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Figure 1. Given a single RGB image of an object (first column), we synthesize plausible images of hand-object interactions from which
feasible 3D hand poses can be directly extracted (remaining columns).

Abstract
Recent successes in image synthesis are powered by

large-scale diffusion models. However, most methods are
currently limited to either text- or image-conditioned gen-
eration for synthesizing an entire image, texture transfer or
inserting objects into a user-specified region. In contrast,
in this work we focus on synthesizing complex interactions
(i.e., an articulated hand) with a given object. Given an
RGB image of an object, we aim to hallucinate plausible
images of a human hand interacting with it. We propose a
two-step generative approach: a LayoutNet that samples an
articulation-agnostic hand-object-interaction layout, and a
ContentNet that synthesizes images of a hand grasping the
object given the predicted layout. Both are built on top of
a large-scale pretrained diffusion model to make use of its
latent representation. Compared to baselines, the proposed
method is shown to generalize better to novel objects and
perform surprisingly well on out-of-distribution in-the-wild
scenes of portable-sized objects. The resulting system al-
lows us to predict descriptive affordance information, such
as hand articulation and approaching orientation.

*Yufei was an intern at NVIDIA during the project.

1. Introduction

Consider the bottles, bowls and cups shown in the left
column of Figure 1. How might a human hand interact
with such objects? Not only is it easy to imagine, from
a single image, the types of interactions that might occur
(e.g., ‘grab/hold’), and the interaction locations that might
happen (e.g. ‘handle/body’), but it is also quite natural to
hallucinate—in vivid detail— several ways in which a hand
might contact and use the objects. This ability to predict
and hallucinate hand-object-interactions (HOI) is critical to
functional understanding of a scene, as well as to visual im-
itation and manipulation.

Can current computer vision algorithms do the same? On
the one hand, there has been a lot of progress in image gen-
eration, such as synthesizing realistic high-resolution im-
ages spanning a wide range of object categories [43, 73]
from human faces to ImageNet classes. Newer diffusion
models such as Dall-E 2 [65] and Stable Diffusion [66] can
generate remarkably novel images in diverse styles. In fact,
highly-realistic HOI images can be synthesized from simple
text inputs such as “a hand holding a cup” [65, 66].

On the other hand, however, such models fail when con-
ditioned on an image of a particular object instance. Given
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an image of an object, it remains an extremely challeng-
ing problem to generate realistic human object interaction.
Solving this problem requires (at least implicitly) an under-
standing of physical constraints such as collision and force
stability, as well as modeling the semantics and functional-
ity of objects — the underlying affordances [19]. For ex-
ample, the hand should prefer to grab the kettle handle but
avoid grabbing the knife blade. Furthermore, in order to
produce visually plausible results, it also requires modeling
occlusions between hands and objects, their scale, lighting,
texture, etc.

In this work, we propose a method for interaction syn-
thesis that addresses these issues using diffusion models. In
contrast to a generic image-conditioned diffusion model, we
build upon the classic idea of disentangling where to inter-
act (layout) from how to interact (content) [25,30]. Our key
insight is that diverse interactions largely arise from hand-
object layout, whereas hand articulations are driven by lo-
cal object geometry. For example, a mug can be grasped
by either its handle or body, but once the grasping location
is determined, the placement of the fingers depends on the
object’s local surface and the articulation will exhibit only
subtle differences. We operationalize this idea by proposing
a two-step stochastic procedure: 1) a LayoutNet that gener-
ates 2D spatial arrangements of hands and objects, and 2)
a ContentNet that is conditioned on the query object im-
age and the sampled HOI layout to synthesize the images
of hand-object interactions. These two modules are both
implemented as image-conditioned diffusion models.

