
HGNet: Learning Hierarchical Geometry from Points, Edges, and Surfaces

Ting Yao, Yehao Li, Yingwei Pan, Tao Mei
HiDream.ai Inc.

{tingyao.ustc, yehaoli.sysu, panyw.ustc}@gmail.com, tmei@hidream.ai

Abstract

Parsing an unstructured point set into constituent local
geometry structures (e.g., edges or surfaces) would be help-
ful for understanding and representing point clouds. This
motivates us to design a deep architecture to model the
hierarchical geometry from points, edges, surfaces (trian-
gles), to super-surfaces (adjacent surfaces) for the thor-
ough analysis of point clouds. In this paper, we present
a novel Hierarchical Geometry Network (HGNet) that in-
tegrates such hierarchical geometry structures from super-
surfaces, surfaces, edges, to points in a top-down man-
ner for learning point cloud representations. Technically,
we first construct the edges between every two neighbor
points. A point-level representation is learnt with edge-to-
point aggregation, i.e., aggregating all connected edges into
the anchor point. Next, as every two neighbor edges com-
pose a surface, we obtain the edge-level representation of
each anchor edge via surface-to-edge aggregation over all
neighbor surfaces. Furthermore, the surface-level repre-
sentation is achieved through super-surface-to-surface ag-
gregation by transforming all super-surfaces into the an-
chor surface. A Transformer structure is finally devised to
unify all the point-level, edge-level, and surface-level fea-
tures into the holistic point cloud representations. Extensive
experiments on four point cloud analysis datasets demon-
strate the superiority of HGNet for 3D object classification
and part/semantic segmentation tasks. More remarkably,
HGNet achieves the overall accuracy of 89.2% on ScanOb-
jectNN, improving PointNeXt-S by 1.5%.

1. Introduction
With the growing popularity of 3D acquisition technolo-

gies (such as 3D scanners, RGBD cameras, and LiDARs),
3D point cloud analysis has been a fast-developing topic in
the past decade. Practical point cloud analysis systems have
great potential for numerous applications, e.g., autonomous
driving, robotics, and virtual reality. In comparison to 2D
RGB image data, 3D data of point clouds has an additional
dimension of depth, leading to a three dimensional world as

Point

Surface

Super-surface

Edge

Figure 1. The progressive development of a four-level hierarchi-
cal geometry structure among points, edges, surfaces, and super-
surfaces. Such hierarchical geometry structure further in turn
strengthens surface-level, edge-level, and point-level features in
a top-down manner.

in our daily life. The 3D point clouds are armed with several
key merits, e.g., preserving rich geometry information and
being invariant to lighting conditions. Nevertheless, consid-
ering that point clouds are naturally unstructured without
any discretization, it is not trivial to directly applying the
typical CNN operations widely adopted in 2D vision over
the primary point set for analyzing 3D data.

To alleviate this limitation, a series of efforts have at-
tempted to interpret the geometry information rooted in
unstructured point clouds, such as the regular point-based
[30, 38], edge/relation-based [32, 46], or surface-based [39]
representations. For instance, PointNet [30] builds up the
foundation of regular point-based feature extraction via
stacked Multi-Layer Perceptrons (MLPs) plus symmetric
aggregation. The subsequent works (e.g., PointNet++ [32]
and DGCNN [46]) further incorporate edge/relation-based
features by using set abstraction or graph models for aggre-
gating/propagating points and edges, pursuing the mining
of finer geometric structures. More recently, RepSurf [39]
learns surface-based features over triangle meshes to enable
an amplified expression of local geometry. Despite showing
encouraging performances, most existing point cloud anal-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

21846

ysis techniques lack a thorough understanding of the com-
positional local geometry structures in the point clouds.

In this work, we propose to mitigate this issue from
the standpoint of parsing an unstructured point set into a
hierarchical structure of constituent local geometry struc-
tures to comprehensively characterize the point clouds. Our
launching point is to construct a bottom-up local hierarchi-
cal topology from the leaf level of irregular and unordered
points, to the intermediary levels of edges and surfaces, and
the root level of super-surfaces (i.e., adjacent surfaces). Fig-
ure 1 conceptually depicts the progressive development of
a hierarchical geometry structure for a local set of points.
Such hierarchical structure in turn triggers the reinforce-
ment of 3D model capacity for capturing comprehensive ge-
ometry information. The learning of multi-granular geom-
etry features, i.e., surface-level, edge-level, and point-level
features, is enhanced by aggregating geometry information
from super-surfaces, surfaces, or edges derived from the hi-
erarchical topology in a top-down fashion.

By consolidating the idea of delving into the local hier-
archical geometry in point clouds, we present a new Hier-
archical Geometry Network (HGNet) to facilitate the learn-
ing of point cloud representations. Specifically, we con-
struct a four-level hierarchy among points, edges, surfaces,
and super-surfaces. The edges are first built between two
neighbor points and each is extended to a surface (trian-
gle) by connecting another neighbor point. The adjacent
surfaces are then grouped as a super-surface. Next, HGNet
executes top-down feature aggregation from super-surfaces,
surfaces, and edges, leading to three upgraded geometry
features of surfaces, edges, and points, respectively. Finally,
we capitalize on a Transformer structure to unify these re-
fined surface-level, edge-level, and point-level geometry
features with holistic contextual information, thereby im-
proving point cloud analysis.

We analyze and evaluate our HGNet through extensive
experiments over multiple 3D vision tasks for point cloud
analysis (e.g., 3D object classification and part/semantic
segmentation tasks), which empirically demonstrate its su-
perior advantage against state-of-the-art backbones. More
remarkably, on the real-world challenging benchmark of
ScanObjectNN, HGNet achieves to-date the best published
overall accuracy of 89.2%, which absolutely improves
PointNeXt-S (87.7%) with 1.5%. For part and semantic
segmentation on PartNet and S3DIS datasets, HGNet sur-
passes PosPool and PointNeXt by 1.8% and 1.8% in mIoU.

