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Figure 1. Hi-LASSIE overview and sample reconstructions. Given 20-30 images of an articulated animal class, we first discover a
generic 3D skeleton, then jointly optimize the camera viewpoints, skeleton articulations, as well as shared and instance-specific neural part
shapes. Hi-LASSIE is able to produce high-fidelity shapes and texture without any pre-defined shape model or 3D skeleton annotations.
The part-based representation also allows applications like animation and motion re-targeting.

Abstract
Automatically estimating 3D skeleton, shape, camera

viewpoints, and part articulation from sparse in-the-wild
image ensembles is a severely under-constrained and chal-
lenging problem. Most prior methods rely on large-scale
image datasets, dense temporal correspondence, or human
annotations like camera pose, 2D keypoints, and shape tem-
plates. We propose Hi-LASSIE, which performs 3D articu-
lated reconstruction from only 20-30 online images in the
wild without any user-defined shape or skeleton templates.
We follow the recent work of LASSIE that tackles a similar
problem setting and make two significant advances. First,
instead of relying on a manually annotated 3D skeleton,
we automatically estimate a class-specific skeleton from the
selected reference image. Second, we improve the shape
reconstructions with novel instance-specific optimization
strategies that allow reconstructions to faithful fit on each
instance while preserving the class-specific priors learned

*Work done as a student researcher at Google.

across all images. Experiments on in-the-wild image en-
sembles show that Hi-LASSIE obtains higher fidelity state-
of-the-art 3D reconstructions despite requiring minimum
user input. Project page: chhankyao.github.io/
hi-lassie/

1. Introduction
3D assets of articulated animals enable numerous appli-

cations in games, movies, AR/VR, etc. However, building
high-fidelity 3D models of articulated shapes like animal
bodies is labor intensive either via manual creation or 3D
scanning. Recent advances in deep learning and 3D rep-
resentations have significantly improved the quality of 3D
reconstruction from images. Much of the success depends
on the availability of either rich 3D annotations or multi-
view captures, both of which are not always available in a
real-world scenario. A more practical and scalable alter-
native is automatic 3D reconstruction from online images
as it is straightforward to obtain image ensembles of any
animal category (e.g., image search results). In this work,
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Figure 2. User inputs across different techniques for articulated animal reconstruction. Contrary to prior methods that leverage
detailed 3D shapes or skeletons, Hi-LASSIE only requires the user to select a reference image where most animal body parts are visible.

we tackle a practical problem setting introduced in a recent
work, LASSIE [38], where the aim is to automatically esti-
mate articulated 3D shapes with only a few (20-30) in-the-
wild images of an animal species, without any image-level
2D or 3D annotations.

This problem is highly under-constrained and challeng-
ing due to a multitude of variations within image ensembles.
In-the-wild images usually have diverse backgrounds, light-
ing, and camera viewpoints. Moreover, different animal in-
stances can have distinct 2D appearances due to pose ar-
ticulations, shape variations, and surface texture variations
(skin colors, patterns, and lighting). As shown in Fig. 2,
early approaches in this space try to simplify the problem
with some user-defined 3D templates, hurting the general-
ization of those techniques to classes where such templates
are not always readily available. In addition, most of these
methods (except LASSIE [38]) assume either large-scale
training images of each animal species [16, 17, 43] or per-
image 2D keypoint annotations [44], which also limits their
scalability.

In this work, we propose a more practical technique that
does not require any 3D shape or skeleton templates. In-
stead, as illustrated in Fig. 2, the user simply has to se-
lect a reference image in the ensemble where all the ani-
mal parts are visible. We achieve this by providing two key
technical advances over LASSIE: 1) 3D skeleton discovery
and 2) instance-specific optimization strategies. Our over-
all framework, named Hi-LASSIE, can produce Higher-
fidelity articulated shapes than LASSIE [38] while requir-
ing minimal human input. Our key insight is to exploit
the 2D part-level correspondences for 3D skeleton discov-
ery. Recent works [1, 32] observe that the deep features ex-
tracted from a self-supervised vision transformer (ViT) [11]
like DINO-ViT [7] can provide good co-part segmentation
across images. We further exploit such features to rea-
son about part visibility and their symmetry. At a high
level, we first obtain a 2D skeleton using the animal silhou-
ette and part clusters [1] obtained from DINO features [7].
We then uplift this 2D skeleton into 3D using symmet-
ric part information that is present in the deep DINO fea-
tures. Fig. 1 shows the skeleton for zebra images discov-