We evaluate our method on HOI4D and EPIC-
KITCHEN [11, 48]. Our method outperforms generic im-
age generation baselines, and the extracted hand poses from
our HOI synthesis are favored in user studies against base-
lines that are trained to directly predict hand poses. We
also demonstrate surprisingly robust generalization ability
across datasets, and we show that our model can quickly
adapt to new hand-object-interactions with only a few ex-
amples. Lastly, we show that our proposed method enables
editing and guided generation from partially specified lay-
out parameters. This allows us to reuse heatmap prediction
from prior work [13, 56] and to generate consistent hand
sizes for different objects in one scene.

Our main contributions are summarized below: 1) we
propose a two-step method to synthesize hand-object in-
teractions from an object image, which allows affordance
information extracted from it; 2) we use inpainting tech-
inuqes to supervise the model with paired real-world HOI
and object-only images and propose a novel data augmenta-
tion method to alleviate overfit to artifacts; and 3) we show
that our approach generates realistic HOI images along with
plausible 3D poses and generalizes surprisingly well on out-
of-distribution scenes. 4) We also highlight several applica-
tions that would benefit from such a method.

2. Related Work
Understanding Hand-Object-Interaction. In order to
understand hand-object-interaction, efforts have been made
to locate the active objects and hands in contact in 2D space,
via either bounding boxes detection [4,53,75] or segmenta-
tion [15, 76]. Many works reconstruct the underlying shape
of hands and objects from RGB(D) images or videos by ei-
ther template-based [6,18,26,82,84] or template-free meth-
ods [9, 28, 38, 90]. Furthermore, temporal understanding of
HOI videos [20,27,62,63,81] aims to locate the key frames
of state changes and time of contact. In our work, we use
these techniques to extract frames of interests for data col-
lection and to analyze the synthesis results. While these
works recognize what is going on with the underlying hands
and objects, our task is to hallucinate what hands could pos-
sibly do with a given object.
Visual Affordance from Images. Affordance is defined
as functions that environments could offer [19]. Although
the idea of functional understanding is core to visual un-
derstanding, it is not obvious what is the proper represen-
tation for object affordances. Some approaches directly
map images to categories, like holdable, pushable, liftable,
etc. [7, 30, 44, 57]. Some other approaches ground these ac-
tion labels to images by predicting heatmaps that indicate
interaction possibilities [13,34,47,56,59]. While heatmaps
only specify where to interact without telling what to do,
recent approaches predict richer properties such as contact
distance [38], action trajectory [47,54], grasping categories
[22, 49], etc. Instead of predicting more sophisticated in-
teraction states, we explore directly synthesizing HOI im-
ages for possible interactions because images demonstrate
both where and how to interact comprehensively and in a
straightforward manner.
3D Affordance. While 3D prediction from images is com-
mon for human-scene interaction [16,23,25,45,93,94], 3D
affordance for hand and object typically takes in known ob-
ject 3D shapes and predicts stable grasps [24, 37, 52, 60].
In contrast, our work predicts coarse 3D grasps from RGB
images of general objects. The coarse but generalizable 3D
hand pose prediction is shown as useful human prior for
dexterous manipulation [2, 12, 41, 49, 64, 88]. While some
recent works [10, 38] generate 3D hand poses from images
by direct regression, we instead first synthesize HOI images
from which 3D hand poses are reconstructed afterwards.
Diffusion Models and Image Editing. Diffusion mod-
els [32, 79] have driven significant advances in various do-
mains [42, 83, 89, 91, 95], including image synthesis [3, 65,
66, 72]. A key advantage of diffusion models over other
families of generative models [21,40] is their ability to eas-
ily adapt to image editing and re-synthesis tasks without
much training [17, 39, 70]. While recent image-conditioned
generative models achieve impressive results on various
image translation tasks such as image editing [5, 35, 50],
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Figure 2. The proposed method consists of two image-conditioned diffusion models: LayoutNet and ContentNet. Given an object image,
we first use LayoutNet (left) to predict a HOI spatial arrangement l0. For every diffusion step, the LayoutNet splats the noisy layout
parameter into image space, concatenates it with the object image and their blending, and predicts the denoised layout. We apply the
diffusion loss in the splatted 2D space Lmask. Then the ContentNet (right) takes in the predicted layout along with the object image to
synthesize an HOI image. The two modules are connected by the articulation-agnostic hand proxy (middle top).

style transfer [46, 61], the edits mostly modify textures and
style, but preserve structures, or insert new content to user-
specified regions [1, 65, 71]. In contrast, we focus on affor-
dance synthesis where both layout (structure) and appear-
ance are automatically reasoned about.

