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Abstract

This paper focuses on analyzing and improving the com-
monsense ability of recent popular vision-language (VL)
models. Despite the great success, we observe that existing
VL-models still lack commonsense knowledge/reasoning
ability (e.g., “Lemons are sour”), which is a vital com-
ponent towards artificial general intelligence. Through
our analysis, we find one important reason is that exist-
ing large-scale VL datasets do not contain much common-
sense knowledge, which motivates us to improve the com-
monsense of VL-models from the data perspective. Rather
than collecting a new VL training dataset, we propose
a more scalable strategy, i.e., “Data Augmentation with
kNowledge graph linearization for CommonsensE capabil-
ity” (DANCE). It can be viewed as one type of data aug-
mentation technique, which can inject commonsense knowl-
edge into existing VL datasets on the fly during training.
More specifically, we leverage the commonsense knowl-
edge graph (e.g., ConceptNet) and create variants of text
description in VL datasets via bidirectional sub-graph se-
quentialization. For better commonsense evaluation, we
further propose the first retrieval-based commonsense di-
agnostic benchmark. By conducting extensive experiments
on some representative VL-models, we demonstrate that
our DANCE technique is able to significantly improve the
commonsense ability while maintaining the performance on
vanilla retrieval tasks. The code and data are available at
https://github.com/pleaseconnectwifi/DANCE.

1. Introduction

Many vision-based problems in our daily life go beyond
perception and recognition. For example, when we hear
people say “It tastes sour”, we need to identify they are talk-
ing about lemons on the table instead of the chocolate cake.
Therefore, it is essential for artificial general intelligence to
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Figure 1. Illustration of the commonsense lacking problem of
various popular VL-models, including CLIP [45] pre-trained with
contrastive supervision, ViLT [24] with matching supervision, and
BLIP [28] with the both. The bar plots suggest the alignment
scores of the images to the text. All models fail in retrieving the
correct image with lemon (in blue).

develop commonsense capability. Vision-Language (VL)
models [45] recently show promising signals on mimick-
ing the core cognitive activities of humans by understand-
ing the visual and textual information in the same latent
space [74]. However, we observed that VL-models, e.g.,
CLIP [45], still struggle when minor commonsense knowl-
edge is needed. For example, as shown in figure 1, none of
the existing models correctly identify the lemon with text
input “It tastes sour”.

In this work, we take a step towards injecting the VL-
models with commonsense capability. More specifically,
we find one important reason for the commonsense lacking
issue is that existing large-scale VL datasets do not con-
tain much commonsense knowledge. On the one hand, reg-
ular VL data, e.g., COCO [32] and CC 12M [9] contain
more nouns and descriptive adjectives, with much fewer
verbs and particles compared to regular texts. This distribu-
tion difference suggests that it might be infeasible for VL-
models to gain commonsense ability by purely enlarging the
dataset, unlike language-only models [22, 44]. Also, other
objectives like visual question answering or generation are
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not widely applicable for training and have limited data size.
Inspired by the aforementioned findings, we propose

Data Augmentation with kNowledge graph linearization for
CommonsensE capability (DANCE). The main idea is to
generate commonsense-augmented image-text pairs. To do
so, one natural idea is to leverage the rich commonsense
knowledge in knowledge graphs [5, 56]. However, it is not
trivial to inject the knowledge into image-text pairs. On the
one hand, structured data like graphs usually require spe-
cific architectures [59, 75] to embed, which is troublesome.
On the other hand, if we associate the external knowledge
with the text in the training stage, we will need the exter-
nal knowledge-augmentation process in the inference stage
as well to avoid domain shift [51]. This is not desirable,
since the corresponding knowledge is usually not available
for the inference tasks. To address these challenges, we first
re-organize the commonsense knowledge graph into entries
with (entity, relation, entity) format, and pair them to the
images that contain one of the entities. We then hide the
name of entities in that image with demonstrative pronouns,
e.g., “this item”. The generated descriptions are in tex-
tual form and therefore readily applicable for the training of
most VL-models. More importantly, by forcing the model
to memorize the relationships between entities in the train-
ing stage, such data augmentation is not needed in the infer-
ence stage. The data pair generation pipeline is automatic
and scalable, leveraging the existing consolidated common-
sense knowledge base and the large and various collections
of image-language supervision.

