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Abstract

Human spatial attention conveys information about the
regions of visual scenes that are important for perform-
ing visual tasks. Prior work has shown that the informa-
tion about human attention can be leveraged to benefit var-
ious supervised vision tasks. Might providing this weak
form of supervision be useful for self-supervised represen-
tation learning? Addressing this question requires collect-
ing large datasets with human attention labels. Yet, col-
lecting such large scale data is very expensive. To address
this challenge, we construct an auxiliary teacher model to
predict human attention, trained on a relatively small la-
beled dataset. This teacher model allows us to generate im-
age (pseudo) attention labels for ImageNet. We then train
a model with a primary contrastive objective; to this stan-
dard configuration, we add a simple output head trained
to predict the attention map for each image, guided by the
pseudo labels from teacher model. We measure the qual-
ity of learned representations by evaluating classification
performance from the frozen learned embeddings as well as
performance on image retrieval tasks (see supplementary
material). We find that the spatial-attention maps predicted
from the contrastive model trained with teacher guidance
aligns better with human attention compared to vanilla con-
trastive models. Moreover, we find that our approach im-
proves classification accuracy and robustness of the con-
trastive models on ImageNet and ImageNet-C. Further, we
find that model representations become more useful for im-
age retrieval task as measured by precision-recall perfor-
mance on ImageNet, ImageNet-C, CIFAR10, and CIFAR10-
C datasets.

Figure 1. Illustration. A teacher model is trained to predict human
spatial-attention from a small dataset. Then the model is used to
provide attention labels for larger dataset, which are used as addi-
tional targets for contrastive models.

1. Introduction

Deep learning models have made significant progress
and obtained notable success on various vision tasks. De-
spite these promising results, humans continue to perform
better than deep learning models in many applications. A
notable reason is that deep learning models have a tendency
to learn “short-cuts”, i.e., giving significance to physically
meaningless patterns or exploiting features which are pre-
dictive in some settings, but not causal [20]. Examples
include focusing on less significant features such as back-
ground and textures [13]. These models yield representa-
tions that are less generalizable and lead to models that are
highly sensitive to small pixel modulations [42].

Human vision on the other hand is known to be much
more robust and generalizable. One major difference be-
tween human and machine vision is that humans tend to
⇤Equal technical contribution.
†Equal leadership and advising contribution
Correspondence to:
junfenghe@google.com & gamaleldin@google.com

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

23282

mailto:junfenghe@google.com
mailto:gamaleldin@google.com


focus on specific regions in visual scene [45]. These lo-
cations often reflect regions salient or useful to perform a
specific vision task. Machines, instead, initially place equal
significance to all regions. A natural question is: will it
be beneficial if machine vision models is guided by human
spatial attention?

Human spatial attention has been shown to benefit com-
puter vision models in supervised tasks, such as classifica-
tion [32]. Yet, it is still a question whether adding a form
of weak supervision in the form of human spatial atten-
tion could similarly benefit self-supervised models that are
trained end-to-end. Self-supervised models typically need
a large amount of data to yield good representations. To
test if training weakly supervised models with human spa-
tial attention cues, we will need to collect a large volume
of human spatial attention labels, which is a very expen-
sive process that requires either using trackers to record eye
movements [5,43,52] or asking humans to highlight regions
that they attend to [25, 27]. This process is prohibitively te-
dious and costly for datasets with millions of examples.

In this work, we test the hypothesis that a weak super-
vision in the form of human spatial attention is beneficial
for representation learning for models trained with a con-
trastive objective. Inspired by knowledge distillation and
self-training using teacher models [47, 49], we address the
challenge of obtaining spatial attention labels on large scale
image datasets by using machine pseudo-labeling. We train
a teacher model on a set of limited ground truth human spa-
tial attention labels, and use this teacher model to gener-
ate spatial attention pseudo-labels for the large ImageNet
benchmark. We are then able to utilize the generated spa-
tial attention maps in the contrastive models, and discover
that this approach yields representations that are highly pre-
dictive of human spatial attention. Further, we find that the
learned representations are better as measured by higher ac-
curacy and robustness on classification downstream tasks,
and higher precision and recall on image retrieval tasks. In-
terestingly, we find that the gains from using teacher mod-
els to provide pseudo labels are larger than using the lim-
ited ground truth human labels directly when training con-
trastive models, and the gains are larger for contrastive mod-
els than when applying same method to supervised models.