3. Method

Given an image of an object, we aim to synthesize im-
ages depicting plausible ways of a human hand interacting
with it. Our key insight is that this multi-modal process fol-
lows a coarse-to-fine procedure. For example, a mug can
either be held by its handle or body, but once decided, the
hand articulation is largely driven by the local geometry of
the mug. We operationalize this idea by proposing a two-
step stochastic approach as shown in Fig 2.

Given an object image, we first use a LayoutNet to pre-
dict plausible spatial arrangement of the object and the hand
(Sec 3.2). The LayoutNet predicts hand proxy that abstracts
away appearance and explicitly specifies 2D location, size
and approaching direction of a grasp. This abstraction al-
lows global reasoning of hand-object relations and also en-
ables users to specify the interactions. Then, given the pre-
dicted hand proxy and the object image, we synthesize a
plausible appearance of an HOI via a ContentNet (Sec 3.3).
This allows the network to implicitly reason about 3D wrist
orientation, finger placement, and occlusion based on the
object’s local shape. We use conditional diffusion models
for both networks to achieve high-quality layout and visual
content. The synthesized HOI image is realistic such that a
feasible 3D hand pose can be directly extracted from it by
an off-the-shelf hand pose reconstruction model (Sec 4.2).

To supervise the system, we need pixel-aligned pairs of
HOI images and object-only images that depict the exact
same objects from the exact same viewpoints with the ex-

act same lighting. We obtain such pairs by inpainting tech-
niques that remove humans from HOI images. We further
propose a novel data augmentation to prevent the trained
model from overfitting to the inpainting artifacts (Sec 3.4).

3.1. Preliminary: Diffusion models

Diffusion models are probabilistic models [32, 78] that
learn to generate samples from a data distribution p(x) by
sequentially transforming samples from a tractable distri-
bution p(xT ) (e.g., Gaussian distribution). There are two
processes in diffusion models: 1) a forward noise process
q(xt|xt−1) that gradually adds a small amount of noise
and degrades clean data samples towards the prior Gaus-
sian distribution; 2) a learnable backward denoising pro-
cess p(xt−1|xt) that is trained to remove the added noise.
The backward process is implemented as a neural network.
During inference, a noise vector xT is sampled from the
Gaussian prior and is sequentially denoised by the learned
backward model [79,80]. The training of a diffusion model
can be treated as training a denoising autoencoder for L2
loss [86] at various noise levels, i.e., denoise x0 for different
xt given t. We adopt the widely used loss term in Denoising
Diffusion Probabilistic Models (DDPM) [32,79], which re-
constructs the added noise that corrupted the input samples.
Specifically, we use the notation LDDPM[x; c] to denote a
DDPM loss term that performs diffusion over x but is also
conditioned on c (that are not diffused or denoised):

LDDPM[x; c] = E(x,c),ϵ∼N (0,I),t∥x−Dθ(xt, t, c)∥22, (1)

where xt is a linear combination of the data x and noise ϵ,
and Dθ is a denoiser model that takes in the noisy data xt,
time t and condition c. This also covers the unconditional
case as we can simply set c as some null token like ∅ [33].
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3.2. LayoutNet: predicting where to grasp