In addition, existing VL commonsense evaluations are
restricted to visual question answering and generation
which are not a good fit or well received in the majority of
VL-models. Therefore, we propose a new diagnostic test set
in a wider adaptable form, i.e., Image-Text and Text-Image
Retrieval, to achieve a fair evaluation of the pre-trained VL-
models. The set is upgraded by neighborhood hard-negative
filtering to further ensure data quality.

The effectiveness of the DANCE is validated by not
only our diagnostic test set, but also the most popular vi-
sual question answering benchmark for commonsense [36].
Moreover, we show the commonsense ability of the models
trained with DANCE even generalize to unseen knowledge.
We show the potential of the new train strategy and the test
dataset by deep content analysis and baseline performance
measurements across various cutting-edge VL-models. We
summarize our main findings and contributions as follows:

1. We propose a novel commonsense-aware training
strategy DANCE, which is compatible with the most
of VL-models. The inference stage needs no change.

2. We propose a new retrieval-based well-received com-
monsense benchmark to analyze a suite of VL-models
and discover weaknesses that are not widely known:

commonsense easy for humans (83%) is hard for cur-
rent state-of-the-art VL-models (<42%).

3. We conduct extensive experiments to demonstrate the
effectiveness of the proposed strategy and diagnostic
test set. The datasets and all the code will be made
publicly available.

2. Related Work
Vision-Language Contrastive Learning and Matching.
Vision-Language Contrastive Learning (VLC) and Match-
ing (VLM), both of which aim to align vision and lan-
guage, has been the fundamental tasks for Vision-Language
model pre-training. They are the most commonly used ob-
jectives [10], and are used in the well-known foundation
models [15, 61]: to name a few, CLIP [45], OwlVit [38],
ALIGN [21], MDETR [23], Florence [72] with VLC
supervision; ViLT [24], FLAVA [52], ViLBERT [35],
UNITER [11], Unicoder [27], VisualBERT [30] utilize the
VLM target; BLIP [28], ALBEF [29] uses them both. Many
popular and large-scale image-text paired datasets [8, 9, 25,
32, 37, 41, 47–50, 70, 71] are proposed on this task suitable
for most common scenarios. Some of them target at spe-
cific cases like instructional video [37], 3D scene [8, 70],
and fashion [47]. However, most of them are not targeted at
commonsense knowledge or reasoning.
Image Text Retrieval. Image Text Retrieval (ITR) is a typ-
ical cross-modal downstream task needing retrieving an im-
age that matches a description most and vice versa. ITR
can be naturally performed by the VL-models pre-trained
on VLC/VLM targets, and widely received in the majority
of the VL-models [7] even in a zero-shot manner. Though,
how to improve the commonsense knowledge of ITR still
requires further study. CVSE [60] injects commonsense
knowledge into VL-models for ITR using statistical cor-
relations in caption corpus. However, such knowledge is
constrained by the correlations of corpus and is not a per-
fect fit for ITR [7]. Various datasets [32,34,40,65,71] have
been proposed to evaluate the ITR system. However, most
of them do not question VL-models’ commonsense ability.
Commonsense in Vision-Language Datasets. Several
studies on commonsense over visual-language input can be
divided into two branches according to the task type. The
first branch includes Visual Question Answering (VQA)
datasets [20, 36, 63, 64, 70]. The model is required to give
a natural language answer to a specific question-image pair,
for which commonsense knowledge is required [33]. How-
ever, performing VQA evaluation automatically is not triv-
ial for most of the VL-models, especially for dual-encoder
architecture, e.g., CLIP, as studied in [17]. Besides, as their
data collection requires plenty of human effort, their image
amount and language corpus of are quite small. Another
branch focuses on generation or multi-choice tasks. Vi-
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sual Commonsense Reasoning [73] evaluates the common-
sense ability via two multi-choice tasks: question answer-
ing and answer justification. VisualCOMET [43] evaluates
the commonsense ability via inferencing events and intents.
However, they are collected from movie clips, and the com-
monsense knowledge required is focused on humans and
events, which limits the variety of image and knowledge.
Also, transferring from commonly used pre-training tasks
to generation or multi-choice tasks itself is a challenging
task [31, 39, 69]. To evaluate and improve the common-
sense ability of VL-models , we take the first step towards
automatic and direct applicable commonsense evaluation
via ITR, along with a scalable learning strategy suitable for
VLC/VLM with variable augmented commonsense.
Commonsense in NLP. Commonsense and knowledge rep-
resentation has a long-period development in NLP [66, 67,
77], with plenty of famous knowledge bases [2,5,26,53,54,
56, 57] emerged. ConceptNet [56], a popular and consoli-
dated commonsense knowledge graph with 8M nodes and
21M edges from various sources including expert, crowd-
sourcing, games. While there are early explorations on
general VL-model training with external knowledge [51],
we are the first one that aims to train a general-purpose
commonsense-aware VL-model, with no restrictions in the
inference stage.

