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Abstract

Recently, deep neural networks have been successfully
applied for image restoration (IR) (e.g., super-resolution,
de-noising, de-blurring). Despite their promising perfor-
mance, running IR networks requires heavy computation.
A large body of work has been devoted to addressing this
issue by designing novel neural networks or pruning their
parameters. However, the common limitation is that while
images are saved in a compressed format before being en-
hanced by IR, prior work does not consider the impact of
compression on the IR quality.

In this paper, we present AccelIR, a framework that
optimizes image compression considering the end-to-end
pipeline of IR tasks. AccelIR encodes an image through
IR-aware compression that optimizes compression levels
across image blocks within an image according to the im-
pact on the IR quality. Then, it runs a lightweight IR net-
work on the compressed image, effectively reducing IR com-
putation, while maintaining the same IR quality and image
size. Our extensive evaluation using nine IR networks shows
that AccelIR can reduce the computing overhead of super-
resolution, de-nosing, and de-blurring by 49%, 29%, and
32% on average, respectively.

1. Introduction
Image restoration (IR) is a class of techniques that re-

covers a high-quality image from a lower-quality counter-
part (e.g., super-resolution, de-noising, de-blurring). With
the advances of deep learning, IR has been widely deployed
in various applications such as satellite/medical image en-
hancement [9,42,43,51,52], facial recognition [7,44,65,69],
and video streaming/analytics [15, 27, 66, 67, 70]. Mean-
while, the resolution of images used in these applica-
tions has been rapidly increasing along with the evolution
in client devices (e.g., smartphones [58, 61], TV moni-
tors [57]). Thus, deep neural networks (DNNs) used for
IR need to support higher-resolution images such as 4K
(4096×2160) and even 8K (7680×4320).

However, because the computing and memory overhead

JPEG + IR AccelIRTask FLOPs PSNR FLOPs PSNR
Super-resolution 1165G 25.28dB 298G 25.30dB

De-noising 1701G 30.49dB 1132G 30.70dB
De-blurring 2590G 30.57dB 1718G 30.58dB

Table 1. Computing overhead and quality of IR under the same
compression ratio (1.2bpp). AccelIR reduces computation by 34-
74% while providing the same IR quality and image size.

grow quadratically to the input resolution, applying IR net-
works to such a large image is computationally expen-
sive [32, 34]. Prior work addresses this issue using three
different approaches: 1) designing efficient feature extrac-
tion or up-scaling layers [2, 16, 29, 33, 59, 75], 2) adjusting
network complexities within an image according to the IR
difficulty [32, 34], and 3) pruning network parameters con-
sidering their importance [50]. The common limitation in
the prior studies is that they do not consider the detrimental
impact of image compression on the IR quality, despite the
fact that images in real-world applications are commonly
saved in a compressed format before being enhanced by IR.

In this work, we observe that there is a large opportunity
in optimizing image compression considering the end-to-
end pipeline of IR tasks. Compression loss has a signifi-
cant impact on the IR quality, while its impact also greatly
varies according to the image content, even within the same
image. Such heterogeneity offers room for IR-aware image
compression that optimizes compression levels across im-
age blocks within an image according to the impact on the
IR quality. IR-awareness allows us to use a lighter-weight
IR network because the quality enhancement from IR-aware
image compression can compensate the quality loss due to
the reduced network capacity.

Based on this observation, we present AccelIR, the first
IR-aware image compression framework that considers the
end-to-end pipeline of IR tasks, including image compres-
sion. AccelIR aims to reduce IR computation while main-
taining the same IR quality and image size. To enable this,
AccelIR develops a practical IR-aware compression algo-
rithm and adopts a lightweight IR network. AccelIR oper-
ates in two phases: offline profiling and online compression.
In the offline phase, AccelIR clusters image blocks in the
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representative datasets [1, 21] into groups. For each group,
it constructs profiles that describe the impact of compres-
sion level on the resulting IR quality and image size. In ad-
dition to the profiles, a lightweight CNN is trained to guide
the best-fit group for unseen image blocks. In the online
phase, AccelIR retrieves the profiles for each block within
an image by running the CNN. Our framework then refers
to the block-level profiles to select the optimal compression
level for each block, maximizing the IR quality at the same
image size. Finally, the lightweight IR network is applied.