Given an object image Iobj , the LayoutNet aims to gen-
erate a plausible HOI layout l from the learned distribution
p(l|Iobj). We follow the diffusion model regime that se-
quentially denoises a noisy layout parameter to output the
final layout. For every denoising step, the LayoutNet takes
in the (noisy) layout parameter along with the object im-
age and denoises it sequentially, i.e. lt−1 ∼ ϕ(lt−1|lt, Iobj).
We splat the layout parameter onto the image space to bet-
ter reason about 2D spatial relationships to the object image
and we further introduce an auxiliary loss term to train dif-
fusion models in the layout parameter space.
Layout parameterization. Hands in HOI images typi-
cally appear as hands (from wrist to fingers) with forearms.
Based on this observation, we introduce an articulation-
agnostic hand proxy that only preserves this basic hand
structure. As shown in Fig 2, the layout parameter consists
of hand palm size a2, location x, y and approaching direc-
tion arctan(b1, b2), i.e. l := (a, x, y, b1, b2). The ratio of
hand palm size and forearm width s̄ remains a constant that
is set to the mean value over the training set. We obtain the
ground truth parameters from hand detection (for location
and size) and hand/forearm segmentation (for orientation).
Predicting Layout. The diffusion-based LayoutNet takes
in a noisy 5-parameter vector lt with the object image and
outputs the denoised layout vector lt−1 (we define l0 = l).
To better reason about the spatial relation between hand and
object, we splat the layout parameter into the image space
M(lt). The splatted layout mask is then concatenated with
the object image and is passed to the diffusion-based Lay-
outNet. We splat the layout parameter to 2D by the spatial
transformer network [36] that transforms a canonical mask
template by a similarity transformation.
DDPM loss for layout. One could directly train the Lay-
outNet with the DDPM loss (Eq. 1) in the layout parameter
space: Lpara := LDDPM[l; Iobj ]. However, when diffusing
in such a space, multiple parameters can induce an identical
layout, such as a size parameter with opposite signs or ap-
proaching directions that are scaled by a constant. DDPM
loss in the parameter space would penalize predictions even
if they guide the parameter to a equivalent one that induce
the same layout masks as the ground truth. As the down-
stream ContentNet only takes in the splatted masks and not
their parameters, we propose to directly apply the DDPM
loss in the splatted image space (see appendix for details):

Lmask = E(l0,Iobj),ϵ∼N (0,I),t∥M(l0)−M(l̂0)∥22. (2)

where l̂0 := Dθ(lt, t, I
obj) is the output of our trained de-

noiser that takes in the current noisy layout lt, the time t
and the object image Iobj for conditioning.

In practice, we apply losses in both the parameter space
and image spaces Lmask+λLpara because when the layout

parameters are very noisy in the early diffusion steps, the
splatted loss in 2D alone is a too-weak training signal.
Network architecture. We implement the backbone net-
work as a UNet with cross-attention layers and initialize it
from the pretrained diffusion model [58]. The model takes
in images with seven channels as shown in Fig 2: 3 for the
object image, 1 for the splatted layout mask and another 3
that blends the layout mask with object image. The noisy
layout parameter attends spatially to the feature grid from
the UNet’s bottleneck and spit out the denoised output.
Guided layout generation. The LayoutNet is trained to
be conditioned on an object image only but the generation
can be guided with additional conditions at test time with-
out retraining. For example, we can condition the network
to generate layouts such that their locations are at certain
places i.e. l ∼ p(l0|Iobj , x = x0, y = y0). We use tech-
niques [80] in diffusion models that hijack the conditions
after each diffusion steps with corresponding noise levels.
This guided diffusion enables user editing and HOI synthe-
sis for scenes with a consistent hand scale (Sec. 4.3). Please
refer to the appendix for LayoutNet implementation details.

3.3. ContentNet: predicting how to grasp

Given the sampled layout l and the object image Iobj ,
the ContentNet synthesizes a HOI image Ihoi. While the
synthesized HOI images should respect the provided lay-
out, the generation is still stochastic because hand appear-
ance may vary in shape, finger articulation, skin colors, etc.
We leverage the recent success of diffusion models in im-
age synthesis and formulate the articulation network as a
image-conditioned diffusion model. As shown in Fig 2, at
each step of diffusion, the network takes in channel-wise
concatenation of the noisy HOI image, the object image and
the splatted mask from the layout parameter and outputs the
denoised HOI images Dϕ(I

hoi
t , t, [Iobj ,M(l)]).