3. Data Augmentation Strategy with Knowl-
edge Graph Linearization

We present our DANCE training strategy that enhances
the commonsense ability of VL-models via learning with
novel and scalable commonsense augmented data.

In short, we augment existing image-text pairs with
knowledge graphs. Denote the set of image-text pairs as
D = {(ik, tk)}Kk=1, where ik and tk are paired images and
texts. Denote the knowledge graph as G = (V, E), where V
is the node set and E is the edge set. Each edge e ∈ E is a
tuple (vi, r, w, vj), with vi, vj ∈ V , r is the commonsense
relationship pointing directionally from vi to vj , and w is
the weight highlighting the importance of this edge. Here,
vi is denoted as the head, while vj is the tail. For example,
a directed edge from ConceptNet [56] takes the form as

(“Net”, “is used for”, 0.3, “catching fish”).

We explore an automatic way to generate paired
commonsense-aware training data by augmenting common-
sense knowledge into VL datasets. The automatic data con-
struction process is shown in Fig. 2.

3.1. Extraction of Image-Entity Pair

To pair an image ik with its corresponding knowledge,
we first need to find out what entities are in it. Given the
presence of the corresponding descriptive text tk, a reliable
way is to extract the linguistic entities from tk via natural

language processing toolkits1. For example, for the image
in the upper left of Fig. 2, the corresponding caption is “A
cat with a box in an office”. Using standard toolkits, we can
obtain the entities as “cat”, “box”, and “office”. In detail,
we extract the linguistic entities Nk = {ϵk,i}Ii=1, and fur-
ther perform format cleaning that removes determiners or
adjectives, and filtering out entities that are too general to
be meaningful to get a subset N̂k ⊆ Nk. In this way, we
obtain the entities corresponding to image ik.

3.2. Bidirectional Sub-Graph Sequentialization

With the list of entities in each image, we perform bidi-
rectional sub-graph sequentialization to obtain a list of com-
monsense riddles in textual format, which can be readily
used for contrastive training. The key idea is to find com-
monsense knowledge descriptions associated with each en-
tity in the image, but with the entities’ names hidden by
demonstrative pronouns. The pipeline of our graph opera-
tion can be summarized as follows:

1. To collect the commonsense knowledge associated
with image ik, we first query the directed knowledge
graph to obtain sub-graphs where the nodes are con-
nected, in either direction, to at least one entity in N̂k.

2. Hide the names of the entities in the image by replac-
ing the different subject nodes with “this” nodes.

3. We perform sequentialization to translate the sub-
graph into a list of subject-hidden commonsense
knowledge descriptions in textual format.

• Bidirectional sub-graph query. Specifically, we
query the sub-graph that relates to ik from the directed
graph G, so that each edge within it is connected with at
least a node representing one entity in N̂k. The connection
we need to check is bidirectional: both head and tail should
be taken into account. Formally, we perform a bidirectional
query to get sub-graphs,

Gk =(Vk, Ek)

s.t. Vk =
{
v|v ∈ ℓE(u), u ∈ N̂k

}
∪ N̂k,

Ek =
{
(u, r, w, v) ∈ E|u ∈ N̂k

}
∪
{
(v, r, w, u) ∈ E|u ∈ N̂k

}
,

and ℓE(u) is the neighbors of node u when the edge set is
E . We end up with a sub-graph Gk. We refer the nodes that
are directly from N̂k as subject nodes, i.e., u ∈ N̂k.