2. Related Work
Projection-based Methods aim to project the 3D point

cloud to image planes or 3D voxels, while leaving the de-
tailed geometry information unexploited. There are two
main streams to formulate projections: view-based and
voxel-based projections. Inspired by the breakthrough per-

formance in 2D CNNs [10,11,41,43], early works [3,7,31,
42] project the 3D point cloud to image planes from differ-
ent views, avoiding the process of irregular and unordered
point cloud. In general, they utilize 2D CNNs to extract fea-
tures from image planes and fuse the multi-view features as
the point cloud representations. Therefore, the point cloud
analysis is framed as the well-explored 2D problem, and
thus benefits from the mature techniques of CNNs. Another
direction is to project the irregular 3D point cloud into reg-
ular 3D voxels, followed by standard 3D CNNs [5, 26, 48].
Due to the cubic growth in the number of voxels w.r.t. the
resolution, voxel-based methods suffer from huge compu-
tation and memory costs. To tackle this issue, OctNet [40]
uses a set of unbalanced octrees to hierarchically partition
the 3D space. SSCNs [6] utilizes sparse convolutions to
process spatially-sparse data more efficiently.

Point-based Methods mines the geometry structure
among primary points to boost point cloud analysis. The
pioneering work PointNet [30] utilizes multi-layer percep-
trons followed by a max-pooling layer to extract global in-
formation. PointNet++ [32] further applies PointNet recur-
sively on a nested partitioning of input point cloud for learn-
ing hierarchical representations. PointMLP [25] designs a
pure residual MLP network coupled with a lightweight yet
effective geometric affine module. PointNorm [60] pro-
poses the DualNorm module after the sampling-grouping
layer to reduce the irregularity of point cloud. PointNeXt
[34] upgrades PointNet++ with an inverted residual bottle-
neck design and a set of improved training strategies to en-
able efficient and effective model scaling.

Moreover, recent works learn to capture more detailed
geometry structures (e.g., edges/relaitons between points).
For example, RS-CNN [17] proposes relation-shape con-
volution to explicitly encode geometric relation of points.
DGCNN [46] introduces the edges in the local aggregation
layer which connect a point and its neighbors. Then the
local graph is dynamically constructed to capture local ge-
ometric features. PosPool [18] simplifies the local aggrega-
tion operator and removes learnable weights. In contrast to
aggregating points within a local region, PointASNL [53]
introduces the adaptive sampling and local-nonlocal mod-
ule to capture neighbor and long-range dependencies of the
sampled point. CurveNet [50] develops the curve aggrega-
tion to group both local and non-local points from a curve
generated by the guided walk strategy. To enrich the local
geometry information, surface curvature is proposed and
calculated based on normal vector and neighbors coordi-
nate [4]. RepSurf [39] further extends PointNet++ by re-
placing the point position with surface representation in the
stem layer. Recently, inspired by Transformer used in vari-
ous vision tasks [14, 15, 21, 22, 28, 29, 54–56], Transformer
structure [8, 59] is applied to 3D point clouds, aiming to
mine point relationship in local regions via self-attention.

21847

Our work also falls into the latter category of exploiting
detailed geometry structures among points. Compared to
existing techniques that commonly take one or two kinds of
geometry information into account, our HGNet delves into
more detailed local hierarchical geometry among points,
edges, surfaces, and even super-surfaces. Such design pur-
sues a thorough point cloud understanding.

3. Approach

We design Hierarchical Geometry Network (HGNet)
to exploit comprehensive hierarchical geometry in point
clouds for facilitating point cloud representation learning.
HGNet first builds a four-level hierarchy from the leaf level
of points, to the intermediary levels of edges and surfaces,
and the root level of the super-surfaces. Such way leads to
a multi-granular and structured modeling of comprehensive
geometry information in point clouds. Next, top-down fea-
ture aggregation is performed between every two adjacent
levels to contextually strengthen point cloud representations
at surface-level, edge-level, and point-level. A Transformer
structure is finally leveraged to holistically unify all the en-
hanced surface-level, edge-level, and point-level represen-
tations for point cloud analysis.

3.1. Multi-stage Scheme

Formally, let P = {pi|i = 1, ..., N} ∈ RN×3 denote
a set of points, where N is the number of points in the
Cartesian space. The target of point-based methods is to
design a deep neural network to learn the representations
of P . Most existing architectures adopt the typical multi-
stage scheme based on PointNet++ [32], which consists of
a stem layer and multiple stages with different point reso-
lutions. The stem layer is to generate the representation fi
for each point pi, and all the point features are further fed
into the following stages. Each stage contains a local aggre-
gation layer followed by several point-wise transformation
layers. The module between every two stages employs the
Farthest Point Sampling (FPS) algorithm to downsample
the points, and meanwhile increase the number of channels.
Note that the point resolution is preserved in the following
layers within the same stage.

3.2. Point-level Representation

We start from the learning of point-level representations,
which is formulated under the same multi-stage scheme as
in PointNet++. In particular, each point is first encoded via
point embedding in stem layer. Next, we perform the edge-
to-point aggregation from edge-level to point-level on the
basis of our constructed hierarchical topology, yielding the
point-level representation.

Point Embedding. The point embedding in stem layer
aims to transform each point pi into a higher dimensional

feature. Technically, let f̃i denote the input feature of each
point pi for the stem layer. This input point feature f̃i is
commonly set as the position (i.e., pi=(x,y,z)) in the Carte-
sian space. A point-wise transformation layer is employed
to map the input point feature into higher dimensional fea-
ture fp

i ∈ Rd, where d is the dimension of fp
i :

fp
i = Fp(f̃i). (1)

Fp denotes the point-wise transformation layer (imple-
mented as fully-connected layer). Next, the output point
features of the stem layer are fed into the following layers
in each stage, including the edge-to-point aggregation layer
and several point-wise transformation layers.