We implement the image-conditioned diffusion model in
the latent space [67,77,85] and finetune it from the inpaint-
ing model that is pre-trained on large-scale data. The pre-
training is beneficial as the model has learned the prior of
retaining the pixels in unmask region and hallucinate to fill
the masked region. During finetuning, the model further
learns to respect the predicted layout, i.e., retaining the ob-
ject appearance if not occluded by hand and synthesizing
hand and forearm appearance depicting finger articulation,
wrist orientation, etc.

3.4. Constructing Paired Training Data

To train such a system, we need pairs of object-only im-
ages and HOI image. These pairs need to be pixel-aligned
except for the hand regions. One possible way is to use
synthetic data [10, 28] and render their 3D HOI scene with
and without hands. But this introduces domain gap between
simulation and the real-world thus hurts generalization. We

22482



(a) HOI Image (b) Hand Mask

(c) Inpainted
Object Image

(d) SDEdited
Object Image

(e)

(f)

(g)

Figure 3. Paired Data Generation: Given an HOI image, we first
segment out hand (b) and remove it by inpainting (c). Then we
use SDEdit [51] to reduce inpainting artifact (d). As inpainting in-
troduce discrepancy between mask and unmasked region (f) while
SDEdit undesirably modifies the unmasked object region, we mix
up both object image sets in training.

instead follow a different approach.
As shown in Fig 3, we first extract object-centric HOI

crops from egocentric videos with 80% square padding.
Then we segment the hand regions to be removed and pass
them to the inpainting system [58] to hallucinate the objects
behind hands. The inpainter is trained on millions of data
with people filtered out therefore it is suitable for our task.
Data Augmentation. Although the inpainting generates
impressive object-only images, it still introduces editing ar-
tifacts, which the networks can easily overfit to [92], such as
sharp boundary and blurriness in masked regions. We use
SDEdit [50] to reduce the discrepancy between the masked
and unmasked regions. SDEdit first adds a small amount
of noise (we use 5% of the whole diffusion process) to the
given image and then denoises it to optimize overall image
realism. However, although the discrepancy within images
reduces, the unmasked object region is undesirably modi-
fied and the overall SDEdited images appear blurrier. In
practice, we mix up the object-only images with and with-
out SDEdit for training.

We collect all data pairs from HOI4D [48]. After some
automatic sanity filtering (such as ensuring hands are re-
moved), we generate 364k pairs of object-only images and
HOI-images in total. We call the dataset HO3Pairs (Hand-
Object interaction and Object-Only Pairs). We provide de-
tails and more examples of the dataset in the appendix.

4. Experiments

We train our model on the contructed HO3Pairs dataset,
evaluate it on the HOI4D [48] dataset and show zero-shot
generalization to the EPIC-KITCHEN [11] dataset. We
evaluate both the generated HOI images and the extracted
3D poses. For image synthesis, we compare with condi-

tional image synthesis baselines and show that our method
generates more plausible hands in interaction. Beyond 2D
HOI image synthesis, we compare the extracted 3D poses
with prior works that directly predict 3D hand poses. Fur-
thermore, we show several applications enabled by the pro-
posed HOI synthesis method, including few-shot adapta-
tion, image editing by layout, heatmap-guided prediction
and integrating object affordance with the scene.
Datasets Instead of testing with inpainted object images,
we evaluate our model on the real object-only images
cropped from the frames without hands. The goal is to pre-
vent models from cheating by overfitting to the inpainting
artifacts, as justified in the ablations below.