• Hiding subject names via node substitution. After
querying the sub-graphs, we perform node substitution that
replaces subject nodes with “this” nodes, to hide the names
of all the entities in the image. Specifically, we construct a
mapping f(·) : V → S, that maps the actual entity nodes to

1NLTK [6] and SpaCy [19], two well-developed libraries for language
processing, achieving > 97% accuracy in the official benchmarks.
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Figure 2. Illustration of VLCR construction process of DANCE.

a substitution set S, which is defined as

S = {“this item”, “this person”, “this place”} .
In detail, a node u is mapped to “this person” if it be-
longs to a “person” word, e.g., “lady”, “guy”, or mapped to
“this place” if it has location property2 or the subject name
matches Places356 categories [76], or “this place” if neither
of above is matched. Further, we filter out some edges in the
sub-graph with weights below a certain threshold τ . More
rigorously, the graph after substitution is

G′
k =

(
V ′
k , E

′
k

)
,

s.t. E′
k =

{
(f(u), r, w, v)|(u, r, w, v) ∈ Ek, u ∈ N̂k, w > τ

}
∪
{
(v, r, w, f(u))|(v, r, w, u) ∈ Ek, u ∈ N̂k, w > τ

}
,

V ′
k =

{
v|v ∈ ℓE′

k
(u), u ∈ N̂k} ∪ {f(u)|u ∈ N̂k

}
.

• Riddle generation. We concatenate the head, the rela-
tion, and the tail in each edge to generate riddles in nat-
ural language. Take an example from Fig. 2. For edge
(“this item”, “is a type of ”, 0.6, “animal”), we re-format it
into natural language riddle “this item is a type of animal”
and pair it back to image ik. In this way, we obtain multiple
image-riddle pairs per image, which is readily usable for
contrastive VL-model training. The whole process is per-
formed automatically without human involvement. Lever-
aging mature image-text datasets and knowledge graphs,
the quality of the generated data is well guaranteed.

3.3. Training Strategy

Since image-riddle pairs are essentially image-text pairs,
by mixing them with the existing VL databases with a cer-
tain ratio, we can pre-train or fine-tune the VL-model with-
out changing the model architecture and other training set-
tings. However, since the amount of text generated by
DANCE is several times larger than the existing VL dataset,
simply merging our data with the original data will cause
our data to dominate. Denote the proportion of the aug-
mented data in the training batch as p. We observe that a
higher initial p and lower p in the later training stage result

2In ConceptNet, such nodes has relation property “AtLocation”.

in good performance. Thus, we adopt a curriculum learn-
ing strategy, with linearly decreasing p [55]. In this way,
the percentage of original and our data can be controlled
dynamically. There is no change to the inference stage.

4. Diagnostic Data and Automatic Evaluation

It is still an open issue to automatically and directly com-
pare commonsense knowledge of VL-models without trans-
ferring to downstream tasks. Thus, we introduce a diagnos-
tic test set for comparison of commonsense ability, in form
of a retrieval task compatible with various VL-models. Our
task is divided into Text-Image and Image-Text retrieval.
The former one is to retrieve which image best matches the
description that requires commonsense but with the referred
subject hidden, and the latter is vice versa. Thus, we mainly
focus on the former one in the following paragraph of gen-
eration and evaluation. Formally, the model is either given a
riddle d with a list of Ni candidate images I = {i1, ..., iNi}
to choose from, or an image with a list of riddles. Models
need to score the alignment between the images and the rid-
dles and return a sorting of them. The data construction is
based on the COCO test set and ConceptNet.
Generation of candidate set. Different from existing
image-text datasets that usually contain one-to-one pairs, in
the generated text set, there are multiple positive riddles for
each image, and multiple positive images for each riddle.
Thus, for test data, we also need to generate candidate sets
including both positive and negative images with a consis-
tent ratio. Suppose in the image list I, there are n positive
images i1, ..., in. They are chosen at random from the set of
images that all contains the substituted entity in the riddle
d. To ensure the high quality of the negative images, i.e.,
in+1, ..., iNi , rather than random sampling from all possible
negatives, we design to search for hard-negative samples.
Specifically, we employ neighborhood hard-negative filter-
ing, i.e., finding images whose entities are highly related to
the subject entity, but none of these entities satisfy the rid-
dle. To capture the correlation between entities, we use the
graph distance, i.e., from one entity, we filter for their near-
est neighbor entities connected by the edges among three re-
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Figure 3. Visualization of the distributions of our train and Test-
Image test splits.