ered by Hi-LASSIE. Similar to LASSIE [38], we leverage
3D part priors (learned from and shared across instances)
and the discovered 3D skeleton to regularize the articu-
lated shape learning. Furthermore, we design three novel
modules to increase the quality of output shapes: 1) High-
resolution optimization by zooming in on individual parts,
2) Surface feature MLPs to densely supervise the neural
part surface learning, and 3) Frequency-based decomposi-
tion of part surfaces for shared and instance-specific com-
ponents. Note that Hi-LASSIE can generalize to diverse
animal species easily as it does not require any image anno-
tations or category-specific templates.

We conduct extensive experiments on the Pascal-Part [8]
and LASSIE [38] image ensembles, which contain in-the-
wild images of various animal species like horse, elephant,
and penguin. Compared with LASSIE and other baselines,
we achieve higher reconstruction accuracy in terms of key-
point transfer, part transfer, and 2D IOU metrics. Quali-
tatively, Hi-LASSIE reconstructions show considerable im-
provement on 3D geometric and texture details as well as
faithfulness to input images. Finally, we demonstrate sev-
eral applications like animation and motion re-targeting en-
abled by our 3D part representation. Fig. 1 (right) shows
some Hi-LASSIE 3D reconstructions for different animal
species. The main contributions of this work are:
• To our best knowledge, Hi-LASSIE is the first approach
to discover 3D skeletons of articulated animal bodies from
in-the-wild image ensembles without using any image-level
annotations. We show that the discovered 3D skeleton can
faithfully fit all instances in the same class and effectively
regularize the 3D shape optimization.
• Hi-LASSIE includes several novel optimization strategies
that makes the output shapes richer in 3D details and more
faithful to each image instance than prior methods.
• Extensive results on multiple animal classes and datasets
demonstrate the state-of-the-art performance of Hi-LASSIE
while requiring less user inputs than prior works.

2. Related Work
Animal pose and shape estimation. 3D pose and shape
estimation of animal bodies from in-the-wild images is
quite challenging considering the diverse 2D appearance
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across different instances, viewpoints, and articulations,
among others. Most mesh reconstruction methods [13, 17,
20, 30, 39] mainly deal with objects with simple or rigid
shapes (e.g., birds and cars), which cannot be applied to the
highly-articulated animal bodies. Recent articulation-aware
approaches address a different (often simplified) scenario
by leveraging a pre-defined statistical model [28, 43–45],
3D shape/skeleton templates [16, 38], or dense temporal
correspondence in videos [34–36]. Without assuming any
of these annotations/data, Hi-LASSIE introduces a novel
and practical framework to estimate high-fidelity animal
bodies by discovering 3D skeleton from a reference image.

Skeleton extraction and part discovery. 2D skele-
ton/outline extraction has been widely studied and used as
geometric context for shape/pattern recognition [2,3,14,29,
33]. However, these methods often fail to identify separate
skeleton bones/parts when they overlap or self-occlude each
other in an image. In this work, we propose to lift 2D skele-
tons to 3D for articulated shape learning by jointly consider-
ing the geometric and semantic cues in 2D images. For part
discovery, deep feature factorization (DFF) [10] and follow-
up works [1, 9, 15, 18] show that one could automatically
obtain 2D corresponding part segments by clustering deep
semantic features. In the 3D domain, the object parts can
be discovered by using volumetric cuboids [31], clustering
3D point clouds [23, 24, 26, 27], or learning part prior [37].
These methods mainly assume some form of supervision
like 3D shapes or camera viewpoints. In this paper, we dis-
cover 3D parts of articulated animals from image ensembles
without any 2D or 3D annotations/templates, which, to the
best of our knowledge, is unexplored in the literature.