The HOI4D dataset is an egocentric video dataset record-
ing humans in a lab environment interacting with various
objects such as kettles, bottles, laptops, etc. The dataset pro-
vides manual annotations of hand and object masks, action
labels, object categories, instance ID, and ground truth 3D
hand poses. We train and evaluate on 10 categories where
full annotations are released. For each category, we hold
out 5 object instances for evaluation. In total, we collect
126 testing images.

The EPIC-KITCHEN dataset displays more diverse and
cluttered scenes. We construct our test set by randomly
selecting 10 frames from each video clip. We detect and
crop out objects without hands [87]. In total, we collect 500
object-only images for testing.

4.1. Evaluating Image Synthesis

Evaluation Metrics. We evaluate HOI generation using
three metrics. First, we report the FID score [31,74], which
is widely used for image synthesis that measures the dis-
tance between two image sets. We generate 10 samples for
every input and calculate FID with 1000 HOI images ex-
tracted from the test sets. We further evaluate the physical
feasibility of the generated hands by the contact recall met-
ric — it computes the ratio of the generated hands that are in
the “in-contact” state by an off-the-shelf hand detector [75].
We also carry out user studies to evaluate their perceptual
plausibility. Specifically, we present two images from two
randomly selected methods to users and ask them to select
the more plausible one. We collect 200 (for HOI4D) and
240 (for EPIC-KITCHEN) answers and report the likeli-
hood of the methods being chosen.
Baselines. We compare our method with three strong
image-conditional synthesis baselines. 1) Latent Diffusion
Model (LDM) [67] is one of the state-of-the-art generic im-
age generation models that is pre-trained with large-scale
image data. We condition the model on the object image
and finetune it on HO3Pair dataset. This baseline jointly
generates both layout and appearance with one network. 2)
Pix2Pix [35] is commonly used for pose-conditioned hu-
man/hand synthesis [8, 55]. We modify the model to condi-

22483



LDM Pix2Pix VAE OursInput LDM Pix2Pix VAE OursInput

Figure 4. Visualizing HOI synthesis from our method and three baselines [35,40,67] on HOI4D (left) and EPIC-KITCHEN dataset (right).
Table 1. Quantitative results for HOI synthesis using contact recall, FID score, and a user study on the HOI4D and EPIC-KITCHEN
datasets. We compare our method with prior works [35, 40, 67].

HOI4D dataset EPIC-KITCHEN dataset

Method Contact Recall(%) FID User Contact FID User
Kettle Knife TrashCan Chair Mug Bowl ToyCar Laptop Bottle mean Study Recall Study

LDM [67] 82.67 72.28 83.33 82.08 66.67 78.10 88.00 62.00 87.22 64.44 105.26 27.5 76.56 118.15 23.3
Pix2Pix [35] 79.50 70.26 82.50 76.88 68.50 79.64 89.00 63.00 85.42 73.02 107.09 15.5 70.00 125.62 13.3
VAE-ContentNet [40] 91.00 78.95 91.50 85.63 73.00 90.00 94.00 69.00 90.00 83.49 98.19 23.0 82.03 115.86 27.9
Ours 91.00 84.21 97.00 88.75 60.00 92.86 96.00 72.00 91.67 87.14 99.00 34.0 86.56 117.22 35.4

tion on the generated layout masks that are predicted from
our LayoutNet. 3) VAE [40] is a widely applied generative
model in recent affordance literature [16,45,93]. This base-
line uses a VAE with ResNet [29] as backbone to predict a
layout parameter. The layout is then passed to our Content-
Net to generate images.

Results. We visualize the generated HOI images in Fig 4.
Pix2Pix typically lacks detailed finger articulation. While
LDM and VAE generate more realistic hand articulations
than Pix2Pix, the generated hands sometimes do not make
contact with the objects. The hand appearance near the con-
tact region is less realistic. In some cases, LDM does not
add hands at all to the given object images. In contrast, our
model can generate hands with more plausible articulation
and the synthesized contact regions are more realistic. This
is consistent with the quantitative results in Tab 1. While
we perform comparably to the baselines in terms of the FID
score, we achieve the best in terms of contact recall. The
user study shows that our results are favored the most. This
may indicate that humans perceive interaction quality as a
more important factor than general image synthesis quality.