In summary, our contributions are as follows:

• We create a dataset with spatial attention maps for the
ImageNet [37] benchmark by first training a teacher
model to predict human spatial attention labels from
Salicon dataset [25] and then use the model to label
ImageNet examples

• We use spatial-attention labels from the teacher model
as an additional prediction target to models trained

Trained teacher model is available at:
https://github.com/google-research/google-research/tree/master/human attention/

with contrastive objective.

• We find that the proposed method can learn bet-
ter representation, leading to better accuracy and ro-
bustness for downstream classification tasks (on Im-
ageNet and ImageNet-C), and better performance on
retrieval tasks (on ImageNet, ImageNet-C, CIFAR-10,
and CIFAR10-C).

2. Related work

Contrastive learning: Contrastive learning has gained
popularity in the past few years for self-supervised and
semi-supervised representation learning. In general, con-
trastive learning aims to learn similar representations for
similar data pairs and different representations for differ-
ent pairs. SimCLR [6] utilized MLP projection heads and
strong data augmentation for constructing similar pairs and
have demonstrated great gains in image classification down-
stream tasks. To form the contrastive loss for each mini-
batch with N examples, the similar data pairs are con-
structed from two augmentations of the same image and
different pairs from the other images within a batch, and
then computing the NT-Xent loss. A different formulation
is used in [50] by encouraging the empirical cross corre-
lation of the representations of two versions of augmented
mini-batch to be close to identity. In [17], it is further pro-
posed to build large dictionaries for self-supervised learning
(MOCO), and moreover in [7], better results are achieved
on image classification and object detection tasks when
combining advances from SimCLR and MOCO. Follow up
work by [14] managed to obtain good performance without
the need for dissimilar pairs by encouraging the represen-
tation of similar pairs across two versions of the network
(trained network and exponential moving average version)
to be similar. Further, in [8] it is shown that simple Siamese
networks can still learn good representations without the
need for dissimilar pairs, large batches or momentum en-
coders, etc .

Human spatial attention: Human visual system has de-
veloped an attention mechanism that focuses on regions in
the visual space that are of interest or highly informative
to the vision task [12, 48]. Eye trackers are often used to
collect human spatial attention [5, 43, 52]. Many gaze data
sets [2] have been collected with these eye trackers. Besides
eye trackers, human spatial attention data can also be col-
lected via mouse tracking [25, 27], e.g., users see a blurry
version of an image, then click on regions they want to see
more clearly, mimicking human’s peripheral vision based
on neurophysiological studies [19, 27]. Both eye track-
ing and mouse tracking methods are very expensive, which
limit the number of examples in those datasets. Due to the
relatively lower cost of mouse tracking, one can often gen-
erate relatively larger attention data from this method than
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eye tracking. For example, Salicon [25] dataset is one of
the largest spatial attention datasets, contains around 20K
images, each with attention labels from 50-60 participants,
via a mouse tracking system, under free viewing setting .
Yet, this data is still orders of magnitude smaller than those
needed to train contrastive representation learning models.

Spatial attention/saliency prediction models aim at pre-
dicting which areas in an image will be salient to human
attention and attract eye fixation, usually with collected
gaze/attention data as ground-truth. Early works in saliency
prediction usually define saliency through a set of hand
crafted features such as color difference, contrast, inten-
sities, etc. [21, 28]. Recent works [1, 19, 24, 30, 31, 36]
leverage the power of deep neural networks and are often
trained/fine-tuned on large scale gaze data sets like Sali-
con [2, 25].

Spatial attention of computer vision models: Spatial
attention in neural networks can be mainly categorized into
post-hoc attention like class activation map (CAM) ( [51]),
and trainable attention (e.g., [15, 23, 46]). Post-hoc spatial
attention methods have been proposed to estimate regions
in the image that are important or give rise to model de-
cisions, often for model interpretation. In supervised set-
tings where classification labels are known, the simplest
and most direct method is class activation map (CAM) [51].
CAM uses class labels to extract the feature map that is
most informative about the true class of an image. Grad-
CAM [39] generalizes the CAM to apply to any model
with any downstream task. [38] proposed to use Grad-CAM
to design augmentation policies in self-supervised learning
to tackle weak performance in complex scene images with
many objects. ContraCAM [35] applies Grad-CAM assum-
ing downstream task of contrastive learning, thus allowing
computing spatial attention maps with no class label super-
vision. In [35], it is proposed to utilize the spatial atten-
tion information learned from ContraCAM to design data
augmentation strategies to discourage contextual and back-
ground biases in a scene. Unlike [38] and [35] that uses
spatial attention to design augmentation policies, here we
focus on an end-to-end framework to predict spatial atten-
tion targets instead.