lationships: “RelatedTo”, “DistinctFrom”, and “Antonym”.
We construct the image-to-riddle data in the same way.
Generalization ability. To further diagnose the ability
to infer new knowledge by using existing commonsense
knowledge, we randomly hold out some knowledge from
training. For example, given that “pineapple can be found
on a pizza”, and “pizza hut is one of the makers of pizza”,
we want to see whether the model can reason that “pineap-
ple may be required by pizza hut”. Therefore, we further
divide the test set into two splits: test-seen split, in which
all knowledge appears in the training set, and test-unseen
split where the corresponding relationships are not present
in training, to see whether the model can reason about new
knowledge using the existing ones. We also enforce that all
the images in the two test splits are not present in training.
Automatic evaluation protocol. For automatic evalua-
tion, we adopt perplexity score as the metric, following the
works [13, 43]. In the experiment, we set 50 candidates
for each sample, with the number of positive samples n
between 1 to 15, and measure the average accuracy of re-
trieved ground truth inference, denoted as Acc@50. Our
evaluation protocol is based on retrieval tasks, and therefore
is compatible with most of the VL-model architectures.
Distribution of test-unseen split. We compare the distri-
bution of test-unseen split to that of the training and test-
seen splits to confirm a reasonable knowledge distribution.
Fig. 3 shows the distributions of the train, test-seen, and
test-unseen based on COCO and ConceptNet. The x axis is
the number of commonsense knowledge descriptions asso-
ciated with each entity, and y axis is the percentage of these
entities among all entities. The distribution of test-unseen
does not shift much from the training and test-seen splits.

5. Experiment
In this section, we first highlight the commonsense lack-

ing issue in both the popular VL datasets and the existing
VL-models, then provide more analysis on the augmented
training data, and finally provide detailed empirical evi-
dence for the effectiveness of the DANCE strategy.

5.1. Commonsense Lacking Issue

Commonsense lacking in fundamental VL data. We
find that the current fundamental VL datasets, on which
VL-models are trained, are to blame for the commonsense
knowledge-lacking issue. We show that the current funda-
mental datasets for VL-models can not provide sufficient
commonsense knowledge compared to regular texts.

Figure 4. Comparison of the syntactic categories and words dis-
tributions of fundamental VL data (COCO [32] and CC12M [9]),
NLP knowledge base (ConceptNet [56]) and ours. Commonsense
is lacking in VL data, but it has significantly improved in ours.

We illustrate the issue by comparing the most popu-
lar VL datasets (COCO [32] and CC 12M [9]) with the
commonly used language-only knowledge bases (Concept-
Net [56]) in terms of the distributions of the syntactic cat-
egories and words. In the upper part of Fig. 4, we com-
pare the distributions of the most frequent part-of-speech
(POS) tags with punctuation marks excluded. In the lower
part, we show the comparison of the most frequent word
tokens. There is a significant difference between top POS
tag / word token distributions of VL datasets compared with
those of the regular texts. We note that most frequent words
in the text in existing VL datasets are nouns, especially for
individual entities that appear in the images and the corre-
sponding caption (e.g., “woman”, “train”, “room”). In con-
trast, the knowledge base ConceptNet has more verbs, e.g.,
“used”, “would”, “find”, “want”, “happen”, “requires”,
containing richer information on the relationship between
entities. In addition, the knowledge base includes more par-
ticles (PRT) like “to”, and pronouns (PRON) like “your”,
which are associated with interconnection information.

In order to develop common sense and reasoning abil-
ity, in addition to knowing each isolated entity, there is a
high demand for rich but implicit information about the re-
lationships and interconnections between entities. Thus, the
fundamental VL dataset, which is primarily occupied by
information about individual entities that appear explicitly,
does not meet the requirements of VL-models for common
knowledge, in terms of both learning or evaluation. This im-
plies that we should enhance VL data with commonsense.
Our DANCE augmented data provides significantly more
commonsense than VL data. Sec. 1 of appendix includes
additional comparisons of VL data with common NLP data
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Models Text-Image Image-Text
test-seen↑ test-unseen↑ test-seen↑ test-unseen↑

Random - 0.2381 0.2380 0.2400 0.2362

Contr- CLIP(ViT-L) 0.3951 0.3949 0.3817 0.3961
astive OwlVit(ViT-L) 0.3673 0.3644 0.3325 0.3230