Generalizing to EPIC-KITCHEN. Although our model
is trained only on the HOI4D dataset with limited scenes
and relatively clean backgrounds, our model can generalize
to the EPIC-KITCHEN dataset without any finetuning. In
Fig 4, the model also generalizes to interact with unseen cat-
egories such as scissors and cabinet handles. Tab 1 reports
similar trends: performing best in contact recall, compara-

Table 2. Analysis of data augmentation: contact recall (CR%)
and FID score on the real and the inpainted object image set of
HOI4D and comparisons of ours with the ablations of excluding
aggressive common data augmentation (CmnAug) or SDEdit [51].

Real Obj Img Inpainted Img

CmnAug SDEdit CR FID CR FID

39.37 113.93 89.05 89.38
✓ 79.52 99.12 93.81 89.01
✓ ✓ 87.14 99.00 94.29 88.50

bly well in image synthesis and is favored the most by users.
Ablation: Data Augmentation. Tab 2 shows the ben-
efits of data augmentation to prevent overfitting. Without
any data augmentation, the model performs well on the in-
painted object images but catastrophically fails on the real
ones. When we add aggressive common data augmentations
like Gaussian blur and Gaussian noise, the performance im-
proves. Training on SDEdited images further boosts the
performance. The results also justify the use of real object
images as test set since evaluating on the inpainted object
images may not reflect the real performance.
Ablation: LayoutNet Design. We analyze the benefits
from our LayoutNet design by reporting contact recall. The
LayoutNet predicts more physically feasible hands by tak-
ing in the splatted layout masks instead of the 5-parameter
layout vector (87.14% vs 78.10%). Moreover, the contact
recall drops to 83.96% when the diffusion loss in Sec 3.2 is
removed, verifying its contribution to the LayoutNet.
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Input GANHand Pose Diffusion Ours Input GANHand Pose Diffusion Ours

Figure 5. Visualizing 3D affordance prediction from our method, GANHand [10] and diffusion model [67] that directly predicts 3D pose
on HOI4D (left) and EPIC-KITCHEN dataset (right).

Table 3. User study for 3D affordance prediction on HOI4D and
EPIC-KITCHEN dataset. We compare our method with GAN-
Hand [10] and a diffusion model that directly predicts 3D poses.

Method HOI4D EPIC

GANHand [10] 23.8 23.53
3D Pose Diffusion 27.9 34.1
Ours 48.2 42.4

4.2. Evaluating Extracted 3D Hand Poses

Thanks to the realism of the generated HOI images, 3D
hand poses can be directly extracted from them by an off-
the-shelf hand pose estimator [69]. We conduct a user study
to compare the 3D poses extracted from our HOI images
against methods that directly predict 3D pose from object
images. We present the rendered hand meshes overlaid on
the object images to users and are asked to select the more
plausible one. In total, we collected 400 and 380 answers
from users for HOI4D and EPIC-KITCHEN, respectively.
Baselines. While most 3D hand pose generation works re-
quire 3D object meshes as inputs, a recent work by Corona
et al. (GANHand) [10] can hallucinate hand poses from an
object image. Specifically, they first map the object image
to a grasp type [14] with the predefined coarse pose and
then regress a refinement on top. We finetune their released
model on the HO3Pairs datasets with the ground truth 3D
hand poses. We additionally implement a diffusion model
baseline that sequentially diffuses 3D hand poses. The ar-
chitecture is mostly the same as the LayoutNet but the dif-
fused parameter is increased to 51 (48 for hand poses and 3
for scale and location) and the splatting function is replaced
by the MANO [68] layer that renders hand poses to image.
See the appendix for implementation details.