Edge-to-Point Aggregation for Points. Given each
transformed point feature, the edge-to-point aggregation
layer is to aggregate the locally connected edges derived
from its neighbor points. Here the edge-to-point aggrega-
tion layer is implemented as the typical point-wise MLP ag-
gregation [18,32]. In particular, by taking the input point pi
as the anchor point, each connected edge between pi and its
neighbor point pj is first represented as the relative location
in between:

∆pij = pj − pi = [∆xij ,∆yij ,∆zij]. (2)

Next, the relative location ∆pij and the corresponding
neighbor point feature fp

j are jointly fed into a transform
function Gp(·, ·), leading to an upgraded edge feature gpij .
Finally, all the upgraded features of connected edges are
aggregated to form the output point-level feature gpi of the
anchor point pi through a reduction function R. Note that
the reduction function is typically implemented as the av-
erage pooling, max pooling or self-attention. In this way,
the whole procedure of edge-to-point aggregation for the
anchor point pi is formulated as:

gpij = Gp(∆pij , f
p
j) = Gp

pos(∆pij) +Gp
feat(f

p
j),

gpi = R({gpij | j ∈ N(i)}),
(3)

where N(i) represents the set of neighbor points of the
anchor point pi according to the constructed hierarchical
topology, Gp

pos and Gp
feat denotes the position and fea-

ture transformation of points, respectively. Accordingly, by
applying edge-to-point aggregation over points, the output
point-level feature gpi is nicely endowed with the edge ge-
ometry information.

3.3. Edge-level Representation

In analogy to point-level representation learning, we
frame the learning of edge-level representation learning in
the similar multi-stage scheme. Specifically, the stem layer
is leveraged to transform the input edge through edge em-
bedding. The surface-to-edge aggregation is then utilized

21848

from surface-level to edge-level based on our hierarchical
topology, obtaining edge-level representations.

Edge Embedding. In this context, each input edge
is defined as the connection between the point pi and its
nearest neighbor point p′i. By denoting this input edge as
ei = (pi, p

′
i), we also represent it as the relative location

between two points, and a point-wise transformation layer
is further utilized to encode this edge feature ei ∈ R3 into
higher dimensional feature fe

i ∈ Rd:

fe
i = Fe(ei) = Fe(p

′
i − pi), (4)

where Fe is the point-wise transformation layer and the out-
put edge features are regarded as the inputs of the following
surface-to-edge aggregation layer.

Surface-to-Edge Aggregation for Edges. Based on
each transformed edge feature, surface-to-edge aggregation
layer aims to aggregate the locally built surfaces to form
edge-level representations, where each surface is composed
of the anchor edge and the neighbor point. Technically,
given the edge ei = (pi, p

′
i) and the corresponding neigh-

bor point pj of the anchor point pi, we directly construct
a surface, which is denoted as sij = (pi, p

′
i, pj). Here we

calculate the surface center cij and normal vectors nij to
represent this surface sij :

cij = (pi + p′i + pj)/3,

nij = CrossProduct(p′i − pi, pj − pi),
(5)

where CrossProduct is the cross product operation. Af-
ter that, the surface center cij , normal vector nij , and the
edge feature derived from neighbor point fe

j are fed into
a transform function Ge(·, ·, ·), yielding the upgraded sur-
face feature geij . Furthermore, we aggregate the upgraded
features of all the constructed surfaces on the hierarchical
topology, leading to the edge-level representation gei for the
anchor edge ei via reduction function R:

geij = Ge(cij , nij , f
e
j) = Ge

pos(cij , nij) +Ge
feat(f

e
j),

gei = R({geij | j ∈ N(i)}),
(6)

where Ge
pos and Ge

feat is the position and feature transfor-
mation of edges, respectively. As such, the output edge-
level feature gei is strengthened with additional surface ge-
ometry information via surface-to-edge aggregation.

3.4. Surface-level Representation

Here we go one step further to learn surface-level repre-
sentations with more complex geometry information among
adjacent surfaces. Similarly, the learning of surface-level
representation is also formulated with multi-stage scheme.
Concretely, we first encode each surface with surface em-
bedding in stem layer. The super-surface-to-surface ag-
gregation is further leveraged from super-surface-level to

surface-level based on the hierarchical topology, aiming to
achieve surface-level representations.

Surface Embedding. Each input surface in the stem
layer is constructed as the surface consisting of the point pi
and its two nearest neighbor points (p′i and p′′i). In this way,
we denote each input surface as si = (pi, p

′
i, p

′′
i), and rep-

resent it as the concatenation of the corresponding surface
center ci and normal vector ni. A point-wise transformation
layer is further leveraged to transform this surface feature
si ∈ R6 into high dimension representation fs

i ∈ Rd. The
overall surface embedding operates as follows:

ci = (pi + p′i + p′′i)/3,

ni = CrossProduct(p′i − pi, p
′′
i − pi),

fs
i = Fs(si) = Fs([ci, ni]),

(7)

where Fs is the point-wise transformation layer.
Super-Surface-to-Surface Aggregation for Surfaces.

Given each transformed surface feature, super-surface-to-
surface aggregation is devised to aggregate the locally con-
structed super-surfaces. Each super-surface is built as a
group of adjacent surfaces derived from the anchor sur-
face and the neighbor point. Formally, conditioned on the
anchor surface si = (pi, p

′
i, p

′′
i) and one neighbor point

pj of the anchor point pi, we construct the super-surface
containing three adjacent surfaces (s1ij = (pi, p

′
i, pj),

s2ij = (pi, p
′′
i , pj), and s3ij = (p′i, p

′′
i , pj)). For each

surface s1ij /s2ij /s3ij , we calculate its surface representation
fs1

ij /fs2

ij /fs3

ij as the concatenation of surface center and nor-
mal vector as in Eq. (5). Next, we transform both super-
surface feature (the concatenation of three adjacent sur-
face features) and the surface feature derived from neigh-
bor point fs

j into the upgraded super-surface feature gfij via
transform function Gs(·, ·, ·, ·). All the upgraded features
of super-surfaces based on hierarchical topology are further
aggregated to produce the surface-level feature gfi of the
anchor surface si through reduction function R:

gfij = Gs(fs1

ij , f
s2

ij , f
s3

ij , f
s
j) = Gs

pos(f
s1

ij , f
s2

ij , f
s3

ij) +Gs
feat(f

s
j),

gfi = R({gfij | j ∈ N(i)}),
(8)

where Gs
pos and Gs

feat is the position and feature transfor-
mation of surfaces, respectively. In comparison to edge-
level feature gei and point-level feature gpi , this output
surface-level feature gfi reflects more complex geometry in-
formation of super-surfaces.

3.5. HG Block

We proceed to present our core proposal, i.e., Hierarchi-
cal Geometry block (HG block), that holistically unifies all
the point-level, edge-level, and surface-level features via a
Transformer structure.