Matching ViLT(ViLT-B) 0.4098 0.4077 0.3217 0.3534
FLAVA(ViT-B) 0.4144 0.4093 0.3850 0.3843

Both BLIP(ViT-L itm) 0.4030 0.4019 0.4017 0.4194
BLIP(ViT-L itc) 0.3835 0.4007 0.3167 0.3100
ALBEF(ViT-B) 0.3901 0.3792 0.3749 0.3832

Human - 0.8202 0.8023 0.8497 0.8521

Table 1. Comparison with various state-of-the-art VL-models and
human performance on our diagnostic test set.

to further illustrate the commonsense lacking issue.
Baselines vs Human. Here we show the performance of
various state-of-the-art VL-models on our diagnostic test
set. Specifically, we consider VL-models in three cat-
egories: models trained by contrastive supervision, e.g.,
CLIP [45], OwlVit [38], by matching supervision like
ViLT [24], FLAVA [52], and by the both, such as BLIP [28],
ALBEF [29]. It is either impossible or difficult to directly
test these models against knowledge-based benchmarks de-
signed with other downstream tasks. As an additional ref-
erence for performance comparison, we also report the per-
formance of random ordering as the lower bound, and hu-
man performance on a random sub-set with 50 samples each
split as the upper bound. All the mentioned models are with
their official checkpoints. CLIP is with ViT-L/14 backbone
pre-trained on 400M images at 336-pixel resolution, ViLT
is with ViLT-B/32 backbone pre-trained on 21M images and
fine-tuned on COCO retrieval, and BLIP is with ViT-L/16
backbone pre-trained on 129M images with bootstrapping
and find-tuned on COCO retrieval.

Results with our automatic evaluation metric Acc@50
are shown in Table 1. Through observation, we discover
that, while most of the retrieval is easy for humans (83%
on average, 81% for Text-Image, and 85% for Image-Text),
they are hard for current state-of-the-art VL-models (<40%
on average, 39.4% for Text-Image, and 36.3% for Image-
Text) whose performances are only slightly better than the
random result (24% on average).

5.2. Analysis on the Augmented Data

Implementation Details. Before the bidirectional query,
we need to match the natural language words in text tk
to the knowledge graph entities. Therefore, we perform
Unicode normalization, lower-casing, punctuation clean-
ing, underscoring and pre-pending to the words. For
example, the English words “A traffic jam” becomes
“/c/en/traffic jam” by the standardization, so that it is
matched to an entity. The threshold τ is set to 0.5. We are
based on two mature human-annotated image-text paired
datasets COCO [32], VG [25], and three web datasets

DANCE VCR Visual- OK-VQA S3VQA
(this work) [73] COMET [43] [36] [20]

supervision contrastive/matching multi-choice inference VQA VQA
# images 14.1M+ 0.1M 59K 14K 7K
# texts 447M+ 0.3M 1.5M 14K 7K

knowledge general people action movie event factoid factoid

Table 2. Comparison with various knowledge-based datasets.

Figure 5. Left: Commonsense knowledge type distribution. Right:
Length distribution of each commonsense riddle.

SBU captions [42], Conceptual Captions (CC3M) [50],
and Conceptual 12M (CC12M) [9], with 14M images in
total. Our image splitting for COCO follows a popular
split [3, 12, 18, 28, 46, 58, 61, 62, 68].
Dataset comparison with various knowledge-based
datasets. In Table 2, we compare the training set gener-
ated by DANCE to relevant knowledge-based datasets and
display their properties and statistics. We are the first com-
monsense knowledge-based dataset to focus on contrastive
or matching supervision. We have larger-scale multi-source
images and a corpus compared to the relevant datasets
which are challenging to gather at scale, and we can expand
even further if other image-text datasets or knowledge bases
are included in the generation process. Also, our dataset in-
cludes various general knowledge from a consolidated com-
monsense knowledge graph, while the knowledge type in
some of the relevant datasets (e.g., VCR, VisualCOMET) is
limited to people or events in films.
Other statistics. The left part of Fig. 5 shows the distri-
bution of commonsense knowledge type in the training set.
We can observe that various types of commonsense knowl-
edge are included in our generated data. The right part is the
distribution of the average length of the commonsense rid-
dles in our generated training set. The average riddle length
generated from COCO and ConceptNet is 8.19.