Table 4. Few-shot Adaption: Quantitative results using contact
recall when finetuning the proposed HOI synthesis model and a
pretrained inpainting model with 32 samples from new categories.

bucket scissors stapler mean

w HOI pretrain 92.0 95.0 70.0 85.7
w/o HOI pretrain 90.0 68.8 34.0 64.3

Results. As shown in Fig 5, GANHand [10] predicts
reasonable hand poses for some objects but fails when the
grasp type is not correctly classified. The hand pose diffu-
sion model sometimes generates infeasible hand poses like
acute joint angles. Our model is able to generate hand poses
that are compatible with the objects. Furthermore, while
previous methods typically assume right hands only, our
model can automatically generate both left and right hands
by implicitly learning the correlation between approaching
direction and hand sides. The qualitative performance is
also supported by the user study in Tab 3.

4.3. Application

We showcase several applications that are enabled by the
proposed method for hand-object-image synthesis.
Few-shot Adaptation. In Tab 4, we show that our model
can be quickly adapted to a new HOI category with as few as
32 training samples. We initialize both LayoutNet and Con-
tentNet from our HOI4D-pretrained checkpoints and com-
pare it with the baseline model that was pre-trained for in-
painting on a large-scale image dataset [67]. We finetune
both models on 32 samples from three novel categories in
HOI4D and test with novel instances. The baseline model
adapts quickly on some classes, justifying our reasons to
finetune our model from them—generic large-scale image
pretraining indeed already learns good priors of HOI. Fur-
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Figure 6. Layout Editing: Visualizing HOI synthesis when the
conditioned layouts gradually change location and orientation.

Heatmap Sampled Location Layout HOI Image Extracted Pose

Figure 7. Heatmap-guided synthesis: Given a heatmap, Lay-
outNet is guided to generate layout at the sampled location, from
which HOI images are synthesized and 3D poses are extracted.

thermore, our HOI synthesis model performs even better
than the baseline.
Layout Editing. The layout representation allows users to
edit and control the generated hand’s structure. As shown in
Fig 6, while we gradually change the layout’s location and
orientation, the synthesized hand’s appearance changes ac-
cordingly. As the approaching direction to the mug changes
from right to left, the synthesized fingers change accord-
ingly from pinching around the handle to a wider grip
around the mug’s body.
Heatmap-Guided Synthesis. As shown in Sec 3.2, our
synthesized HOI images can be conditioned on a specified
location without any retraining. This not only allows users
to edit with just keypoints, but also enables our model to uti-
lize contact heatmap predictions from prior works [13, 56].
In Fig 7, we sample points from the heatmaps and con-

Figure 8. Scene-level Integration: Given a cluttered scene,
we detect each object and synthesize its interactions individually.
Each object’s layout scale is guided to appear in the same size
when transferred back to the scene.

ditionally generate layouts and HOI images which further
specifies how to interact at the sampled location.

Integration to scene. We integrate our object-centric HOI
synthesis to scene-level affordance prediction. While the
layout size is predicted relative to each object, hands for dif-
ferent objects in one scene should exhibit consistent scale.
To do so, we first specify one shared hand size for each
scene and calculate the corresponding relative sizes in each
crops (we assume objects at similar depth and thus sizes
can be transformed by crop sizes, although more compre-
hensive view conversions can be used). The LayoutNet is
conditioned to generate these specified sizes with guided
generation techniques (Sec 3.2). Fig 8 shows the extracted
hand meshes from each crops transferred back to the scene.

5. Conslusion

In this paper, we propose to synthesize hand-object in-
teractions from a given object image. We explicitly reason
about where to interact and how to interact by LayoutNet
and ContentNet. Both of them are implemented as diffu-
sion models to achieve controllable and high-quality visual
results. The synthesized HOI images enable a shortcut to
more plausible 3D affordance via reconstructing hand poses
from them. Although the generation quality and the consis-
tency between the extracted 3D poses and images can be
further improved, we believe that HOI synthesis along with
our proposed solution opens doors for many promising ap-
plications and contributes towards the general goal of un-
derstanding human interactions in the wild.
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