21849

H
G

 E
m

be
dd

in
g

St
ri

de
d

H
G

 B
lo

ck

H
G

B
lo

ck
 x

 M
1

St
ri

de
d

H
G

 B
lo

ck

H
G

B
lo

ck
 x

 M
2

St
ri

de
d

H
G

 B
lo

ck

H
G

B
lo

ck
 x

 M
3

St
ri

de
d

H
G

 B
lo

ck

cl
as

si
fi

ca
ti

o
n

C2 x N2 C3 x N3 C4 x N4 C5 x N5

Fe
at

.
P

ro
pa

ga
ti

on

H
G

B
lo

ck
 x

 M
4

P
oo

l &
 M

LP

Fe
at

.
P

ro
pa

ga
ti

on

Fe
at

.
P

ro
pa

ga
ti

on

Fe
at

.
P

ro
pa

ga
ti

on

C4 x N4C3 x N3C2 x N2

C1 x N1

C1 x N1

Point
 Embedding

Edge
 Embedding

 Surface
 Embedding

 MLP

HG Embedding

HG Block

 A
gg

re
ga

ti
o

n

M
LP

 &
 R

eL
U

M
LP

R
eL

U

concat M
LP

s

In
te

rp
o

la
te

Feat. Propagation

Figure 2. The detailed architecture of the proposed Hierarchical Geometry Network (HGNet) for point cloud analysis.

HG Embedding. HG block first integrates the input
point, edge, and surface representations, and then encodes
them through HG embedding in the stem layer. Specifically,
the primary input point feature fp

i , edge feature fe
i , and sur-

face feature fs
i are obtained as in Eq.(1), (4), and (7). A

fully-connected layer Fhg is then employed to jointly en-
code these features into multi-granular geometry features:

fhg
i = Fhg([f

p
i , f

e
i , f

s
i]). (9)

Transformer-based Aggregation. After that, HG block
performs Transformer-based aggregation to dynamically
aggregate the multi-granular geometry features of neighbor
points. Technically, we calculate the output point cloud rep-
resentations of HG block with self-attention layer:

∆fhg
ij = fhg

j − fhg
i ,

αij = ρ(γ(ϕ(∆fhg
ij) + δ(i, j))),

vij = β(φ(∆fhg
ij) + δ(i, j)),

ghgi =
∑

j∈N(i)

αij ⊙ vij ,

(10)

where ∆fhg
ij denotes the subtraction between multi-

granular geometry feature fhg
i and fhg

j that basically re-
flects the relative geometry information in between. γ, β,
ϕ, and φ are point-wise transformations, δ is a position en-
coding function and ρ is the normalization function (e.g.,
softmax). As such, the self-attention layer measures the at-
tention weight for each neighbor point pj of query point
pi, which is further utilized to aggregate the values (i.e.,
the features transformed by β). Here we directly utilize the
summation of position transformation output in point-level,
edge-level, and surface-level representations (in Eq.(3), (6),
(8)) as the position encodings:

δ(i, j) = Gp
pos(∆pij) +Ge

pos(cij , nij) +Gs
pos(f

s1

ij , f
s2

ij , f
s3

ij).
(11)

In an effort to reduce the computational cost of self-
attention, we reuse the values vij to compute the attention

weight. Finally, the Transformer-based aggregation in HG
block operates as follows:

∆fhg
ij = fhg

j − fhg
i ,

vij = β(φ(∆fhg
ij) + δ(i, j)),

ghgi =
∑

j∈N(i)

ρ(γ(vij))⊙ vij .

(12)

3.6. HGNet

Following the basic configuration of PointNeXt [34], we
construct our HGNet based on HG blocks. The entire ar-
chitecture of HGNet is composed of one stem layer and
four stages. The stem layer utilizes the HG embedding de-
scribed in Sec.3.5 to encode the point, edge, surface rep-
resentations. Each stage contains one strided HG block
and multiple stacked HG blocks. The strided HG block
contains one subsampling layer to downsample the points
from previous stage and one Transformer-based aggrega-
tion layer. Next, inspired by ConvNeXt [19], the following
HG block includes a Transformer-based aggregation layer
and two layers of MLPs. For the part/semantic segmenta-
tion task, we adopt a U-net design and couple HGNet with a
symmetric decoder. Transition up modules are additionally
utilized to connect the consecutive stages in the decoder.
Figure 2 shows an overview of HGNet architecture.

4. Experiments
We evaluate the effectiveness of HGNet via various em-

pirical evidences on four challenging point cloud analy-
sis datasets: ScanObjectNN [45] and ModelNet40 [49] for
3D classification, PartNet [27] for part segmentation, and
S3DIS [1] for semantic segmentation.

4.1. 3D Classification on ScanObjectNN

Settings. ScanObjectNN is a real-world 3D object
dataset, which is commonly adopted in recent point cloud
analysis works [9, 25, 34]. It consists of about 15,000 real-
world objects derived from 15 classes with 2,902 unique

21850

Table 1. Comparison results of HGNet with other state-of-the-art
methods on ScanObjectNN for 3D classification.

Method OA mAcc Params. FLOPs Throughput
PointNet [30] 68.2 63.4 3.5M 0.9 4212

PointNet++ [32] 77.9 75.4 1.5M 1.7 1872
DGCNN [46] 78.1 73.6 1.8M 4.8 402

PointCNN [13] 78.5 75.1 - - -
BGA-DGCNN [45] 79.7 75.7 - - -

DRNet [36] 80.3 78.0 - - -
GBNet [37] 80.5 77.8 - - -
PRANet [2] 82.1 79.1 - - -

RepSurf-U [39] 84.3 81.3 1.5M 3.1 294
PointMLP [25] 85.4 83.9 13.2M 31.3 191

Point-M2AE [58] 86.4 - - - -
Pix4Point [35] 86.8 84.9 - - -
PointNorm [60] 86.8 85.6 12.6M - 140

PointNeXt-S [34] 87.7 85.8 1.4M 1.6 2040
HGNet 89.2 87.5 1.5M 3.1 1489

object instances. Note that this dataset includes noise, oc-
clusions and the existence of background, thereby making it
more challenging. Following [34], we conduct experiments
on the hardest variant (PB T50 RS) of ScanObjectNN, and
report the class-average accuracy (mAcc) and overall accu-
racy (OA) for evaluation. During training, we adopt random
scaling, random rotation and point resampling data augmen-
tations as in [34]. We employ AdamW optimizer [24] on
a single V100 GPU. The whole optimization includes 500
epochs with cosine decay learning rate scheduler [23] and
label smoothing. The batch size, learning rate and weight
decay is set as 64, 0.002, and 0.05, respectively.