3D reconstruction from sparse images. Optimizing a 3D
scene or object from multi-view images is a fundamental
problem in computer vision. The majority of recent break-
throughs are based on the powerful Neural Radiance Field
(NeRF) [25] representation. Given a set of multi-view im-
ages, NeRF learns a neural volume from which one can ren-
der high-quality novel views. NeRS [40] introduces a neu-
ral surface representation to learn compact 3D shapes from
a sparse image collection, which we find suitable to model
individual animal body parts. Another line of work [4,6,41]
propose neural reflectance decomposition on image collec-
tions captured in varying illuminations, but they operate
on rigid objects with ground-truth segmentation and known
camera poses. SAMURAI [5] jointly reasons about cam-
era pose, shape, and materials from image collections of a
single rigid object. In contrast, our input consists of in-the-
wild animal images with varying textures, viewpoints, and
pose articulations captured in different environments.

3. Approach
Given a sparse image ensemble of an animal species,

Hi-LASSIE first discovers a class-specific 3D skeleton that

specifies the initial 3D joint coordinates and part connectiv-
ity. Then, it jointly optimizes the camera viewpoint, pose
articulation, and part shapes for each instance. Before de-
scribing our approach, we briefly review the LASSIE [38]
method, where several parts are adopted in this work.

3.1. Preliminaries: 3D Skeleton & Parts in LASSIE
Given a user-provided 3D skeleton template that spec-

ifies the 3D joints and bones, LASSIE [38] represents an
overall articulated shape by assembling several 3D parts. In
particular, each part is defined as a deformable neural sur-
face [40] wrapped around a skeleton bone. The part sur-
faces are parameterized by multi-layer perceptron networks
(MLPs) which predict the deformation of any 3D point on
a surface template (e.g. unit sphere). Formally, let X ∈
R3×m denote the m uniformly sampled 3D points on a unit
sphere, one can deform the 3D surface of the i-th part in the
canonical space using the part MLP as X 7→ Fi(X). The
part surface is then rigidly transformed using the optimized
3D skeleton with scaling si ∈ R, rotation Ri ∈ R3×3, and
translation ti ∈ R3. The final part surface points Vi in the
global coordinate frame can be expressed as:

Vi = siRiFi(X) + ti. (1)

The rigid transformation of each part is defined by its corre-
sponding bone length (scaling), orientation (rotation), and
centroid (translation). This skeleton-based representation
ensures that the connectivity of 3D parts under arbitrary
articulations and easy to repose. Compared to explicit
mesh representation, the neural surfaces also enable effi-
cient mesh regularization while producing high-resolution
surfaces since the MLPs take continuous surface coordi-
nates as input. A key innovation of LASSIE is the use of
part prior within the part MLPs {Fi} that regularizes the
part shapes to be close to convex primitive geometric shapes
like spheres, cones, etc. Please refer to [38] for further de-
tails. To take advantage of these properties, we adopt a sim-
ilar part-based representation in this work. A key difference
from LASSIE is that we alleviate the need for user-provided
3D skeleton template and instead discover the 3D skeleton
automatically from a reference image chosen from the en-
semble. In addition, we propose several improvements to
the neural surfaces and the optimization process to address
the limitations of LASSIE resulting in higher-fidelity recon-
structions.

3.2. Discovering 3D Skeleton
2D skeleton extraction. Fig. 3 illustrates our 3D skele-
ton discovery process from a reference image. We first ex-
tract a set of 2D skeleton points from a reference silhouette
using a skeletonize/morphological thinning algorithm [42].
Specifically, we iteratively remove pixels from the borders
until none can be removed without altering the connectiv-
ity. These 2D points can be seen as candidates of under-
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Figure 3. 3D Skeleton Discovery. Given a reference image and its rough silhouette, we first extract, filter, and connect the 2D candidate
points to form a 2D skeleton graph. Then, we find and split the symmetric parts by leveraging the 2D geometry and semantic cues. Finally,
we design a simple heuristic to initialize the 3D joints, part shapes, and surface features.