Recently, there are also several papers [10,11,16,33,41,
44]) exploring the similarity/difference of model spatial at-
tention vs human spatial attention, for the task of VQA (vi-
sual question answering) [10], object detection [11], rein-
forcement learning [16], etc. Among existing works, [32]
is the most relevant to ours, since it conducted experiments
to use human spatial attention to supervise model spatial at-
tention, for three tasks (salient object segmentation, video
action recognition and fine-grained image classification)
and demonstrated that human spatial attention is beneficial.
However, it still remains a question whether such benefits
could be extended to contrastive representation learning. In

terms of strategy to utilize spatial attention labels, in [32],
attention labels are used as spatial weighting, while we de-
signed auxiliary task to predict spatial attention labels.

Teacher model pseudo-labeling: Previous work on
knowledge distillation and machine self training has
demonstrated that machine teaching machines approaches
may address the challenge of labeling large datasets. In im-
age classification, [49] demonstrated that training a model
to classify images then use that model to provide pseudo-
labels improved classification performance. Related idea is
applied in [47] for language models, which showed that the
knowledge learned by language models pretrained on text
corpus could be distilled to generate new datasets for com-
mon reasoning, and that training common reasoning models
on this new data largely improve performance. Inspired by
these successes, we train a teacher model on smaller human
attention data and use this model to generate new spatial at-
tention pseudo labels for ImageNet benchmark (see Figure
1 and Figure 2).

3. Methods

3.1. The Contrastive Learning Framework

Contrastive learning is one of the most popular self-
supervised representation learning methods. It learns an
embedding space so that similar data (positive) pairs are
mapped to be close in the embedding space and different
(negative) pairs are mapped to be far away. In practice, pos-
itive pairs are often generated by applying data augmenta-
tion to one image like adding noises, cropping, etc and neg-
ative pairs are different examples in the mini-batch. Among
contrastive learning methods, SimCLR framework [6] has
shown solid performance, which we choose here as our
main method. For each batch, the images are augmented
in two different ways. Then we feed them into ResNet fea-
ture extractor backbone and compute NT-Xent loss to mini-
mize the difference between augmentations of the same im-
ages and maximize the differences between different im-
ages. NT-Xent loss can be computed as follows [6]:

li,j = � log
exp(sim(zi, zj)/⌧)P2N

k=1 1k 6=i exp(sim(zi, zk)/⌧)
(1)

where zi is the embedding of ith example, and sim(·, ·) is
the cosine similarity between two embeddings.

3.2. ImageNet-Attn: spatial attention maps for Im-

ageNet generated by a teacher model

To train contrastive learning models, we need large
datasets with millions of examples. Thus, to address the
question whether human attention is beneficial for con-
trastive models, we will need large human spatial atten-
tion labeled dataset. However, there is no spatial atten-
tion dataset available with that size on typical large image
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Figure 2. (a) The architecture of teacher model to predict attention. The teacher model was trained from random initialization to predict
ground truth (G.T.) human spatial attention labels. (b) Examples from Salicon dataset, with G.T. human attention heatmaps, and teacher
model predictions. (c) Examples of spatial-attention pseudo-labels generated by the teacher model for ImageNet dataset (ImageNet-Attn).

benchmark such as ImageNet. The largest attention data set
available is Salicon [25], consisting of twenty thousand ex-
amples only, orders of magnitude smaller than ImageNet,
which has around 14 million examples.