We evaluate AccelIR using a full system implementation
using JPEG [53] and WebP [68], the most widely used im-
age compression standards. As shown in Table 1, our evalu-
ation using five different super-resolution [2, 16, 36, 37, 56],
two de-noising [71, 73], and two de-blurring networks [12,
72] shows that AccelIR consistently delivers a significant
benefit in a wide range of settings. Compared to applying
IR to images encoded by the standard JPEG and WebP, Ac-
celIR reduces the computing cost of super-resolution, de-
noising, and de-blurring by 35-74%, 24-34%, and 24-34%,
respectively, under the same IR quality and image size. In
addition, AccelIR can support any type of image codec and
is well-fit to serve new IR tasks and networks that are not
shown in the training phase. Thus, AccelIR can be easily
integrated with the existing IR applications.

2. Background & Related Work
Preliminaries on image compression. Image compression
reduces redundancy within an image in a way that mini-
mizes the degradation on perceptual quality. In general, tra-
ditional image codecs, such as JPEG [53], JPEG2000 [60]
and WebP [68], carry out image compression with three
main processes: frequency transformation, quantization and
entropy coding. First, the frequency transformation con-
verts YUV pixel values into frequency domain represen-
tation, which is a coefficient matrix including direct com-
ponent (DC) coefficients and alternating component (AC)
coefficients. Second, the quantization step divides the coef-
ficient matrix and rounds up to the nearest integers. In this
step, there are two elements that can affect the quantization
step directly, a quantization table and quantization parame-
ter (QP). The quantization table is the matrix of denomina-
tors, which divide the coefficient matrix. QP is the scaling
factor of quantization table; in JPEG, setting a lower QP in-
creases quantization steps and results in high compression
at the expense of quality. Third, the entropy coding is ac-
companied to reduce the size of image data in a lossless
manner. Among these steps, information loss occurs in the
quantization step making it the most crucial part in optimiz-
ing the rate-distortion trade-off.
Optimizing quantization parameter. Existing Im-
age/video codecs [5, 8, 19, 22, 23, 47, 68] feature variance
adaptive block quantization (VAQ), which allocates QP val-

ues to image blocks according to the variance of an image
block. However, VAQ does not consider the benefit of im-
age restoration (IR) and even shows the worse IR quality
than allocating uniform QPs (§5). Recent work optimizes
adaptive block quantization for object detection and image
classification/segmentation. AccMPEG [17] and RSC [35]
run a DNN on a raw input image to extract the importance
map tailored for a target application, allocating QP values
according to the importance. However, a such map is irrel-
evant to a compression level and thus it is inapplicable to
IR tasks. In contrast to object detection and image classi-
fication/segmentation tasks where the content (e.g., human,
car) critically affects the accuracy, IR quality is affected by
both the content and the compression level (§3). Thus, the
importance map that does not consider the impact of com-
pression would result in poor performance for IR tasks. In
AccelIR, we consider both the content and the impact of
compression on the IR quality for selecting QPs.
Optimizing quantization table. The optimal quantization
table may vary across images depending on size or quality
constraints. Thus, various techniques are proposed to op-
timize quantization tables. JPEG exploits the properties of
human visual perception (HVS) to construct quantization
tables [64]. Aside from levering HVS, several studies pro-
pose heuristics to find the optimal quantization table using
rate-distortion optimization [54], genetic algorithm [14],
and simulated annealing [25]. Recently, deep learning is
used to build quantization tables optimized for image clas-
sification/segmentation [13, 41]. AccelIR is orthogonal to
these efforts. Our framework adapts quantization parame-
ters across image blocks for IR tasks, while using the exist-
ing quantization tables from standard codecs.
Accelerating image restoration. A large body of work
has been devoted to reducing the computing overhead of IR
tasks (e.g., super-resolution, de-noising, de-blurring). Prior
work addresses this issue using three different approaches.
First, some studies design efficient feature extraction or
up-scaling layers. In the super-resolution domain, FSR-
CNN [16] uses deconvolution, and ESPCN [59] adopts sub-
pixel convolution for up-scaling. CARN [2], IMDN [29],
and PAN [75] develop cascading residual blocks, and cas-
caded information multi-distillation, and pixel attention, re-
spectively. In the de-nosing and de-blurring domain, FFD-
Net [74] down-samples input images, and MWCNN [40]
uses wavelet transform to reduce the size of feature maps.
Second, ClassSR [32] and MobiSR [34] adaptively adjust
the SR network capacity within an image according to the
difficulty of SR. Third, SLS [50] applies network pruning
tailored for IR tasks. AccelIR is orthogonal to these efforts,
above methods can be integrated with our framework for
further acceleration. Note that we are the first to accelerate
IR networks by optimizing image compression.
Learnable codec. Recent advances in learnable codecs [4,
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Figure 1. Motivating measurements about IR-aware compression on a compressed image
(Task: Super-resolution 4×, Neural network: EDSR [37], Codec: JPEG [53], Dataset: DIV2K [1])