5.3. Effectiveness of DANCE

Training details. All pre-training is done on four nodes,
each with eight A100 GPUs. We use ViT pre-trained on
ImageNet [16] to initialize the image transformers, and
BERT-base [14] for the text transformers. Two backbones
are used: ViT-Base/16 and ViT-Large/16. We pre-train the
model of ViT-B backbone with batch size 2, 800, and ViT-L
backbone with batch size 2, 400, for total 20 epochs. We use
the AdamW optimizer, training with learning rate warm-up
to 3× 10−4 for ViT-B and 2× 10−4 for ViT-L, and decay-
ing linearly with the rate 0.85. For fine-tuning on retrieval
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Backbone Pre-train Fine-tune
Ours test set COCO (5K test set)

Text-Image Image-Text TR@1↑ IR@1↑test-seen↑ test-unseen↑ test-seen↑ test-unseen↑

ViT-B 14M COCO 0.3986 0.3892 0.2916 0.3301 78.40 60.70
ViT-L 14M COCO 0.4030 0.4019 0.4017 0.4194 81.12 63.96
ViT-B 14M+DANCE(part) COCO 0.5107 0.5141 0.5252 0.5053 78.80 60.48
ViT-L 14M+DANCE(part) COCO 0.5408 0.5326 0.5363 0.5113 80.89 64.15
ViT-L 14M+DANCE(whole) COCO 0.5721 0.5458 0.5600 0.5242 81.92 65.26

ViT-B 14M COCO+DANCE 0.4566 0.4077 0.3421 0.3845 77.94 60.83
ViT-L 14M COCO+DANCE 0.4610 0.4333 0.4565 0.4395 81.86 64.17

Table 3. Effect of DANCE for pre-training (first five rows) and fine-tuning (last two rows), testing on ours test set and COCO retrieval.

tasks, the learning rate is warm-up to 1 × 10−5 for ViT-B
and 5 × 10−6 for ViT-L with 6 epoch. For fine-tuning on
question-answering tasks, the learning rate is warm-up to
2 × 10−5 with a total 10 epoch. We use the same supervi-
sion and model architecture as BLIP [28]. Pre-training data
is the same as [28, 29]. It is partially or fully augmented by
DANCE, ending up with 0.4 billion and 40 million image-
text pairs respectively. Noted that despite the data scale be-
ing greatly improved by DANCE, in both pre-training and
fine-tuning, all methods are trained with the same number
of data batches and steps for fairness.
DANCE for Pre-training. In this section, we show the ef-
fect of the DANCE strategy when used only during the pre-
training phase. To provide a comprehensive study, we com-
pare the performance of various model architectures and
training corpora with and without DANCE. To ensure fair-
ness, we adopt the data volumes to be equal, meaning that
DANCE and the corresponding baseline are pre-trained and
fine-tuned on the same number of data batches and iteration
steps. Simultaneously, DANCE does not introduce more
pre-training images than corresponding baseline. In other
words, DANCE is entirely based on existing images.

• Comparison on our diagnostic test set and vanilla
retrieval benchmark. We compare models with or with-
out DANCE in the pre-training stage, while all models in
the fine-tuning stage are trained only on the COCO retrieval
dataset without DANCE.

The results are shown in the first five rows of Table 3.
In all pre-training setups, the DANCE pre-training con-
sistently outperforms the corresponding baseline on our
test set by a large scale. By augmenting a part of the
pre-training data with DANCE, an average improvement
of 16% and 12% can be seen on ViT-B and ViT-L. And
by using DANCE on the entire pre-train data, we achieve
14% improvements on average. In addition, on the un-
seen splits which contain commonsense knowledge held out
from training data, significant improvements can also be
observed. This shows that DANCE pre-training not only
improves the commonsense ability of the model, but also
empowers their ability to generalize to new knowledge on
the basis of existing commonsense knowledge. The per-
formance is maintained or even better on the vanilla bench-

Figure 6. Qualitative examples from the diagnostic test set (left)
and OK-VQA (right). More examples are in Sec. 2 of appendix.

mark of COCO retrieval, which does not contain much com-
monsense. This demonstrates that DANCE enhances the
commonsense ability and learns general visual-linguistic
representations at the same time. Yet, there is still signif-
icant headroom in comparison with human scores (83%).