To generate attention labels for ImageNet images, we
train a teacher model on Salicon attention data set to pre-
dict human attention ground truth labels (see Figure 2b).
Then we use this teacher model to create a new dataset
(ImageNet-Attn) with spatial attention maps for ImageNet
(see Figure 2c for some examples). The teacher model
architecture is illustrated in Figure 2a. Specifically, we
used MobileNet-V3-small as the backbone, and embed-
dings from 4 layers (conv 2,4,6,8) are extracted. On each
embedding, we applied two conv layers (the first conv layer
with 3 ⇥ 3 kernel, number of channels matching the input
embedding, max pooling of 3 and relu; the second conv
layer with 1 ⇥ 1 kernel , 1 channel and relu). We bilin-
early resized the output to the same resolution of input. The

result of the 4 branches are then summed to yield 1 fea-
ture, followed up by a sigmoid function to obtain spatial-
attention map. Note that using multiple intermediate (both
early and late) layers is one of the key ingredient to make
the spatial attention teacher model successful. This strategy
mimics human visual attention, which is known to be af-
fected by both low-level characteristics such as color, inten-
sity, texture, as well as high level characteristics like shape
and object, etc. Essentially, our teacher model has a similar
architecture as in [36], but is further simplified with more
efficient backbone, less channels/layers, etc, so that it can
be trained from scratch on Salicon data with randomly ini-
tialized backbone to avoid any leak of class label informa-
tion, while most existing attention prediction models [1,36]
needs to finetune with a pretrained classification backbone
network.
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3.3. Training contrastive models with spatial atten-

tion maps

Spatial Attention Branch The overall training frame-
work is shown in Figure 1. This spatial attention prediction
framework consists of two branches: the contrastive branch
and the spatial attention branch. The contrastive branch is
the same as the original SimCLR method [6], which ap-
plies augmentations to image x to get different variants xi

and xj , and learns the representation hi and hj via a fea-
ture extractor backbone network (e.g., ResNet), then use a
projection head to map hi/hj to zi/zj , where the contrastive
loss is applied.

For the spatial-attention branch, it takes as an input not
only the final embedding h, but also early intermediate layer
embeddings (following the same reason of including both
high level and low level visual cues as in teacher model),
and predicts an spatial attention heatmap mp. More specif-
ically, we apply a global average pooling on the output of
the last three blocks of the ResNet backbone. Then, we se-
lect the max channel for each of three block output (after
average pooling), and resize with bilinear interpolation to
the image resolution, which has some resemblance to CAM
approaches [51]. Finally we stack the representations to-
gether, pass them into a linear readout layer (with a bias
term), and use the output as our final spatial attention pre-
diction mp. We keep the spatial attention head as simple as
possible so that the guide on attention head output can be
back propagated to representation more directly.

We use the ImageNet-Attn data generated by the teacher
model as target for each ImageNet example, denoted as mt,
we can then train the network spatial attention output mp to
be close to mt. We hypothesize that this method regularizes
the training of the feature extractor backbone rather than ex-
plicitly enforce the network to generate masked representa-
tions that match the spatial attention maps. Note that for
attention branch, there is no augmentation applied to each
image x, since human attention is not invariant to transfor-
mation (e.g., a human looking at a cropped image may at-
tend to different region compared to a consistent crop of
human attention map of the original image).

Loss function The loss function L consists of two
terms:

L = Lcontra + Lattn (2)
Lcontra is the contrastive loss, or more specifically
Lcontra =

P
i,j li,j and li,j is defined in Equation (1), the

same as in [6]. Lattn is the attention regularization loss, and
more specifically

Lattn =
X

i

(�KLD(mp
i ,m

t
i)� �NSS(mp

i , p
t
i)) (3)

where � and � are two weighting parameters (� = 1.0 and
� = 0.1 in our work). mp

i is the predicted 2D spatial-
attention map from the attention head of our proposed

Table 1. ImageNet Top-1 classification accuracy for different mod-
els (mean ± SE for 3 seeds, except for * which means best result
from all runs).

