRI and HeadCT).

Figure 3. AUROC results on the AITEX, ELPV, BrainMRI, and

HeadCT datasets.

4.4. Results under the One-Class Setting

The comparison results under the one-class setting are

shown in Table 4, and more results are shown in Table 10 in

Appendix.

Comparison to Supervised AD Methods. In both Ta-

ble 4 and Table 10, compared to the competing methods,

our method is the best performer on the diverse application

datasets. On the mean image-level performance, our model

achieves about 3.3%-12.9% mean AUROC increase com-

pared to the best contender. This shows substantially better

generalizability of our model in detecting unseen anomaly

classes than the other supervised AD methods.

Comparison to Unsupervised Baseline. Since super-

vised AD methods are often biased by the seen anomaly
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Table 1. AUROC and PRO results under the multi-class setting on the MVTecAD dataset. ·/· means pixel-level AUROC and PRO. The

results of our model are averaged over three independent runs. ‡We implement NFAD as a baseline model, which has the same network

structure as our BGAD but without explicit boundary guidance. ∗ We remove the added abnormal samples from the test set, and reproduce

all the compared methods under the same experimental setup as our BGAD for a fair comparison.

Category
Unsupervised AD Methods Supervised AD Method

DRAEM∗ [52] PaDiM∗ [10] MSFD∗ [47] PatchCore∗ [32] CFA∗ [20] NFAD‡ BGADw/o (Ours) BGAD (Ours)

T
ex

tu
re

s

Carpet 0.954/0.947 0.983/0.946 0.990/0.958 0.985/0.959 0.989/0.943 0.994/0.983 0.994/0.982 0.996±0.0002/0.989±0.0004

Grid 0.997/0.984 0.963/0.894 0.986/0.937 0.974/0.891 0.977/0.932 0.993/0.980 0.994/0.980 0.995±0.0002/0.986±0.0001

Leather 0.992/0.981 0.984/0.966 0.978/0.924 0.992/0.974 0.991/0.958 0.997/0.994 0.997/0.994 0.998±0.0001/0.994±0.0003

Tile 0.994/0.949 0.958/0.884 0.952/0.841 0.960/0.939 0.960/0.860 0.969/0.929 0.968/0.927 0.994±0.0077/0.978±0.0021

Wood 0.962/0.935 0.963/0.891 0.953/0.925 0.968/0.857 0.948/0.882 0.969/0.957 0.970/0.957 0.982±0.0053/0.970±0.0007

O
b

je
ct

s

Bottle 0.993/0.955 0.978/0.936 0.985/0.940 0.986/0.956 0.987/0.944 0.988/0.965 0.989/0.964 0.994±0.0009/0.971±0.0011

Cable 0.961/0.910 0.979/0.973 0.972/0.922 0.986/0.980 0.987/0.931 0.975/0.944 0.980/0.968 0.986±0.0010/0.977±0.0030

Capsule 0.869/0.901 0.980/0.924 0.979/0.878 0.990/0.946 0.989/0.943 0.989/0.952 0.992/0.959 0.992±0.0021/0.964±0.0033

Hazelnut 0.997/0.985 0.980/0.951 0.982/0.968 0.988/0.924 0.986/0.953 0.984/0.976 0.985/0.976 0.995±0.0040/0.982±0.0028

Metal nut 0.992/0.935 0.979/0.929 0.972/0.985 0.986/0.935 0.987/0.918 0.971/0.942 0.976/0.948 0.996±0.0003/0.970±0.0012

Pill 0.979/0.959 0.978/0.957 0.971/0.929 0.983/0.947 0.986/0.965 0.976/0.978 0.980/0.980 0.996±0.0002/0.988±0.0005

Screw 0.992/0.965 0.974/0.923 0.983/0.924 0.984/0.928 0.985/0.944 0.988/0.945 0.992/0.960 0.993±0.0003/0.968±0.0010

Toothbrush 0.970/0.940 0.980/0.894 0.986/0.877 0.987/0.939 0.989/0.894 0.983/0.904 0.986/0.938 0.995±0.0003/0.961±0.0026

Transistor 0.970/0.935 0.983/0.967 0.886/0.781 0.964/0.967 0.985/0.960 0.923/0.788 0.940/0.830 0.983±0.0005/0.972±0.0015

Zipper 0.984/0.966 0.978/0.948 0.981/0.935 0.986/0.963 0.988/0.944 0.986/0.957 0.987/0.957 0.993±0.0003/0.977±0.0002

Mean 0.969/0.947 0.976/0.932 0.970/0.915 0.981/0.940 0.982/0.931 0.979/0.946 0.982/0.955 0.992±0.0007/0.976±0.0006

Image-level Mean 0.978 0.975 0.964 0.988 0.989 0.968 0.974 0.993±0.0012

Table 2. AUROC and PRO results under the multi-class setting on

the MVTecAD dataset. ∗ Please see explanation in Table 1.