Performance Comparison. Table 1 details the per-
formance comparisons between our HGNet and other
state-of-the-art methods. In general, our HGNet consis-
tently exhibits better performances than the state-of-the-
art methods, including point-based approach (e.g., Point-
Net), edge/relation-based method (e.g., PointNet++ and
DGCNN), and surface-based technique (e.g., RepSurf-U),
in terms of both evaluation metrics. In particular, the over-
all accuracy of HGNet reaches 89.2%, leading to the ab-
solute improvement of 1.5% against the best competitor
PointNeXt-S (87.7%). This generally demonstrates the
key advantage of holistically integrating hierarchical ge-
ometry structures to facilitate point cloud analysis. More
specifically, by additionally performing edge-to-point ag-
gregation and using set abstraction to obtain joint repre-
sentations of points and edges, PointNet++ outperforms
PointNet that solely explores geometry information among
points. DGCNN and BGA-DGCNN further boosts up the
performances by leveraging graph models to exploit the
edges/relations between points, that highlight the merit of
edge-level geometry information. Moreover, when build-
ing an amplified expression of local geometry at surface-
level, RepSurf-U exhibits better 3D classification perfor-

Table 2. Comparison results of HGNet with other state-of-the-art
methods on ModelNet40 for 3D classification.

Method Inputs OA mAcc Params. FLOPs Throughput
PointNet [30] 1k P 89.2 86.0 3.5M 0.9 4212

PointNet++ [32] 1k P 90.7 - 1.5M 1.7 1872
PointCNN [13] 1k P 92.5 88.1 0.6M - 44
PointConv [47] 1k P 92.5 - - - -
KPConv [44] 7k P 92.9 - 14.3M - -
DGCNN [46] 1k P 92.9 90.2 2.2M 3.9 263
RS-CNN [17] 1k P 92.9 - - - -

PointASNL [53] 1k P 92.9 - - - -
PCT [8] 1k P 93.2 - 2.9M 2.3 -

DensePoint [16] 1k P 93.2 - - - -
PosPool [18] 5k P 93.2 - 19.4M - -

DeepGCN [12] - 93.6 90.9 2.2M 3.9 263
GBNet [37] 1k P 93.8 91.0 8.4M 16.3 112

GDANet [52] 1k P 93.8 - 0.93M 26.3 14.0
PA-DGC [51] 1k P 93.9 - - - -

Point Trans. [59] 1k P 93.7 90.6 - - -
PointNeXt-S [34] 1k P 93.7 90.9 4.5M 6.5 859
PointMLP [25] 1k P 94.1 91.3 13.2M 31.3 191
RepSurf-U [39] 1k P 94.4 91.4 1.5M 3.1 294

HGNet 1k P 94.5 91.9 1.4M 2.3 1550

mances than BGA-DGCNN. However, the performances
of RepSurf-U are lower than PointNeXt-S that strengthens
the 3D model capacity of edge-based method (PointNet++)
with high-quality designs (e.g., an inverted residual bottle-
neck and improved training strategies). By further exploit-
ing more detailed local hierarchical geometry among points,
edges, surfaces, and super-surfaces, our HGNet achieves the
best performances. The result confirms that framing un-
structured point sets in hierarchical topology is an effective
way to enhance point cloud representation learning.

4.2. 3D Classification on ModelNet40

Settings. ModelNet40 benchmark contains 12.3K
meshed CAD models derived from 40 categories. The
dataset is officially split into 9,843 and 2,468 CAD mod-
els for training and testing, respectively. We report the
class-average accuracy (mAcc) and overall accuracy (OA)
on testing set for evaluation as in [34]. During training,
we follow the data pre-processing pipeline in [34], includ-
ing data augmentations of random scaling and translation.
The whole architecture is optimized with AdamW opti-
mizer [24] (batch size: 32, learning rate: 0.001, weight de-
cay: 0.05) on a single V100 GPU. The overall optimization
process is composed of 600 epochs with cosine decay learn-
ing rate scheduler [23] and label smoothing loss.

Performance Comparison. Table 2 summarizes the
performances. For fair comparison against most baselines
with the inputs of 1K sampled points, we also implement
our HGNet with the same inputs (1K points). As shown in
this table, the performance trends on ModelNet40 are simi-

21851

Table 3. Comparison results of HGNet with other state-of-the-art methods on PartNet for part segmentation.

Method val test bed bottle chair clock dishw. disp. door earph. fauc. knife lamp micro. fridge st. furn. table tr. can vase
PointNet [30] - 35.6 13.4 29.5 27.8 28.4 48.9 76.5 30.4 33.4 47.6 32.9 18.9 37.2 33.5 38.0 29.0 34.8 44.4

PointNet++ [32] - 42.5 30.3 41.4 39.2 41.6 50.1 80.7 32.6 38.4 52.4 34.1 25.3 48.5 36.4 40.5 33.9 46.7 49.8
DeepGCN [12] - 45.1 35.9 49.3 41.1 33.8 56.2 81.0 31.1 45.8 52.8 44.5 23.1 51.8 34.9 47.2 33.6 50.8 54.2
PointCNN [13] - 46.4 41.9 41.8 43.9 36.3 58.7 82.5 37.8 48.9 60.5 34.1 20.1 58.2 42.9 49.4 21.3 53.1 58.9

point-wise MLP [18] 48.1 51.5 44.5 52.6 46.0 38.4 68.2 82.5 46.9 47.1 58.7 43.8 26.4 59.2 48.7 52.5 41.3 55.4 57.3
pseudo grid [18] 50.8 53.0 47.5 50.9 49.2 44.8 67.0 84.2 49.1 49.9 62.7 38.3 27.0 59.4 54.3 54.1 44.5 57.4 60.7

adapt weights [18] 50.1 53.5 46.1 47.9 47.2 42.7 64.4 83.7 55.6 49.5 61.7 49.5 27.4 59.3 57.7 53.5 45.1 57.5 60.9
PosPool [18] 50.6 53.8 49.5 49.4 48.3 49.0 65.6 84.2 56.8 53.8 62.4 39.3 24.7 61.3 55.5 54.6 44.8 56.9 58.2