Model Accuracy (%)

Contrastive 67.61± 0.04

Contrastive attn. teacher 68.23± 0.08

Contrastive attn. co-train 66.35± 0.12

Contrastive attn. with explicit attention block [32] 61.15⇤

Contrastive attn. with self attention mask [32] 49.65⇤

Contrastive attn. with ContraCAM [35] as attention 67.71⇤

Supervised 75.91± 0.10

Supervised attn. teacher 76.02± 0.04

Supervised (ResNet-18) 69.17± 0.07

Supervised (ResNet-18) attn. teacher 69.30± 0.04

model for i-th example (original image, not augmented
ones), mt

i is the pseudo spatial-attention target map pre-
dicted by the teacher model for i-th example, and KLD()
is the KL divergence 1. Besides KLD loss, we also use
NSS() , the Normalized Scanpath Saliency loss [4]. Those
two losses are typically used for human attention predic-
tions [3,9]. KLD is often used to match the spatial-attention
target distribution, and NSS is typically added on top as it is
generally observed to help generate attention maps that are
in perceptual agreement with human judgements (see [3,34]
). For NSS loss, the larger the better, so there is a nega-
tive sign before it. NSS loss needs gaze/attention points
instead of heatmap as ground-truth, so we extract pseudo
gaze/attention points pti from the attention heatmap mt

i. To
obtain pti, we first extract the point with highest value in cur-
rent spatial-attention map mt

i, then generate a new spatial-
attention map by subtracting a Gaussian blur around the ex-
tracted point from the current attention map. The process
is repeated with the new attention map until the maximal
value of the attention map is smaller than a threshold (more
specifically, 0.2 ⇤max sal, where max sal is the maximal
value in mt

i). 2

4. Experiments

4.1. Implementation details

In our experiments,in Eq.1, we choose ⌧ = 0.1 and
N = 2048. In Eq.2, we used equal weighting of 1.0 for
the SimCLR and attention losses.

The weight for KLD and NSS losses are 1 and 0.1, re-
1mp

i is normalized when computing KLD, i.e., divided by its pixel
value sum, so that it becomes a distribution with all pixel value sum equal
to 1. Similarly for mt

i .
2Our process of extracting gaze points from heatmaps is to inverse the

process of generating heatmaps from gaze points. Due to the uncertainty
about the gaze locations, researchers typically apply Gaussian blur for each
gaze point, then sum all Gaussians to generate the heatmap (see [3, 26]).
We follow the inverse of this process to obtain gaze points from heatmap,
similarly as done in [22].
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Figure 3. (a) Examples comparing spatial attention maps predicted by different models vs ground truth human attention data on OSIE
dataset [43]. (b) Distribution of correlation coefficients between model predicted attention maps vs ground truth human attention maps on
Salicon [25] validation set (left) and OSIE dataset (right) [43]. Three models are shown: (1) Teacher model trained on Salicon [25] training
set. (2) Baseline SimCLR model (3) The proposed spatial attention guided SimCLR model trained with pseudo-attention labels provided
by the teacher model. Please note that both baseline and our model are trained to predict target attention labels, with main difference
that the baseline model has a stop gradient placed between the prediction layer and network features to prevent spatial-attention targets to
inform network features. Also note that our teacher model is trained on Salicon where the attention is collected by mouse tracking, while
the results in (a) and (c) here are on OSIE data, where the attention are collected by eye trackers. The results demonstrated both the teacher
model and the attention head in proposed model has a good generalization capacity for new kinds of attention labels.

spectively. We obtained those weights by hyperparameter
search from 0.1–5 for KLD and 0.01–1 for NSS, based on
ImageNet accuracy of a separate dev set (80%-20% split on
training set for parameter search with 20% as dev set).

4.2. Spatial attention guided models are highly pre-

dictive of human attention

In this section, we explore whether the use of auxiliary
teacher model to provide spatial attention pseudo labels on
ImageNet better aligns contrastive model’s attention with
human attention. We define aligning model spatial atten-
tion here as the ability to predict spatial attention mask from
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the model backbone features by a simple readout layer dis-
cussed in Section 3. We trained two ResNet-50 backbones
using the SimCLR objective from [6]. We added additional
spatial-attention losses as discussed in Section 3. For the
baseline model, we placed a stop gradient operation be-
tween the backbone features and the attention projection
head to prevent attention information from leaking to the
backbone features, whereas for the attention guided model,
we allowed the learned attention gradients to flow back to
the backbone.

We evaluated the degree the predicted attention maps
is aligned with human attention by performing correlation
analysis, which is typically used to compare human and
model spatial attention. We measured Pearson’s correla-
tion coefficient between the model predicted attention and
ground truth human spatial-attention maps from Salicon
[25] validation set (Note that the teacher model is trained
with Salicon training set). We find that both teacher model
and spatial attention guided contrastive model are highly
correlated with human attention (Figure 3b), while the base-
line contrastive model is much less correlated.