lying skeleton joints and bones through camera projection.
Similar to prior 2D shape matching methods [2,33], we cat-
egorize the skeleton points into junctions, endpoints, and
connection points. Assuming that each skeleton curve is
one pixel wide, a skeleton point is called an endpoint if it
has only one adjacent point; a junction if it has three or
more adjacent points; and a connection point if it is neither
an endpoint nor a junction. We sort the junctions and end-
points by distance transform (2D distance to closest border)
and identify the ‘root’ junction with the largest distance to
the border. Next, we find the shortest path (sequence of
skeleton points) between root and each endpoint by travers-
ing though the graph. From these paths, we can build a
skeleton tree with 2D joints (junctions or endpoints) and
bones (junction-junction connection or junction-endpoint
connection). Since the silhouettes and skeleton points are
sometimes noisy, we filter those noisy 2D joints using non-
maximal suppression. That is, we remove a point is if it
lies within the coverage (radius calculated by distance trans-
form) of its parent joint.

3D joint and part initialization. From the extracted 2D
skeleton, one can roughly initialize the simple part shapes
and surface features using the reference image. However,
all the joints and bones would be initialized on a 2D plane
(image plane) which is not sufficient for later 3D shape and
camera pose optimization across instances. To obtain a bet-
ter 3D skeleton initialization, we propose to find symmetric
parts and separate them in the 3D space w.r.t. the symmetry
plane. Our key insight is that symmetric parts (e.g. left and
right legs/ears) share similar geometric and semantic fea-
tures. Therefore, we design a heuristic to calculate the sym-
metry score of each pair of joints/bones based on the their
geometric and semantic feature distance. Specifically, we
compute the following features for each joint/bone: length,
average radius, and the average DINO features [7] along the
paths to their common ancestor in the skeleton tree. Then,
we identify pairs of joints that share similar features, which

usually correspond to the symmetric animal parts (e.g., left
and right leg). To uplift our 2D skeleton onto 3D, we set the
z-coordinates of the each joint pairs to be on opposite sides
of the symmetry plane (z = 0) and offset by their average
radius (so that the initial 3D parts do not overlap). To better
deal with overlapping parts in 2D silhouettes, we also split
the parent of two symmetric parts if it has only two children.
See Fig. 3 (right) for an example of estimated 3D skeleton.

3.3. Learning High-fidelity Articulated Shapes
Optimization setting. Our optimization framework takes a
sparse set of n (typically 20-30) in-the-wild images {Ij}nj=1

as well as the discovered 3D skeleton P ∈ Rp×3 with p
joints and b bones/parts as input. The only image-level an-
notations like silhouettes and semantic clusters are obtained
from the clustering results of self-supervisory DINO [7]
features. All the images in an ensemble contain instances
of the same species, but each instance could vary in pose,
shape, texture, camera viewpoint, etc. We assume that
each animal body is mostly visible in an image without se-
vere truncation or occlusions by other objects although self-
occlusion is allowed. We use j to denote the index over im-
ages j ∈ {1, ., n} and i the index over parts i ∈ {1, ., b}.
For each instance, Hi-LASSIE optimizes the camera view-
point πj = (R0, t0), part rotations Rj ∈ Rb×3×3, and
neural part deformation MLPs. The overall framework is
shown in Fig. 4, where we first perform pose articulation
then progressively add more geometric details (from the
shared part shapes to instance-specific deformations).

Per-instance deformation by frequency decomposition.
Unlike LASSIE where the part shapes are shared across
all instances, which limits the shape fidelity to input im-
ages, we propose to learn instance-specific part shapes that
can better account for instance-varying and articulation-
dependent deformations. Intuitively, instances of the same
species should share similar base part shapes and only de-
viate in high-frequency details (e.g. ears and tail). Such de-
tailed difference is usually caused by part articulations or
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Figure 4. Hi-LASSIE optimization framework. Based on the discovered 3D skeleton, we reconstruct an articulated shape by optimizing
the camera viewpoints, pose articulations, and part shapes. We represent the 3D part shapes as neural surfaces, which are decomposed into
shared (low-frequency) and instance-specific (high-frequency) components via positional encoding (PE) of input surface coordinates. The
only image-level annotation is from the self-supervisory DINO features, and the surface texture is sampled from the input images.