HGNet 52.7 55.6 51.0 51.7 48.2 47.8 66.3 83.9 54.8 54.9 64.3 51.9 30.1 61.9 57.0 54.7 46.4 58.4 61.2

lar to those on ScanObjectNN. Concretely, HGNet slightly
surpasses the current state-of-the-art technique (RepSurf-
U). It is worthy to note that ModelNet40 is almost saturated
(around 94% in OA metric for a long time), and it is difficult
to introduce large margin of performance gains. Neverthe-
less, our HGNet still manages to obtain 0.1% improvement
in OA metric against RepSurf-U. The results basically val-
idate the effectiveness of unifying multi-granular geometry
features among points, edges, and surfaces in our HGNet
for point cloud analysis.

4.3. Part Segmentation on PartNet

Settings. For part segmentation task, we utilize PartNet
benchmark which consists of 26,671 CAD shape models
(70% models for training, 10% models for validation, and
20% models for testing) over 24 object categories. Each
CAD shape model is annotated with 18 parts on average.
We follow the setting in [18] and use the 10,000 points pro-
vided by this dataset as the inputs for each shape model.
Random scaling and jittering are leveraged as data augmen-
tations. We utilize AdamW optimizer [24] to train HGNet
for 300 epochs with multi-step learning rate decay on four
V100 GPUs. We fix the batch size, learning rate, weight
decay, and decay rate as 8, 0.00125, 0.02, and 0.1, respec-
tively. We report the part-category mIoU on both validation
and testing sets (over 17 object categories with fine-grained
annotations) for evaluation.

Performance Comparison. Table 3 shows the perfor-
mances of our HGNet for part segmentation task. HGNet
attains the highest performances for 10 of 17 object cate-
gories on testing (test) set. In particular, the part-category
mIoU across all the 17 object categories reach 52.7% and
55.6% on validation (val) and test set, making the absolute
improvement over PosPool by 2.1% and 1.8%. The results
basically verify that the exploitation of hierarchical geom-
etry among points, edges, and surfaces improves the 3D
model capacity for part segmentation task. Figure 3 further
showcases the part segmentation ground truths and results
of different approaches for two CAD shape models. Com-
pared to other baselines, the predictions of our HGNet are
the closest to the ground truths.

Ground Truth

 point-wise MLP pseudo grid adapt weights

 PosPool HGNet

 point-wise MLP pseudo grid adapt weights

 PosPool HGNet

(b) Lamp

(a) Table

Ground Truth

Figure 3. Examples of part segmentation results on PartNet.

4.4. Semantic Segmentation on S3DIS

Settings. We further evaluate our HGNet on S3DIS
benchmark for semantic segmentation task. S3DIS is an
indoor scene segmentation dataset that contains 271 scenes
from 6 large-scale real indoor areas. The dataset consists of
273M points in total, and each point is annotated over 13
classes. As in [34], We take Area-5 as the testing scene and
the remaining scenes as training set. Considering that each
scene contains a large number of points, we downsample
the point clouds with a voxel size of 0.04m, and use 24,000
points per batch as inputs following [33, 34, 44, 59] during
training. The data pre-processing pipeline includes color
auto-contrast, random scaling, random rotation, random jit-
tering, and color drop data augmentations. We optimize the

21852

Table 4. Comparison results of HGNet with other state-of-the-art methods on S3DIS for semantic segmentation.

Method OA mAcc mIoU Params. Throughput ceiling floor wall beam column window door table chair sofa bookcase board clutter
PointNet [30] - 49.0 41.1 3.6M 162 88.8 97.3 69.8 0.1 3.9 46.3 10.8 59 52.6 5.9 40.3 26.4 33.2

PointCNN [13] 85.9 63.9 57.3 0.6M - 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7
DGCNN [46] 83.6 - 47.9 1.3M 8 - - - - - - - - - - - - -

DeepGCN [12] - - 52.5 3.6M 3 - - - - - - - - - - - - -
PVCNN [20] 87.1 - 59.0 - - - - - - - - - - - - - - -
KPConv [44] - 72.8 67.1 15.0M 30 92.8 97.3 82.4 0.0 23.9 58.0 69.0 81.5 91.0 75.4 75.3 66.7 58.9

ASSANet-L [33] - - 66.8 - - - - - - - - - - - - - - -
PatchFormer [57] - - 68.1 - - - - - - - - - - - - - - -
RepSurf-U [39] 90.2 76.0 68.9 0.99M 69 - - - - - - - - - - - - -

PointNeXt-l [34] 90.0 75.3 69.0 7.1M 115 94.0 98.5 83.5 0.0 30.3 57.3 74.2 82.1 91.2 74.5 75.5 76.7 58.9
HGNet 90.7 76.9 70.8 7.8M 92 95.4 98.7 84.1 0.0 39.7 56.4 77.3 81.6 91.7 77.9 76.3 77.3 63.3

Table 5. Ablation study by comparing different variants of HG
block in HGNet on ScanObjectNN for 3D classification task.
MAX and SA represents that the reduction function is imple-
mented as the max pooling or self-attention for aggregation.

Point Edge Surface Reduction OA mAcc
1 ✓ MAX 87.7 85.8
2 ✓ MAX 87.6 86.0
3 ✓ MAX 87.8 86.5
4 ✓ ✓ MAX 88.5 87.1
5 ✓ ✓ MAX 88.6 87.3
6 ✓ ✓ ✓ MAX 88.9 87.3
7 ✓ ✓ ✓ SA 89.2 87.5

whole architecture with AdamW optimizer [24] with label
smoothing on a single V100 GPU. The whole optimization
includes 100 epochs with cosine decay learning rate sched-
uler [23]. The batch size, learning rate, and weight decay
are set as 8, 0.005, and 0.0001. We report the mean per-class
IoU (mIoU), mean per-class accuracy (mAcc) and overall
point accuracy (OA) for evaluation.