Category
Supervised AD Methods (Ten Abnormal Samples)

FCDD∗ [24] DevNet∗ [27] DRA∗ [12] BGAD (Ours)

Carpet 0.981/0.952 -/- -/- 0.996±0.0002/0.989±0.0004

Grid 0.949/0.897 -/- -/- 0.995±0.0002/0.986±0.0001

Leather 0.984/0.973 -/- -/- 0.998±0.0001/0.994±0.0003

Tile 0.977/0.938 -/- -/- 0.994±0.0077/0.978±0.0021

Wood 0.950/0.901 -/- -/- 0.982±0.0053/0.970±0.0007

Bottle 0.966/0.939 -/- -/- 0.994±0.0009/0.971±0.0011

Cable 0.963/0.980 -/- -/- 0.986±0.0010/0.977±0.0030

Capsule 0.970/0.922 -/- -/- 0.992±0.0021/0.964±0.0033

Hazelnut 0.970/0.958 -/- -/- 0.995±0.0040/0.982±0.0028

Metal nut 0.966/0.934 -/- -/- 0.996±0.0003/0.970±0.0012

Pill 0.975/0.960 -/- -/- 0.996±0.0002/0.988±0.0005

Screw 0.963/0.925 -/- -/- 0.993±0.0003/0.968±0.0010

Toothbrush 0.967/0.907 -/- -/- 0.995±0.0003/0.961±0.0026

Transistor 0.942/0.935 -/- -/- 0.983±0.0005/0.972±0.0015

Zipper 0.968/0.948 -/- -/- 0.993±0.0003/0.977±0.0002

Mean 0.966/0.938 -/- -/- 0.992±0.0007/0.976±0.0006

Image-level Mean 0.965 0.948 0.961 0.993±0.0012

Table 3. Pixel-level AUROC results on the BTAD dataset. ·/·
means pixel-level AUROC and PRO. The results of our model are

averaged over three independent runs.

Categories AE-MSE AE-SSIM VT-ADL NFAD BGAD (Ours)

1 0.490 0.530 0.990 0.972/0.767 0.982±0.0027/0.830±0.0318

2 0.920 0.960 0.940 0.967/0.578 0.979±0.0018/0.648±0.0173

3 0.950 0.890 0.770 0.996/0.988 0.998±0.0003/0.993±0.0005

Mean 0.780 0.790 0.900 0.978/0.778 0.986±0.0015/0.824±0.0163

class, they even perform less effectively than the unsuper-

vised baseline NFAD on most of the datasets. By contrast,

our model can outperform the baseline NFAD across all the

datasets. The comparison results validate that our model’s

better generalizability to unseen anomalies and the serious

bias issue can be alleviated by our method.

4.5. Ablation Study

Experiments On Hard Subsets. The experimental re-

sults in Table 1 has already demonstrated the effectiveness

Table 4. AUROC results under the one-class setting, where models

are trained with only one anomaly class and tested to detect other

anomaly classes. ·/· means image-level and pixel-level AUROCs.

Known Class
Baseline Ten Training Anomaly Samples

NFAD DevNet FLOS SAOE MLEP DRA BGAD (Ours)

C
ar

p
et

Color 0.998/0.993 0.767/- 0.760/- 0.467/- 0.689/- 0.886/- 1.000/0.993
Cut 0.998/0.995 0.819/- 0.688/- 0.793/- 0.653/- 0.922/- 0.998/0.996
Hole 0.997/0.993 0.814/- 0.733/- 0.831/- 0.674/- 0.922/- 0.998/0.995
Metal 0.998/0.993 0.863/- 0.678/- 0.883/- 0.764/- 0.933/- 1.000/0.994
Thread 1.000/0.995 0.972/- 0.946/- 0.834/- 0.967/- 0.989/- 1.000/0.996
Mean 0.998/0.994 0.847/- 0.761/- 0.762/- 0.751/- 0.935/- 0.999/0.995

M
et

al
n

u
t Bent 0.977/0.959 0.904/- 0.827/- 0.901/- 0.956/- 0.990/- 1.000/0.972

Color 0.977/0.963 0.978/- 0.9788/- 0.879/- 0.945/- 0.967/- 0.999/0.973
Flip 0.976/0.977 0.987/- 0.942/- 0.795/- 0.805/- 0.913/- 0.995/0.982

Scratch 1.000/0.965 0.991/- 0.943/- 0.845/- 0.805/- 0.911/- 1.000/0.972
Mean 0.983/0.966 0.965/- 0.922/- 0.855/- 0.878/- 0.945/- 0.998/0.975

Table 5. AUROC and PRO results on subsets from the MVTecAD

dataset. The details of subset selection are provided in Appendix.