Shared Parts Instance Parts

…

sin(w0 x+φ0 ) sin(w1 x +φ1 ) sin(wL x +φL )

z1

sin(w2 x +φ2 )

z2 zL

y1 y2 yL

Output layers

Hidden layers

Element-wise
summation

Element-wise
multiplication

Figure 5. Frequency-decomposed part MLP for per-instance
shape deformation. We design a MLP network to represent the
neural surfaces composed of varying amount of details. By in-
creasing the frequencies of input positional encoding, the outputs
of deeper layers can express more detailed deformation. The out-
put and hidden layers are linear layers.

instance variance. We observe that naively fine-tuning the
part surfaces on one instance tends to overfit to that instance
and nullify the 3D shape prior learned across all instances.
For instance, the part shapes can overfit to the target sil-
houette (input view) but look unrealistic in novel views.
To address this, we propose to decompose the surface de-
formations in the spatial frequency space so that each in-
stance can have high-frequency detail variations while shar-
ing the same low-frequency base part shapes. As shown
in Fig. 5, we achieve this by designing a part deformation
MLP with frequency-decomposed input and output compo-
nents. In a forward pass through the MLP, we first apply
positional encoding (PE) to an input coordinate x ∈ R3 us-
ing sines with varying frequencies ω and phases ϕ: PEi(x)

= sin(ωix + ϕi), where i = 0, ..., L, and L is the number
of layers in the network. The hidden activations zi and final
outputs yi of layer i are computed as:

zi = PEi(x)⊗ (W h
i zi−1 + bh

i ) with z0 = PE0(x); (2)
yi = yi−1 + (W o

i zi + bo
i ) with y0 = 0; (3)

where ⊗ denotes the Hadamard (element-wise) product,
(W h, bh) parametrize the hidden linear layers, and (W o, bo)
represent the output linear layers. This formulation lever-
ages a useful property that repeated Hadamard product of
sines are equivalent to a sum of sines with varying ampli-
tude, frequency, and phase [12]. Therefore, with increasing
PE frequencies from shallow to deep layers, we can produce
output shapes with increasing amount of high-frequency de-
tails. This allows us to perform instance-specific optimiza-
tion while preserving the common base shapes by sharing
the shallow layers of part MLPs across instances and opti-
mizing the deep layers to be instance-specific as shown in
Fig. 5. Note that our MLP network is inspired from band-
limited coordinate networks (BACON) [21]. However, we
add the cumulative sum of all previous outputs to the cur-
rent output of each layer since the high-frequencies details
should be deformations from low-frequency based shapes.
Moreover, unlike BACON, that learns the frequencies of
sine functions in PE together with other parameters, we pre-
define and fix the input frequencies to improve the optimiza-
tion stability in our ill-posed problem and better control the
separation of shared and instance components.
Zoom in to parts for higher details. Similar to LASSIE,
we perform analysis-by-synthesis to supervise the overall
shape reconstruction since we do not have access to any
form of 3D supervision. We render the part surfaces via

4857



2D part estimations Crop & zoom in HR optimization

Figure 6. High-resolution rendering and optimization by
zooming in on parts. Based on the initial estimates of 2D part
localization, we crop and upsample each part region to perform
shape optimization at higher resolution.

a differentiable renderer [22] and compare them with the
pseudo ground-truth masks obtained from DINO feature
clustering. The silhouette loss Lsil is written as: Lsil =∑

j∥M j − M̂ j∥2 , where M j and M̂ j are the rendered
silhouette and pseudo ground-truth of instance j, respec-
tively. To capture more shape details in the images, we
propose to render and compare the high-resolution silhou-
ettes by zooming in on individual parts during optimiza-
tion. Concretely, we crop the 2D part masks estimated by
Hi-LASSIE, upsample the cropped regions to higher reso-
lution, and calculate the part silhouette loss Lpart on the
zoomed-in part masks as:

Lpart =
∑
i

∑
j

∥∥∥Γi
j(M j)− Γi

j(M̂ j)
∥∥∥2, (4)

where Γi
j denotes the crop-and-upsample operation for part

i on instance j. We show some example outputs before and
after zoomed-in optimization in Fig. 6.