10, 11, 28, 38, 45, 46, 62, 63] have shown promising perfor-
mance in image compression. However, their common limi-
tation is that neural compression is computationally too ex-
pensive to support a wide variety of clients in real-world
applications. Thus, our primary goal is to support various
types of traditional standard codecs (JPEG, WebP, BPG, and
HEIF), which are widely used in commercial applications.
We believe the design of AccelIR is generic enough to ac-
commodate neural codecs, which we leave as future work.

3. Key Insight & Challenge
Our key insight is that the IR quality of compressed

images can be improved by adjusting compression levels
across sub-image blocks considering the capability of IR
networks. In this section, we demonstrate the potential
benefits of optimizing image compression for IR tasks and
then illustrate the key challenges in realizing the idea. We
present a motivating example using SR, but the results gen-
eralize to the other IR tasks, as shown in §5.
Opportunities for IR-aware compression. The IR qual-
ity according to the degree of compression (QP) is highly
heterogeneous across the blocks within an image. Thus,
there is a large room for improving the net IR quality by
adjusting QPs at a block level considering this IR-specific
relationship. To show the level of such heterogeneity, we
measure the IR quality gain of image blocks in the DIV2K
dataset [1], which is the IR quality difference between the
blocks encoded with QP 20 and 90. Figure 1a shows the
probability density of the IR quality gain across all blocks
in terms of PSNR. The standard deviation of the IR gain is
2.25 dB, whereas 90%-tile and 10%-tile IR gain is 7.19 dB
and 1.79 dB, respectively. Despite such high heterogeneity,
existing codecs [19,53,68] and prior work in adaptive quan-
tization [17] apply the same QP or adapts QPs agnostic to
IR, which does not show any gains in the IR quality (§5).

The net IR quality can be enhanced at the same im-
age size by allocating QPs in a IR-aware manner. This
can be achieved by increasing the QP of beneficial blocks,
which belong to higher-percentile in the above PDF, and de-
creasing the QP on blocks belonging to the lower-percentile
group, which are less sensitive to the change of QP. We fur-

ther illustrate how IR-aware QP allocation operates using
two example image blocks. Figure 1b shows the data char-
acteristics of both blocks. The IR quality enhancement of
Block A is more pronounced than that of Block B for the
same increase in a QP; and the size of Block A is larger
than that of Block B for the same QP. Considering both re-
lationships, Block A delivers the higher IR quality gain per
increased size (+0.012 dB/bytes) than Block B. Thus, given
a size constraint, allocating a higher QP to Block A than B
brings a net benefit in the total IR quality.
Potential benefit of IR-awareness. To find the maximum
benefit in terms of the IR quality improvement, we run an
exhaustive search. In detail, we partition an image into
32×32 non-overlapping blocks and then find their optimal
QPs that maximize the overall IR quality among all combi-
nations of QPs, each of which consists 10 levels from 10 to
100. Note that, by default, JPEG applies the same QP to an
entire image.

Figure 1c shows an example result using an image from
the DIV2K dataset [1] with 1.09 bits-per-pixel (bpp) com-
pression. Under the same IR network [37], IR-aware
image compression improves the IR image quality by
0.25 dB compared to the traditional JPEG. Next, we apply
a lightweight network to translate the above benefit of IR-
aware compression into computing saving. The network
size is configured at the minimum level (by reducing the
channel size) that does not degrade the IR quality as shown
in the figure. Overall, the combined optimization reduces
the computing overhead of IR network by 90% compared
to the method that applies the original (large) IR network to
the JPEG-encoded image.
What is the key challenge? The main challenge is that it
is computationally infeasible to carry-out the optimal IR-
aware compression to accelerate IR networks while main-
taining the same IR quality and image size. This is because
the number of possible QP sets across image blocks is too
big, while the IR quality and image size of each QP set can
be only retrieved by running the actual image compression
and IR inference. As illustrated in Figure 1d, finding the op-
timal QP values by exhaustive search can even increase the
compression overhead up to 6,000× because it involves the
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Figure 2. AccelIR encodes an image by IR-aware compression at the source side and runs a lightweight IR network at the client side.

expensive encoding and inference. In the following, we de-
scribe our framework, AccelIR, that enables fast and accu-
rate IR-aware compression, reducing the overall compres-
sion overhead by 99.9% compared to the exhaustive search.