Performance Comparison. Table 4 lists the per-
formance comparisons on S3DIS. Similarly, our HGNet
clearly surpasses the point-based, edge/relation-based, and
surface-based approaches, leading to the best performances
across all the three metrics. Specifically, in comparison to
PointNeXt-l, HGNet boosts up the performances by 0.7%,
1.6%, and 1.8% in OA, mAcc, and mIoU, respectively. The
results clearly show the effectiveness of HGNet on semantic
segmentation task.

4.5. Ablation study

In this section, we perform ablation study to validate the
effectiveness of each design in our HG block. Table 5 de-
tails the performance comparisons among different ablated
runs of HGNet on ScanObjectNN for 3D classification.

Ablation on Geometry Features in Different Levels.
We first examine how performance is affected when cap-
italizing on different geometry features in HG block. As
shown in Table 5 (Row 1-3), the use of each kind of fea-

ture from single level (point-level/edge-level/surface-level)
in general achieves a good performance. In between, by ex-
ploring finer geometric structures, the surface-level feature
achieves the best performances. Next, the linear fusion of
point-level and edge-level/surface-level features (Row 4&5)
constantly outperforms the individual representation. The
linear integration of all features from three different levels
(Row 6) further boosts up the performance. The results ba-
sically demonstrate the complementarity among the point-
level, edge-level, and surface-level features.

Ablation on Different Reduction Functions. We then
compare the performances by using different reduction
functions for aggregation. One is the simple max pooling
(Row 6), and the other is the use of self-attention mecha-
nism via Transformer structure in our HG block (Row 7).
Compared to max pooling, HG block dynamically exploits
contextual information among point-level, edge-level, and
surface-level features, manifesting better performances.

5. Conclusion

In this paper, we present a new architecture for point
cloud analysis, namely Hierarchical Geometry Network
(HGNet), that integrates hierarchical geometry structures
within point sets to facilitate point cloud representation
learning. Particularly, we study the problem from the view-
point of interpreting the bottom-up hierarchical geometry
from the leaf level of irregular points, to the intermediary
levels of edges & surfaces, and the root level of super-
surfaces. A four-level hierarchical topology is accordingly
constructed, which in turn enhances surface-level, edge-
level, and point-level features via top-down aggregation.
HGNet further capitalizes on Transformer structure to holis-
tically unify all the surface-level, edge-level, and point-level
features. We empirically validate the superiority of HGNet
over the state-of-the-art approaches in multiple 3D vision
tasks (e.g., 3D object classification, part segmentation, and
semantic segmentation tasks).

21853

References
[1] Iro Armeni, Sasha Sax, Amir R Zamir, and Silvio Savarese.

Joint 2d-3d-semantic data for indoor scene understanding.
arXiv preprint arXiv:1702.01105, 2017. 5

[2] Silin Cheng, Xiwu Chen, Xinwei He, Zhe Liu, and Xiang
Bai. Pra-net: Point relation-aware network for 3d point cloud
analysis. IEEE TIP, 2021. 6

[3] Yifan Feng, Zizhao Zhang, Xibin Zhao, Rongrong Ji, and
Yue Gao. Gvcnn: Group-view convolutional neural networks
for 3d shape recognition. In CVPR, 2018. 2

[4] A Foorginejad and K Khalili. Umbrella curvature: a new cur-
vature estimation method for point clouds. Procedia Tech-
nology, 2014. 2

[5] Matheus Gadelha, Rui Wang, and Subhransu Maji. Mul-
tiresolution tree networks for 3d point cloud processing. In
ECCV, 2018. 2

[6] Benjamin Graham, Martin Engelcke, and Laurens Van
Der Maaten. 3d semantic segmentation with submanifold
sparse convolutional networks. In CVPR, 2018. 2

[7] Haiyun Guo, Jinqiao Wang, Yue Gao, Jianqiang Li, and Han-
qing Lu. Multi-view 3d object retrieval with deep embedding
network. IEEE Transactions on Image Processing, 2016. 2

[8] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang
Mu, Ralph R Martin, and Shi-Min Hu. Pct: Point cloud
transformer. Computational Visual Media, 2021. 2, 6

[9] Abdullah Hamdi, Silvio Giancola, and Bernard Ghanem.
Mvtn: Multi-view transformation network for 3d shape
recognition. In ICCV, 2021. 5

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 2

[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In NeurIPS, 2012. 2

[12] Guohao Li, Matthias Muller, Ali Thabet, and Bernard
Ghanem. Deepgcns: Can gcns go as deep as cnns? In ICCV,
2019. 6, 7, 8

[13] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,
and Baoquan Chen. Pointcnn: Convolution on x-transformed
points. In NeurIPS, 2018. 6, 7, 8

[14] Yehao Li, Yingwei Pan, Ting Yao, Jingwen Chen, and Tao
Mei. Scheduled sampling in vision-language pretraining
with decoupled encoder-decoder network. In AAAI, 2021.
2

[15] Yehao Li, Ting Yao, Yingwei Pan, and Tao Mei. Contextual
transformer networks for visual recognition. IEEE TPAMI,
2022. 2

[16] Yongcheng Liu, Bin Fan, Gaofeng Meng, Jiwen Lu, Shiming
Xiang, and Chunhong Pan. Densepoint: Learning densely
contextual representation for efficient point cloud process-
ing. In ICCV, 2019. 6

[17] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong
Pan. Relation-shape convolutional neural network for point
cloud analysis. In CVPR, 2019. 2, 6

[18] Ze Liu, Han Hu, Yue Cao, Zheng Zhang, and Xin Tong. A
closer look at local aggregation operators in point cloud anal-
ysis. In ECCV, 2020. 2, 3, 6, 7

[19] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In CVPR, 2022. 5

[20] Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. Point-
voxel cnn for efficient 3d deep learning. In NeurIPS, 2019.
8

[21] Fuchen Long, Zhaofan Qiu, Yingwei Pan, Ting Yao, Jiebo
Luo, and Tao Mei. Stand-alone inter-frame attention in video
models. In CVPR, 2022. 2

[22] Fuchen Long, Zhaofan Qiu, Yingwei Pan, Ting Yao, Chong-
Wah Ngo, and Tao Mei. Dynamic temporal filtering in video
models. In ECCV, 2022. 2