2D-3D semantic consistency via feature MLPs. To
densely enforce the 2D-3D semantic consistency of part sur-
faces, we further introduce feature MLPs to improve the se-
mantic loss proposed in LASSIE. For each instance j, the
semantic consistency loss is defined as the Chamfer dis-
tance between the foreground pixels {p|M̂ j(p) = 1} and
3D surface points {x ∈ X} in a high-dimensional space:

Lsem =
∑
j

(∑
p

min
x

D(p, x) +
∑
x

min
p

D(p, x)
)
.

(5)
The high-dimensional distance D is defined as:

D(p, x) = ∥πj(x)− p∥2︸ ︷︷ ︸
Geometric distance

+ α ∥Q(x)−Kj(p)∥2︸ ︷︷ ︸
Semantic distance

, (6)

where α is a scalar weighting for semantic distance, Q(x)
denotes the 3D surface features of point x, and K(p) is the
2D image features at pixel p. In effect, Lsem optimizes the
3D surface coordinates such that the aggregated 3D point
features would project closer to the similar pixel features in
the image ensemble. In LASSIE, the 3D surface features

are maintained and updated for only a sparse set of surface
points, which limits the capabilities of Lsem to supervise
part localization. Instead, we represent the 3D surface fea-
ture of each part with an MLP (Fig 4), which is similar to
the part shape MLPs shared by all instances. Consequently,
we can obtain the semantic features Q(x) given an arbitrary
surface coordinate x. We update the part surface and feature
MLPs alternatively in an EM-style optimization. That is,
we update the feature MLPs by sampling 3D surface points
and projecting them onto 2D images in the E-step. In the
M-step, we use the updated features to optimize 3D surface
MLPs via minimizing the semantic consistency loss.

Pose and shape regularizations. To constrain the output
articulations and part shapes, we apply the following pose
and shape regularizations. First, we impose a part rota-
tion loss Lrot to limit the angle offsets from resting pose
as: Lrot =

∑
j∥Rj − R̄∥2, where Rj is the part rotations

of instance j and R̄ denotes the part rotations of shared
resting pose. Moreover, we remove the side-way rotation
constraint on animal legs in LASSIE since the leg parts are
not specified in our self-discovered skeletons. Instead, we
propose a more general regularization based on 3D sym-
metry prior. We define the symmetry loss Lsym on the
3D joints to prevent overlapping parts or irregular poses
as: Lsym =

∑
i∥Ji − Ψ(Ji

⋆)∥2 where Ji
⋆ is the sym-

metric joint of Ji and Ψ is the reflection operation w.r.t.
the symmetry plane. Finally, to encourage smooth part sur-
faces, we apply common mesh regularizations like Lapla-
cian loss Llap and surface normal loss Lnorm. Llap encour-
ages smooth 3D surfaces by pulling each vertex towards
the center of its neighbors, and Lnorm enforces neighbor-
ing mesh faces to have similar normal vectors. Note that all
the pose and shape regularizations are generic and applica-
ble to a wide range of articulated shapes.

Optimization and texture sampling. The overall opti-
mization objective is given by the weighted sum of afore-
mentioned losses (Lsil, Lpart, Lsem, Lrot, Lsym, Llap,
Lnorm). We optimize the camera, pose, and shape parame-
ters in a multi-stage manner. Superficially, we first estimate
the camera viewpoints and fix the rest. Then, we optimize
the part transformations and shared part MLPs along with
cameras until convergence. Finally, we freeze shared part
MLPs (shallow layers) and fine-tune the instance-specific
part deformations (deep layers) on each instance individ-
ually. Note that the surface feature MLPs are also updated
during all optimization stages in an EM-style. The final tex-
tured outputs are generated by densely sampling the colors
of visible surface points from individual images. The invis-
ible (self-occluded) surfaces, on the other hand, are textured
by their symmetric surfaces or nearest visible neighbors.
More details can be found in the supplemental material.
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Figure 7. Qualitative results on in-the-wild images. We show example results of prior arts and Hi-LASSIE on the LASSIE [38] animal
image ensembles as well as the reference image and 3D skeleton discovered by Hi-LASSIE. The results demonstrate the effectiveness of
our 3D skeleton discovery and the high-fidelity shape/texture reconstruction across diverse animal classes.