4. Method
We provide an overview and describe the details of IR-

aware image compression.
Goal. We aim to maximize image quality after IR through
IR-aware image compression, which adaptively adjusts QPs
across image blocks within an image, while satisfying a
given size constraint. This can be formulated as follows:

max
{QPi}N

i=1

N∑
i=1

IR-Quality
(
Enc(xi, QPi)

)
s.t.

N∑
i=1

Size
(
Enc(xi, QPi)

)
≤ Budget

where xi and QPi is a i-th image block and its QP value for
encoding, respectively; IR-Quality(Enc(·)) is the IR quality
of an compressed image block; N is the number of image
blocks within an image. At the same time, the QP con-
figuration must be solved without introducing a significant
overhead on encoding as high compression throughput is
critical for practical deployment [26].
Overview. Figure 2 illustrates the overall workflow of Ac-
celIR. When a raw image is captured at a source (e.g., cam-
eras in satellites or medical devices), AccelIR applies IR-
aware compression to the raw image by adaptively allocat-
ing QPs across the blocks within an image. The resulting
compressed image is delivered to a client. The client then
runs a lightweight IR network (e.g., super-resolution, de-
noising, de-blurring) to enhance the image quality.

To enable fast and accurate IR-aware compression, we
design a hybrid approach that consists of offline profiling
(§4.1) and online QP allocation (§4.2). A strawman ap-
proach is to use a DNN to directly predict the relationship
between QP and the IR quality. However, we observe that
this direct prediction is challenging [32, 34] because there
is large variance in the IR quality across image blocks. To
make the problem more tractable, we first profile the re-
lationship on representative groups and train a lightweight
CNN to guide the best-fitted group for unseen blocks. Since
this group (i.e., relative order) is much easier to predict than
the final IR quality, our hybrid design is more accurate and

lightweight compared to the DNN-based IR quality predic-
tion. Next, we use the profiles and CNN to find IR-aware
QP values across image blocks by re-designing the efficient
search algorithm, A-star [24], in an IR-aware manner.
Deployment model. AccelIR can support any type of im-
age codec and is robust to unseen IR tasks and networks.
Even when clients run different IR tasks or networks from
those used in the training phase of AccelIR, our frame-
work can still deliver a large benefit in computing saving as
shown in §5.3. Therefore, AccelIR can practically support
a wide range of IR applications. Note that even if IR is not
applied at the client side, AccelIR’s compression preserves
the original image quality (§5.4).

4.1. Offline Profiler

The offline profiler aims to provide an efficient algorithm
that estimates 1) the IR quality of an compressed image
block (= QP to IR quality) and 2) the size of an compressed
image block (= QP to size). Figure 3 describes how the of-
fline profiler operates in two steps:
1 Constructing cluster-wise profiles: The profiler parti-
tions images from representative datasets into image blocks,
ranks all image blocks according to IR utility w.r.t size, and
then clusters the image blocks into M discrete IR utility
groups {gj}Mj=1 by their order. The IR utility w.r.t size is a
measure of how effective is allocating a higher QP to a tar-
get image block to improve the overall IR quality. The IR
utility of an image block x is defined as the IR quality im-
provement over the size difference between the minimum
and maximum QP values:

Utility(x) =
Quality

(
x,QPmax

)
− Quality

(
x,QPmin

)
Size

(
x,QPmax

)
− Size

(
x,QPmin

)
where x is an image block, and QPmin and QPmax are
the minimum and maximum QP values on a target compres-
sion range, respectively. We choose 15 and 95 following the
JPEG standard recommendation [53]. Since image blocks
with similar IR utility have the similar relationships from
QP to the IR quality and size, we observe that the group-
wise profiles provide an accurate approximation for the im-
age blocks belong to the same IR utility group.

After clustering the image blocks into the IR uility
groups {gj}Mj=1, the profiler constructs quality profiles
{f j

Quality}Mj=1 and size profiles {gjsize}Mj=1. For each group
gj , the profiler encodes image blocks with a QP value from
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Figure 3. AccelIR carries out IR-aware image compression in two phases. The framework builds the quality and size profiles in the offline
phase and use them to allocate QPs across blocks within an image in the online phase.