Metric

Dataset MVTecAD Hard Subsets Unseen Subsets

NFAD BGAD NFAD BGAD NFAD BGAD

Image AUROC 0.968 0.992(+2.5%) 0.948 0.984(+3.6%) 0.948 0.971(+2.3%)

Pixel AUROC 0.979 0.992(+1.3%) 0.960 0.986(+2.6%) 0.960 0.982(+2.2%)

PRO 0.946 0.976(+3.0%) 0.863 0.949(+8.6%) 0.863 0.930(+6.7%)

of our model. However, to further demonstrate the ability of

our method to detect complex anomalies, we construct two

more difficult subsets from the MVTecAD dataset and con-

duct experiments on these two subsets. The details of subset

selection are provided in Appendix. The results are shown

in Table 5. It can be found that the detection and localization

performance gain on these hard subsets is larger than that

on the original dataset with a margin of 1.1%, 1.3%, and

5.6% respectively. This ablation study demonstrates that

our model is more beneficial for harder anomaly classes.

Generalization to Hard Subsets. We use the easy sub-

sets as the training set and validate results on the hard sub-

sets to explore the generalizability of the model. The easy

subsets are formed by excluding the hard subsets mentioned
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Table 6. AUROC results under the one-class setting. ·/· means

image-level and pixel-level AUROCs.

Method
Category

Carpet Metal nut Capsule Screw Transistor

NFAD (baseline) 0.998/0.994 0.983/0.966 0.941/0.990 0.885/0.989 0.984/0.929

BGAD† 0.998/0.994 0.997/0.927 0.868/0.963 0.823/0.980 0.933/0.847

BGAD (Ours) 0.999/0.995 0.998/0.975 0.988/0.991 0.947/0.991 0.994/0.942

in the last paragraph from the original dataset. The exper-

imental results are shown in Table 5. It can be found that

even only trained with easy anomalies, our BGAD can gen-

eralize well to hard anomalies with performance gain by

2.3% and 2.2% AUROC, and 6.7% PRO.

Effect of Semi-Push-Pull Mechanism. We implement

a variant of BGAD (termed as BGAD†), it doesn’t utilize

the BG-SPP loss while employing the conventional con-

trastive loss. The comparison results are shown in Table 6,

and more results are in Appendix (Table 11). The BGAD†

performs less effectively than the BGAD, and even worse

than the baseline NFAD (especially for some complex cate-

gories, e.g., Capsule, Screw, Transistor). The reason is that

the BGAD†’s full pushing mechanism will encourage the

anomalous features to deviate from the normal distribution

at least a large enough bound, which may make the model

more inclined to generate larger anomaly scores and thus

lead to the model being easier to over-fit the known anoma-

lies. Therefore, the BGAD† may generate larger anomaly

scores for normal features, which will significantly reduce

the AUROC metrics. However, the semi-push-pull mech-

anism in our BGAD only changes the ambiguous region,

this has less impact on the full normal and abnormal dis-

tributions. Thus, the BG-SPP loss doesn’t make the model

have the inclination to generate larger anomaly scores, is

more conducive to alleviating over-fitting of the model to

the known anomalies.

4.6. Qualitative Results

We visualize some anomaly localization results in Figure

4 with the MVTecAD dataset. Our BGAD can generate

more accurate anomaly localization maps (see columns of

{1,3,4,5,6} in Figure 4), or even generate anomaly maps

better than ground truth (see columns of {2} in Figure 4).

To illustrate the effectiveness of our method more intu-

itively, we visualize normal and abnormal feature distribu-

tions and log-likelihood distributions in Figure 5, 6. From

Figure 5, it can be found that the supervised DevNet [27]

is biased by the known anomalies, failing to distinguish un-

seen anomalies from the normal data. But our method can

effectively mitigate this issue and generate more discrim-

inative features than the unsupervised MSFD [47]. From

Figure 6, it can be found that the ambiguous log-likelihood

regions can be diminished by our BGAD.

GroundTruth

Anomaly 
Localization 
by BGADw/o

Anomaly 
Localization 

by BGAD

Anomaly 
Localization 

by MSFD

Figure 4. Qualitative results. The anomaly localization results

generated by MSFD, BGADw/o, and BGAD are shown for com-

parison. In the first row, the areas enclosed by the red lines are

ground-truth.

(a) Tile

DevNet BGAD (Ours)MSFD DevNet BGAD (Ours)MSFD

(b) TransistorNormal Unseen AnomaliesSeen Anomalies

Figure 5. Feature distributions learned by unsupervised MSFD

[47], supervised DevNet [27] and our BGAD.

(a) (b)

Figure 6. Log-likelihood histograms from (a) tile and (b) transistor

category. Left is the log-likelihood histogram w/o anomaly sam-

ples, right is the log-likelihood histogram with anomaly samples.

5. Conclusion

We propose a novel and more discriminative AD model

termed as BGAD to tackle the insufficient discriminability
issue and the bias issue simultaneously. Compared with un-

supervised AD models, our model can learn more discrimi-

native features for distinguishing anomalies by exploiting a

few anomalies effectively. Compared with supervised AD

methods, our method can mitigate the bias issue with the ex-

plicit separating boundary and semi-push-pull mechanism.

We hope our boundary guiding mechanism can inspire sub-

sequent studies of supervised AD.
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