To test whether this alignment with human attention is
general, beyond just Salicon data, we obtained another at-
tention dataset on OSIE images [43] (Figure 3a). This data
more faithfully reflects human attention as it collected from
(mobile) eye tracker [43]. We find that the baseline model
is weakly positively correlated with human attention (ttest:
⇢ = 0.07 p < 0.001) suggesting that the contrastive loss
produces features that are predictive of human attention to
some extent. Yet, the correlation was generally close to 0
and explains only 0.5% of data variance. The spatial atten-
tion guided model has a much stronger correlation to hu-
man attention (ttest: ⇢ = 0.48 p < 0.001) than the baseline
model (Two samples ttest: p < 0.001), and thus more faith-
fully reflecting human visual attention (See Fig 3a for qual-
itative examples and Fig 3b bottom for quantitative analy-
sis). Further, the correlation with human attention for the
teacher model and the attention guided contrastive model
were quite similar (Two samples ttest: p = 0.7).

4.3. Spatial attention guided models are more accu-

rate than baselines

We evaluate the quality of the representations learned
by spatial attention guidance framework using the typical
contrastive learning evaluation criteria: fitting an ImageNet
[37] linear classifier on top of the frozen representation (in
practice we place stop gradient at the end of the backbone
and train the classifier concurrently while training the back-
bone). We compute Top 1 accuracy on ImageNet valida-
tion set and compare the results with baselines. As shown
in Table 1, we observe around 0.6% accuracy gain on Im-
ageNet compared to vanilla SimCLR. We further explore
an alternative way of incorporating human attention data.

Rather than using pseudo attention labels on ImageNet from
the teacher model, we add Salicon data to the training data,
and directly predict attention ground truth labels for Salicon
data with spatial attention head (Contrastive attn. co-train in
Table 1) . More specifically, we pass 2048 ImageNet images
and N=2048 Salicon images into our backbone (N is ob-
tained by hyperparameter search 512–2048 based on evalu-
ation on the separate dev set) to compute backbone features.
Then, we compute the SimCLR loss from ImageNet fea-
tures and use Salicon images features to predict spatial at-
tention maps, and we use Salicon attention ground truth la-
bels to compute the KLD and NSS losses. Interestingly, we
find this method to lead to worse performance compared to
using the teacher model generated spatial-attention labels,
which gives evidence that the teacher model is generaliz-
ing its knowledge about human attention data beyond the
limited Salicon training data.

One important question is whether the classic trainable
attention method applies to contrastive learning. For exam-
ple, in [32], an attention block/map is used to adjust the
weights of the embedding, where the attention block can
be self learned implicitly, or guided by human attention
ground-truth. It shows both implicit self-learned attention
block and attention block guided by human attention can
improve the accuracy of fine-grained classification (Table
VII in [32]). We adopted the approach described in their
paper: add an attention block after the representation em-
bedding, and use the attention block’s output to mask the
representation embedding. We apply it to the contrastive
models, and the results are shown in Table 1 as ”explicit
attention mask” (the attention block is guided by human at-
tention) and ”self attention mask” (self attention). As ob-
served, both yield poor performance, since the contrastive
attention with self-attention mask method learns an atten-
tion mask from the contrastive loss rather than to predict
the teacher targets, the model may be getting weaker super-
vision.

Another important question is whether our current spa-
tial attention targets can be replaced by other spatial atten-
tion approach like ContraCAM [35]. In our method, we
predicted the spatial attention with a linear layer. Whereas
in ContraCAM a contrastive loss is used to construct the at-
tention prediction. In both cases, we trained the predictions
to match the target attention maps obtained from the teacher
model. The result is shown in Table 1 as ”Contrastive with
ContraCAM as attention”. However, we don’t see much
accuracy improvements with ContraCAM as the model at-
tention, showing that the linear simple prediction leads to
better performance.