15 to 95 in units of 5 and measures the resulting size. The
average size per QP is used to construct a quality profile
f j
size, which is a piece-wise linear function between QP and

size. Next, the profiler runs a IR network on the encoded
image blocks and measures the resulting IR quality, which
is used to construct a quality profile f j

Quality as above.

2 Training QP-NET: QP-NET is a lightweight CNN that
consists of three convolution layers, an average pooling
layer, and a fully-connected layer. The CNN takes a raw
image and outputs probability distribution for IR utility
groups. QP-NET is trained via supervised learning where
image blocks {xi}Ni=1 in training dataset are labeled with
the corresponding IR utility groups {gi}Ni=1 provided by the
previous step. We use soft labels [18] instead of hard labels
to give less penalty when QP-NET chooses a group that has
a similar IR utility value to that of the optimal group. The
parameters of QP-NET are updated to minimize the cross-
entropy loss using the group prediction and the soft label.
Robustness. An IR network used for constructing the of-
fline profiles can be different from the IR network used for
inference. In such a case, AccelIR still provides a large ben-
efit in IR acceleration (44.6% on average) as shown in §5.3,
which demonstrates the robustness of the offline profiler.
We expect such robustness rise from the fundamental char-
acteristic of IR that IR commonly delivers a higher quality
improvement on restoring edgy components [20], as shown
in §5.4. Therefore, the relative importance among image
blocks in improving the overall IR quality is similar across
different IR tasks and networks.

4.2. Online QP Allocator

The QP allocator selects the optimal QPs across image
blocks within an image in two steps, as shown in Figure 3:
1 Retrieving profiles: When encoding a raw image, the
QP allocator partitions it into image blocks. This module
then runs QP-NET to find the best-fitted group (clustered
by the offline profiler) per image block, mapping from the
group to the quality and size profile.
2 Allocating QPs: The QP allocator uses the A-star algo-
rithm [24] to find a near-optimal solution because this prob-

lem does not satisfy the greedy property 1. The QP of all
image blocks is initialized as 15, the minimal value recom-
mended by JPEG [53]. The module then finds a block that
increases the reward the most and increases its QP value by
unit step ∆, where the reward is defined as follows:

Reward(x) = Utility(x,QP +∆)+λ×Utility(x,QPmax)

where x is an image block, QP and QPmax are the current
and maximum QP respectively, ∆ is the unit QP step which
is set to 5, and λ is the regulation factor which is empirically
set to 0.15. The reward function considers both the imme-
diate reward from increasing the QP by a single step (first
term) and the maximum achievable reward by increasing
the QP (second term). The QP allocator repeats this process
until the total expected size reaches the size constraint.

5. Evaluation
We evaluate AccelIR on three different IR tasks with

nine different IR networks. Overall, our evaluation results
show the following:

• AccelIR reduces the computing overhead of super-
resolution, de-noising, and de-blurring by 49%, 29%,
and 32% on average, respectively, while achieving the
same IR quality and image size.

• AccelIR is robust to unseen IR tasks, networks, and
datasets and preserve the original image quality even
when IR is not applied at the client side.

• AccelIR incurs a minimal computing overhead on im-
age compression and produces a bitstream whose size
is close to the given size constraint.

5.1. Experimental Setup

Codecs & IR networks & Datasets2. We use JPEG [53]
and WebP [68] to encode images, which are the most
widely-used standard image codecs. We use total nine
different IR networks: super-resolution [2, 16, 36, 37, 56],

1The quality and size profile are not guaranteed to be convex.
2Datasets [1, 21, 55] are available for academic research purpose only.
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0.9bpp (SR, DN), 0.6bpp (DB) 1.2bpp (SR, DN), 0.8bpp (DB) 1.8bpp (SR, DN), 1.1bpp (DB)Task Model Encoder PSNR / FLOPs PSNR / FLOPs PSNR / FLOPs
JPEG 24.44dB / 191G 24.88dB / 191G 25.41dB / 191GFSRCNN [16] AccelIR 24.44dB / 124G (-35%) 24.89dB / 124G (-35%) 25.41dB / 124G (-35%)
JPEG 24.72dB / 484G 25.17dB / 484G 25.77dB / 484GCARN [2] AccelIR 24.72dB / 279G (-42%) 25.17dB / 198G (-59%) 25.79dB / 279G (-42%)
JPEG 24.84dB / 1165G 25.28dB / 1165G 25.87dB / 1165GEDSR [37] AccelIR 24.86dB / 462G (-60%) 25.30dB / 298G (-74%) 25.89dB / 298G (-74%)
JPEG 24.75dB / 634G 25.23dB / 634G 25.84dB / 634GLatticeNet [56] AccelIR 24.75dB / 502G (-21%) 25.23dB / 431G (-32%) 25.84dB / 431G (-32%)
JPEG 24.91dB / 734G 25.40dB / 734G 26.02dB / 734G