[23] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-
tic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016. 6, 8

[24] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 6, 7,
8

[25] Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu. Re-
thinking network design and local geometry in point cloud:
A simple residual mlp framework. In ICLR, 2021. 2, 5, 6

[26] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d con-
volutional neural network for real-time object recognition.
In 2015 IEEE/RSJ international conference on intelligent
robots and systems (IROS), 2015. 2

[27] Kaichun Mo, Shilin Zhu, Angel X Chang, Li Yi, Subarna
Tripathi, Leonidas J Guibas, and Hao Su. Partnet: A large-
scale benchmark for fine-grained and hierarchical part-level
3d object understanding. In CVPR, 2019. 5

[28] Yingwei Pan, Yehao Li, Jianjie Luo, Jun Xu, Ting Yao, and
Tao Mei. Auto-captions on gif: A large-scale video-sentence
dataset for vision-language pre-training. In ACM Multime-
dia, 2022. 2

[29] Yingwei Pan, Ting Yao, Yehao Li, and Tao Mei. X-linear
attention networks for image captioning. In CVPR, 2020. 2

[30] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In CVPR, 2017. 1, 2, 6, 7, 8

[31] Charles R Qi, Hao Su, Matthias Nießner, Angela Dai,
Mengyuan Yan, and Leonidas J Guibas. Volumetric and
multi-view cnns for object classification on 3d data. In
CVPR, 2016. 2

[32] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. 2017. 1, 2, 3, 6, 7

[33] Guocheng Qian, Hasan Hammoud, Guohao Li, Ali Thabet,
and Bernard Ghanem. Assanet: An anisotropic separable set
abstraction for efficient point cloud representation learning.
In NeurIPS, 2021. 7, 8

[34] Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai,
Hasan Abed Al Kader Hammoud, Mohamed Elhoseiny, and
Bernard Ghanem. Pointnext: Revisiting pointnet++ with im-
proved training and scaling strategies. In NeurIPS, 2022. 2,
5, 6, 7, 8

[35] Guocheng Qian, Xingdi Zhang, Abdullah Hamdi, and
Bernard Ghanem. Pix4point: Image pretrained trans-
formers for 3d point cloud understanding. arXiv preprint
arXiv:2208.12259, 2022. 6

21854

[36] Shi Qiu, Saeed Anwar, and Nick Barnes. Dense-resolution
network for point cloud classification and segmentation. In
WACV, 2021. 6

[37] Shi Qiu, Saeed Anwar, and Nick Barnes. Geometric back-
projection network for point cloud classification. IEEE
TMM, 2021. 6

[38] Zhaofan Qiu, Yehao Li, Yu Wang, Yingwei Pan, Ting Yao,
and Tao Mei. Spe-net: Boosting point cloud analysis via
rotation robustness enhancement. In ECCV, 2022. 1

[39] Haoxi Ran, Jun Liu, and Chengjie Wang. Surface represen-
tation for point clouds. In CVPR, 2022. 1, 2, 6, 8

[40] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger.
Octnet: Learning deep 3d representations at high resolutions.
In CVPR, 2017. 2

[41] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In ICLR,
2015. 2

[42] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik
Learned-Miller. Multi-view convolutional neural networks
for 3d shape recognition. In ICCV, 2015. 2

[43] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In CVPR, 2015. 2

[44] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. In ICCV, 2019. 6, 7, 8

[45] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua,
Thanh Nguyen, and Sai-Kit Yeung. Revisiting point cloud
classification: A new benchmark dataset and classification
model on real-world data. In ICCV, 2019. 5, 6

[46] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions
On Graphics (tog), 2019. 1, 2, 6, 8

[47] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep
convolutional networks on 3d point clouds. In CVPR, 2019.
6

[48] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
CVPR, 2015. 2

[49] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
CVPR, 2015. 5

[50] Tiange Xiang, Chaoyi Zhang, Yang Song, Jianhui Yu, and
Weidong Cai. Walk in the cloud: Learning curves for point
clouds shape analysis. In ICCV, 2021. 2

[51] Mutian Xu, Runyu Ding, Hengshuang Zhao, and Xiaojuan
Qi. Paconv: Position adaptive convolution with dynamic ker-
nel assembling on point clouds. In CVPR, 2021. 6

[52] Mutian Xu, Junhao Zhang, Zhipeng Zhou, Mingye Xu, Xi-
aojuan Qi, and Yu Qiao. Learning geometry-disentangled
representation for complementary understanding of 3d ob-
ject point cloud. In AAAI, 2021. 6

[53] Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, and
Shuguang Cui. Pointasnl: Robust point clouds processing
using nonlocal neural networks with adaptive sampling. In
CVPR, 2020. 2, 6

[54] Ting Yao, Yehao Li, Yingwei Pan, Yu Wang, Xiao-Ping
Zhang, and Tao Mei. Dual vision transformer. arXiv preprint
arXiv:2207.04976, 2022. 2

[55] Ting Yao, Yingwei Pan, Yehao Li, and Tao Mei. Exploring
visual relationship for image captioning. In ECCV, 2018. 2

[56] Ting Yao, Yingwei Pan, Yehao Li, Chong-Wah Ngo, and Tao
Mei. Wave-vit: Unifying wavelet and transformers for visual
representation learning. In ECCV, 2022. 2

[57] Cheng Zhang, Haocheng Wan, Xinyi Shen, and Zizhao Wu.
Patchformer: An efficient point transformer with patch at-
tention. In CVPR, 2022. 8

[58] Renrui Zhang, Ziyu Guo, Peng Gao, Rongyao Fang, Bin
Zhao, Dong Wang, Yu Qiao, and Hongsheng Li. Point-
m2ae: Multi-scale masked autoencoders for hierarchical
point cloud pre-training. In NeurIPS, 2022. 6

[59] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and
Vladlen Koltun. Point transformer. In ICCV, 2021. 2, 6, 7

[60] Shen Zheng, Jinqian Pan, Changjie Lu, and Gaurav Gupta.
Pointnorm: Dual normalization is all you need for point
cloud analysis. arXiv preprint arXiv:2207.06324, 2022. 2, 6

21855