To investigate whether the spatial attention guidance
framework benefits supervised models in the same way as
contrastive models, we applied the same approach for su-
pervised models. Supervised models similarly benefit from
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this framework, yet the gain is limited compared to the con-
trastive models perhaps due to the higher accuracy the su-
pervised models achieves compared to the contrastive mod-
els. To control for accuracy, we used a supervised model
trained with smaller backbone (ResNet-18), which gives
comparable accuracy to the bigger ResNet-50 backbone that
is trained with contrastive objective. Even when controlling
the mismatch in accuracy, the supervised model gain from
providing spatial-attention supervision is limited compared
to contrastive models (Table 1).

4.4. Spatial attention guided models are more ro-

bust than baselines

Human vision is very robust to noise or small pixel mod-
ulations, compared to computer vision models. Here, we
hypothesize that models that aligns better with human at-
tention may learn more robust representations. We test this
hypothesis using ImageNet-C dataset [18]. We take the rep-
resentations learned from the proposed model and train a
linear classifier on ImageNet training data. We then eval-
uate classification performance on ImageNet-C at various
corruption/noise types. Table Supp.1 in the supplementary
compares the classification performance on ImageNet-C for
baseline contrastive model and the proposed models trained
with spatial-attention teacher guidance, average over the 5
different corruption/noise magnitudes in ImageNet-C. We
find that contrastive models trained with teacher guidance
outperforms baseline consistently, suggesting that the rep-
resentation learned by spatial-attention guided model is in-
deed more robust.

4.5. Spatial attention guided models generate better

representation for retrieval

Besides classification, we tested the quality of the rep-
resentations for another downstream task: image retrieval.
We use the model to extract representation for ImageNet
validation set, and use the representations to run image re-
trieval. 5000 randomly chosen validation images are used
as query, while the rest validation images are database im-
ages. For each query image, top k retrieval results are
returned by sorting the cosine distance between represen-
tations of database images and the query. The retrieval
accuracy is measured with the standard precision recall
curve [40], where precision and recall are computed by
checking whether results have the same class label as the
query. Mean precision and recall is obtained as the av-
erage across queries. We choose different k values, and
draw the mean precision-recall curve. Besides ImageNet
(”clean” in Fig Supp.1a in the supplementary), we also use
ImageNet-C (”noise level 1-5”). Results from ”fog” cor-
ruption is shown in In Figure Supp.1a in the supplemen-
tary,, while results for other corruptions can be found in
the supplementary too. The representation extracted with

the Contrastive attn teacher model outperforms the baseline
Constrastive model in this retrieval task, on both ImageNet
images, and ImageNet-C images for most corruption types
and levels.

Moreover, we evaluate transfer to other dataset for the
retrieval task. We take the model trained on ImageNet
to extract representations for CIFAR-10 [29] test set and
CIFAR-10-C [18] (”clean” and ”noise level 1-5” in Fig
Supp.1b in the supplementary respectively), without re-
training/finetuning. 1000 images are used as query and the
rest are used as database. Results for ”fog” noise are shown
in Fig Supp.1b in the supplementary, while results for other
noises are shown in supplementary too. As shown, the
proposed attention guided model outperforms the baseline
model on both clean images and almost all noise/corruption
types and levels.

5. Conclusion

In this work, we tested the hypothesis that utilizing hu-
man spatial attention can be beneficial for obtaining bet-
ter representation for contrastive models. We overcome the
challenge of obtaining human spatial attention labels for
large dataset by utilizing a teacher model trained on limited
human attention labels to provide pseudo-attention labels
for ImageNet. We augmented training of a commonly-used
network (ResNet50) trained with SimCLR contrastive ob-
jective with pseudo-spatial attention labels from the teacher
model. Our results demonstrate that contrastive models
trained with those pseudo-attention labels are more predic-
tive of human attention and we obtain better representa-
tions.

Despite the gains observed on downstream tasks are not
large, the gains were consistent across 3 tasks (classifi-
cation, robustness, and image retrieval). Thus, taken to-
gether, our findings support the above hypothesis. The lim-
ited gains in classification may suggest that spatial atten-
tion alone may not be enough to achieve SOTA, but perhaps
in conjunction with other architectural and methodological
improvements. Another limitation is that our exploration
was conducted on natural images only, but other interesting
applications may include other domains like medical im-
ages or autonomous driving. When domains becomes very
different, it may be required to retrain teacher models to
capture those new domains (e.g., train on attention data that
comes from medical experts for medical images). These are
interesting and important questions that may be addressed
in future work.
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