Super-resolution

SwinIR [36] AccelIR 24.96dB / 270G (-63%) 25.44dB / 270G (-63%) 26.06dB / 270G (-63%)
JPEG 30.03dB / 6677G 30.50dB / 6677G 31.00dB / 6677GDnCNN [71] AccelIR 30.22dB / 5122G (-24%) 30.68dB / 5122G (-24%) 31.06dB / 5122G (-24%)
JPEG 30.03dB / 1701G 30.49dB / 1701G 30.98dB / 1701GDe-noising

FFDNet [73] AccelIR 30.24dB / 1132G (-34%) 30.70dB / 1132G (-34%) 31.08dB / 1132G (-34%)
JPEG 30.03dB / 2590G 30.57dB / 2590G 31.10dB / 2590GIRCNN [72] AccelIR 30.03dB / 1718G (-34%) 30.58dB / 1718G (-34%) 31.13dB / 1718G (-34%)
JPEG 30.47dB / 14077G 31.07dB / 14077G 31.67dB / 14077GDe-blurring

MIMO-UNet [12] AccelIR 30.48dB / 10786G (-24%) 31.07dB / 9305G (-34%) 31.68dB / 9305G (-34%)

Table 2. AccelIR greatly accelerates IR networks in a wide range of settings under the same IR quality and image size.
de-noising [71, 73], and de-blurring [12, 72]. For all IR
tasks, we use the DIV2K [1] dataset for training and the
DIV8K [21] dataset to test IR networks and QP-NET. For
super-resolution, we perform ×4 bicubic downsampling to
raw images. For de-noising, we add a Gaussian noise with
σ of 25 to raw images. For de-blurring, we apply a Gaussian
Blur filter with the standard deviation of 1.5 to raw images.

Training details. Images are randomly cropped into the
recommended patch size of each IR network and applied
three types of augmentation including rotating, flipping, and
encoding with a random QP value between 10 and 100. The
learning rate is initialized and adjusted as the recommended
setting of each network. For QP-NET, images are randomly
cropped into 32×32 image blocks with a step size of 28.
The learning rate is initialized as 10−3 and decreases by half
for every 200k iterations to minimize the cross-entropy loss.
The Adam [31] optimizer is used to train both networks.

Baselines. We compare AccelIR with baselines that ap-
ply the original IR networks to images encoded by standard
image codecs (e.g., JPEG, WebP). When applying image
codecs, we test both the default mode that applies uniform
QP and the variance adaptive quantization (VAQ) mode that
allocates a QP to an image block based on its variance; VAQ
is commonly supported in recent commercial image codecs
(e.g. BPG [19]) and video codecs (e.g., H.26x [22, 23],
VPx [5, 47], AV1 [8]). More details of our experimental
setup is explained in Supplementary Material.

5.2. AccelIR versus Existing IR Applications

Computation saving. Table 2 shows the comparison of the
computing overhead of IR networks in floating-point opera-
tions per second (FLOPs) and the IR quality of compressed
images in PSNR. We adjust the model capacity by changing
the number of channels to ensure that the resulting quality

Task Encoder
0.5bpp

PSNR / FLOPs
Super-resolution WebP (VAQ) 24.14dB / 1165G

[37] AccelIR 24.15dB / 462G (-60%)
De-noising WebP (VAQ) 29.21dB / 1701G

[73] AccelIR 29.30dB / 1132G (-34%)
De-blurring WebP (VAQ) 29.41dB / 2590G

[72] AccelIR 29.42dB / 1718G (-34%)