4. Experiments
Datasets and baselines. We follow the same evaluation
protocols as in LASSIE [38]. That is, we optimize and
evaluate Hi-LASSIE on individual image ensembles in the
Pascal-Part [8] and LASSIE [38] datasets. From the Pascal-
Part dataset, we select the same set of images of horse,
cow, and sheep as in LASSIE. These image are annotated
with 2D part segmentation masks, which we use to auto-
matically find 2D keypoints for evaluation. The LASSIE
dataset contains sparse image ensembles (with CC-licensed
web images) of some diverse animals (zebra, tiger, giraffe,
elephant, kangaroo, and penguin) with 2D keypoints anno-
tations for evaluation. Considering the novelty of this prob-
lem setting (sparse image optimization for articulated ani-
mal shapes), we mainly compare Hi-LASSIE with LASSIE
as well as some learning-based mesh reconstruction meth-
ods. Most recent mesh reconstruction methods either can-
not handle articulations [13,17,20,30,39] or leverage differ-
ent inputs [19, 34, 36]. 3D Safari [43] and A-CSM [16], on
the other hand, are more comparable to Hi-LASSIE since
they explicitly model articulations for animal classes of our
interest. Since both 3D Safari and A-CSM require large-
scale image sets for training (not available in our setting),
we use their released models of the closest animal classes
to evaluate on our datasets. For instance, we use the ze-
bra model of 3D Safari and the horse model of A-CSM to
evaluate on similar quadrupeds.

Visual comparisons. Fig. 7 shows the qualitative results of
Hi-LASSIE and prior methods on LASSIE dataset images.
LASSIE results can fit the object silhouettes quite well but
lack shape details. Our results demonstrate that Hi-LASSIE
can effectively discover a good 3D skeleton that well ex-
plains other instance in the image ensemble. Moreover, the
output articulated parts are detailed, high-fidelity, and faith-
ful to input images. More qualitative results of skeleton and
shape discovery are shown in the supplemental material.

Keypoint transfer. Without ground-truth 3D annotations
in our datasets, we follow a common practice [16, 43] to
evaluate 3D reconstruction by transferring 2D keypoints
from source to target images. That is, we map a set of
2D keypoints on a source image onto the canonical 3D part
surfaces, and project them to a target image via the esti-
mated camera, pose, and shape. Since the keypoints are
transferred from 2D-to-3D and from 3D-to-2D, a success-
ful transfer indicates accurate 3D reconstruction on both the
source and target images. In Table 1, we report the per-
centage of correct keypoints (PCK) under a tight thresh-
old 0.05×max(h,w), where h and w are image height
and width, respectively. The results show that Hi-LASSIE
achieves higher PCK on most animal image ensembles
compared to the baselines while requiring minimal user in-
puts. We also show ablative results of Hi-LASSIE without
the instance part MLPs (frequency decomposition), feature
MLPs, or zoomed-in part silhouette loss Lpart. All the pro-
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Table 1. Keypoint transfer evaluations on the Pascal-Part [8] and LASSIE [38] image ensembles. For all pairs of images in each
animal class, we report the average percentage of correct keypoints (PCK@0.05).

Method Horse Cow Sheep Zebra Tiger Giraffe Elephant Kangaroo Penguin

3D Safari [43] 57.1 50.3 50.5 62.1 50.3 32.5 29.9 20.7 28.9
A-CSM [16] 55.3 60.5 54.7 60.3 55.7 52.2 39.5 26.9 33.0
LASSIE [38] 58.0 62.4 55.5 63.3 62.4 60.5 40.3 31.5 40.6

Hi-LASSIE w/o inst. MLPs 56.8 57.7 53.6 59.7 63.0 59.9 40.8 31.5 41.2
Hi-LASSIE w/o feat. MLPs 57.5 62.2 56.3 64.1 62.0 60.8 42.7 30.3 41.5
Hi-LASSIE w/o Lpart 58.8 62.8 55.9 63.8 62.8 61.1 41.5 33.3 42.5
Hi-LASSIE 59.6 63.1 56.2 64.2 63.1 61.6 42.7 35.0 44.4

Table 2. Quantitative evaluations on the Pascal-part images. We report the overall 2D IOU, part mask IOU, and percentage of correct
pixels (PCP) under dense part mask transfer between all source-target image pairs.

Overall IOU Part IOU Part transfer (PCP)

Method Horse Cow Sheep Horse Cow Sheep Horse Cow Sheep

SCOPS [15] 62.9 67.7 63.2 23.0 19.1 26.8 - - -
DINO clustering [1] 81.3 85.1 83.9 26.3 21.8 30.8 - - -

3D Safari [43] 72.2 71.3 70.8 - - - 71.7 69.0 69.3
A-CSM [16] 72.5 73.4 71.9 - - - 73.8 71.1 72.5
LASSIE 81.9 87.1 85.5 38.2 35.1 43.7 78.5 77.0 74.3

Hi-LASSIE w/o inst. MLPs 80.4 80.0 79.5 30.2 29.3 33.8 76.4 74.9 71.1
Hi-LASSIE w/o feat. MLPs 82.5 87.6 85.9 34.9 32.4 39.7 74.7 72.4 74.9
Hi-LASSIE w/o Lpart 81.6 84.7 83.8 38.6 35.2 43.6 79.2 77.4 72.0
Hi-LASSIE 83.4 88.1 86.3 39.0 35.3 43.4 79.9 77.8 75.5

posed modules can effectively increase the accuracy of key-
point transfer demonstrating their use.

2D overall/part IOU. In addition to keypoint transfer accu-
racy, we compare Hi-LASSIE with the baselines using dif-
ferent segmentation metrics (Overall/Part IOU) in Table 2.
For Hi-LASSIE and prior 2D co-part segmentation meth-
ods like SCOPS [15] and DINO clustering [1], we manu-
ally assign each discovered part to the best matched part in
the Pascal-part annotations. Hi-LASSIE can produce accu-
rate overall and part masks in 2D by learning high-fidelity
3D shapes. Compared to prior methods, Hi-LASSIE out-
puts match the Pascal-part segmentation better and achieves
consistently higher overall IOU.

Part transfer. Finally, we show the results of part transfer
accuracy in Table 2 using the percentage of correct pixels
(PCP) metric proposed in LASSIE [38]. The PCP metric
is designed similarly as PCK for keypoint transfer, but it
uses 2D part segmentations to more densely evaluate 3D
reconstruction. In short, we densely transfer the part seg-
mentation from source to target images through mapping
2D pixels and 3D canonical surfaces. A correct transfer
is done when a pixel is mapped to the same 2D part in
both the source and target images. The PCP results fur-
ther demonstrate the favorable performance of Hi-LASSIE
against prior arts.

Applications. Hi-LASSIE not only produces high-fidelity
3D shapes but also enables various part-based applications
due to explicit skeleton and part-based representation. For
instance, we can easily transfer/interpolate the 3D skeleton
transformations to repose or animate the output 3D shapes.
Likewise, we can transfer the surface texture or part defor-
mation from one animal species/instance to another. Due
to their explicit nature, Hi-LASSIE 3D shapes can also
be used by graphics artists for downstream applications in
AR/VR/games. We show some example results of these ap-
plications in the supplemental material.

5. Conclusion
We propose Hi-LASSIE, a technique for 3D articulated

shape reconstruction from sparse image ensemble without
using any 2D/3D annotations or templates. Hi-LASSIE au-
tomatically discovers 3D skeleton based on a single refer-
ence image from the input ensemble. We further design sev-
eral optimization strategies to reconstruct high-resolution
and instance-varying details of 3D part shapes across the
given ensemble. Our results on Pascal-Part and LASSIE
image ensembles demonstrate the favorable reconstructions
of Hi-LASSIE against prior arts despite using minimal user
annotations. In future, we hope to apply Hi-LASSIE on
more general articulated objects in-the-wild.
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