Table 3. AccelIR’s computation saving for the WebP image codec
(Compression rate: 0.5bpp)

is consistent across all methods.3 As shown in the table,
AccelIR consistently delivers a large gain in IR computa-
tion saving while maintaining the same IR quality and im-
age size compared to the baseline. In particular, AccelIR
reduces the cost of super-resolution, de-noising, and de-
blurring by 35%-74% (49% on average), 24%-34% (29%),
and 24%-34% (32%), respectively. Table 3 presents the
computing saving of AccelIR with the WebP codec, which
internally runs VAQ (§2). The result shows that AccelIR
achieves the same IR quality and image size with 34-60%
less computation.
Compression gain. The main use of AccelIR is to acceler-
ate IR networks, but it can also improve compression effi-
ciency under the same model capacity, reducing storage or
networking costs. AccelIR can improve BD-PSNR [6] by
7.3%, as shown in the Supplementary Material.
Latency & power reduction. We measure the latency and
power consumption of an IR network to demonstrate the
benefits of AccelIR. We run EDSR [37] on the desktop-
class CPU (Intel i9-9900k), desktop-class GPU (NVIDIA
GTX 2080ti) and the embedded GPU (NVIDIA Jetson
AGX Xavier). Figure 4 illustrates that AccelIR reduces
the inference latency by 61% and 66% on the desktop-class

3Note that using advanced model compression methods would increase
the benefit of AccelIR because it allows AccelIR to further compress a
model while maintaining the quality.
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De-noising De-blurring
AccelIR
(unseen)

30.70dB /
5875G (-12%)

30.59dB /
2230G (-14%)

AccelIR 30.68dB /
5122G (-24%)

30.58dB /
1718G (-34%)

(a) Unseen IR tasks
(IR network: EDSR, Dataset: DIV8K)

CARN SwinIR
AccelIR
(unseen)

25.20dB /
240G (-50%)

25.37dB /
286G (-61%)

AccelIR 25.20dB /
198G (-59%)

25.37dB /
184G (-75%)

(b) Unseen IR networks
(Task: SR, Dataset: DIV8K)

Flickr2K FFHQ
AccelIR
(unseen)

24.51dB /
170G (-60%)

31.70dB /
29G (-71%)

AccelIR 24.51dB /
157G (-63%)

31.69dB /
26G (-74%)

(c) Unseen type of datasets
(Task: SR, IR network: EDSR)

Table 4. AccelIR still delivers a large benefit even when IR tasks, networks, and datasets (used for the test) are not shown in the training
phase. The top and bottom entries show the performance when this information is known and unknown, respectively.
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(c) VAQ QP allocation heatmap (d) AccelIR QP allocation heatmap
Figure 7. Heatmap of IR utilities and allocated QPs for image
blocks with different quantization methods
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Figure 8. Qualitative comparison of AccelIR with different QP
allocation methods

CPU and GPU, respectively. Figure 5 shows that AccelIR
reduces the power consumption by 22% and 33% on the
desktop-class and embedded GPUs, respectively.
Encoding overhead. AccelIR introduces an additional
overhead on image encoding for running QP-NET and al-
locating QP values. To demonstrate this, we run JPEG [49]
to encode {360, 540, 1080}p images using the NVIDIA
2080Ti GPU. Figure 6 compares the encoding latency be-
tween JPEG and AccelIR. AccelIR increases the encoding
latency by 39% on average. Note that IR networks are much
more expensive and carried out multiple times at different
clients (= O(|clients|)) in contrast to encoding which is done
once at the source side (= O(1)). Therefore, we strongly
believe that AccelIR ’s benefit in IR computation saving is
significantly larger than its overhead in encoding.

5.3. Robustness of AccelIR

AccelIR constructs the quality/size profiles and QP-NET
during the offline phase, which we call offline information.
Table 4 demonstrates the robustness of offline information
to unseen IR tasks, networks, and datasets. In particular,

Table 4a, 4b, and 4c illustrates the computing saving of Ac-
celIR when the offline information is generated with a dif-
ferent IR task, network, and dataset, respectively.

There are three key takeaways. First, as shown in Ta-
ble 4a, even when the offline information is prepared with
super-resolution, AccelIR accelerates de-noising and de-
blurring by 12% and 14%, respectively. Second, despite
the offline information is built with EDSR, AccelIR re-
duces the computing overhead of CARN and SwinIR by
50% and 61%, respectively (refer to Table 4b). Third, Ta-
ble 4c shows, although AccelIR is trained with the DIV2K
dataset, it delivers a large benefit for the Flickr2K and Re-
alSR datasets in terms of computation saving.

5.4. AccelIR In-depth Analysis

QP allocation case study. AccelIR allocates QPs across
blocks within an image to maximize the IR quality. Fig-
ure 7(a) shows the sample image in our dataset [21]. Fig-
ure 7(b) shows the tendency of the IR utility, where simple
image blocks such as sea and sky have a lower IR utility
while edgy image blocks such as rock have a higher IR util-
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ity. Above IR utility distribution results from the character-
istic of IR where IR delivers a higher quality improvement
on restoring edgy components [20].

Figure 7(c) shows the QP values selected by VAQ in
the standard codec [53], which allocates more bits for im-
age blocks with a less variance [3, 30]. On the other hand,
Figure 7(d) shows that AccelIR’s QP allocation follows the
general tendency of IR utility and is able to maximize the to-
tal IR quality gain. Next, Figure 8 shows the sample images
that are encoded with 0.74 bpp and passed through EDSR.
We can see that AccelIR achieves the same IR quality while
utilizing 81.8% less computation compared to the JPEG.
Bitstream size accuracy. AccelIR produces a bitstream
whose size is similar to the given constraint. To illustrate
this, we encode images in our dataset with various compres-
sion rates from 0.45 bpp to 4.5 bpp and measure error rate,
which is the difference between the given size constraint
and the output size. The result indicates that the error is
marginal: 2.7% at median and 9.7% at 95%-tile.
Image quality after compression. Preserving the original
compressed image quality (before being enhanced by IR)
is also important, since clients might skip IR networks due
to the computing limitation in local devices. In such case,
the IR-aware compression of AccelIR maintains the orig-
inal image quality. To demonstrate this, we compare the
original image quality before applying IR networks. The
absolute PSNR difference between AccelIR and the default
JPEG ranges from 0.02 dB to 0.08 dB.
Quality impact of adaptive quantization. Since AccelIR
adjusts a QP in a block level within an image, AccelIR
possibly generates block artifact, which is the discontinu-
ity in the border of image blocks. However, this is not
problematic for two reasons. First, existing image/video
codecs [5, 19, 23, 47, 68] also run adaptive quantization by
default, effectively removing the block artifact using de-
blocking filters [39, 48]. Second, we empirically confirm
that block artifact of AccelIR is perceptually invisible in
several images from the DIV2K dataset [1]. For example,
Figure 7 compares the sample image encoded by AccelIR
and JPEG. While the blocks are encoded with different QPs
in AccelIR, there is no noticeable artifact on the border.

6. Discussion
Difference from non-IR task-aware compression. Sev-
eral studies [17,50] develop task-aware image compression
for non-IR tasks (e.g., classification, segmentation). How-
ever, this line of work is inapplicable to IR tasks for two
reasons. First, the relative importance of blocks within an
image is fundamentally different between IR and non-IR
tasks. In non-IR tasks, the regions where target objects
are included is important, but in IR tasks, edgy compo-
nents should be considered primarily rather than seman-
tic objects. Second, in IR tasks, the relative importance

40 70

5070

AccelIR’s QP Allocation AccelIR JPEG (Uniform QP=60)

Figure 9. Block artifact comparison between AccelIR and JPEG
of blocks greatly varies according to QP, which critically
affects the amount of edgy components across the image
blocks. In contrast, in non-IR tasks, the favorable region is
fixed, which is determined by target objects (e.g., cars).
Dynamic block partitioning. AccelIR currently supports
static block partitioning in which each block has the same
size (32×32). However, such partitioning could be sub-
optimal for IR-aware image compression. This is because
AccelIR allocates the same QP to the sub-blocks within an
image block even when these sub-blocks have a different
level of sensitivity to a QP value. We expect this problem
can be resolved by introducing fine-grained dynamic parti-
tioning that jointly adjusts the size and QP of image blocks
within an image. As future work, we plan to implement this
on recent video codecs [8, 23, 47], which support dynamic
partition, and validate the benefit of AccelIR on video.

7. Conclusion
We present AccelIR, an IR-aware compression frame-

work considering the end-to-end pipeline of IR tasks. De-
spite the extensive studies on enhancing and accelerating IR
networks, these works do not focus on potential optimiza-
tion room at image compression. Our main objective is to
present an image compression algorithm that considers the
affects of the IR operation. AccelIR utilizes a lightweight
CNN and IR utility profiles to make fine-grained block-level
QP allocation decision that maximizes the IR quality while
satisfying the size constraint. We show the effectiveness
of our approach by greatly saving IR computation while
achieving the same IR quality compared to existing IR ap-
plications with standard image codecs. We also emphasize
that AccelIR is robust to unseen IR tasks and networks and
thus it can be easily applied in various IR applications.
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