We also show the qualitative results of different VL-
models in our diagnostic test set in Fig. 6. One the left
is a text-image retrieval sample from the text-unseen split
of our test set. The baseline model fails while our DANCE
pre-trained model successfully retrieves the correct image,
even though the knowledge is excluded from our training
set. This also illustrates the reasoning ability enhanced by
DANCE. On the right, with the OK-VQA question, the
model pre-trained by DANCE correctly answers with he-
lium. We own it to DANCE-augmented commonsense,
from the knowledge base including the knowledge that he-
lium is used for filling party balloons [1]. Overall, the above
experiments demonstrate that pre-training with DANCE re-
markably enhances the commonsense and even reasoning
ability of VL-model.

• Comparison on existing commonsense benchmark.
We also perform experiments on the commonly used com-
monsense knowledge benchmark. Here we choose the pop-
ular crowdsourced benchmark OK-VQA [36] benchmark.
In this benchmark, the commonsense ability of the model
is evaluated via the downstream Visual Question Answer-
ing (VQA) task, which answers questions about an image
that requires commonsense. It means that this task cannot
be performed directly by the pre-trained baselines. Thus, to
evaluate on this benchmark, we apply rearrangement of the
model architecture during fine-tuning, following implemen-
tation by BLIP [28] for adopting to VQA [4]. We also note
that the OK-VQA benchmark is crowdsourced and “open”-
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Backbone Pre-train Fine-tune OK-VQA Acc↑

ViT-B 14M OK-VQA 29.45
ViT-B 14M+DANCE(part) OK-VQA 37.56

ViT-L 14M OK-VQA 33.14
ViT-L 14M+DANCE(part) OK-VQA 38.55
ViT-L 14M+DANCE(whole) OK-VQA 39.25

Table 4. Effect of DANCE for pre-training, testing on existing
commonscene benchmark OK-VQA.

Figure 7. Performance on existing commonscene benchmark OK-
VQA during fine-tuning.

domain, which means that there is no data leakage in the
commonsense knowledge graph used for training.

The baselines are BLIP pre-trained on 14M images
including COCO [32], VG [25], SBU captions [42],
Conceptual Captions (CC3M) [50], and Conceptual 12M
(CC12M) [9], and fine-tuned on OK-VQA. They are com-
pared with DANCE pre-trained models respectively. Per-
forming DANCE on a part of the pre-train data (COCO)
generating 40M image-text pairs during the pre-training is
denoted by DANCE(part), and on the full data generating
0.4B image-text pairs is denoted by DANCE(whole).

The results are shown in Table 4. Significant improve-
ments can be seen by comparing the corresponding base-
lines and DANCE. When DANCE is applied just on part of
pre-training data, the performances of ViT-Base and ViT-
Large are increased by 3.69% and 1% respectively. And
by using DANCE on the entire pre-train data, we achieve
1.69% improvement with ViT-Large. Besides, as shown
in Fig. 7, we found that the model pre-trained on DANCE
can achieve faster and more stable convergence than the or-
dinary pre-trained model on the OK-VQA benchmark.

• Comparison with additional VL-models on more
benchmarks. We also perform experiments Table 5 of
other VL-model ALBEF equipped with DANCE, on addi-
tional benchmarks like VQA (standard visual question an-
swering), NLVR2 (classifying true or false captions about
image pairs), and our test set, COCO, following ALBEF
4M pre-training. Both VQA and NLVR2 require visual rea-
soning, but not target at commonsense. We see a signifi-
cant performance gain on our test set, comparable results on
COCO. Performance is also improved on VQA and NLVR2
despite they are not focused on commonsense.
DANCE for Fine-tuning. DANCE can also contribute
positively in the fine-tuning stage. We evaluate the com-
monsense ability of the model on the proposed diagnostic
test set, rather than on existing commonsense knowledge
benchmarks, since the latter cannot evaluate models that are

VQA
(test-dev)

NLVR2
(test-P)

NLVR2
(dev)

Ours test set
(averaged)

COCO
(5K)

ALBEF 74.54 80.50 80.24 0.3819 64.95
ALBEF+DANCE 75.09 81.15 80.56 0.5207 65.32

Table 5. Effect of DANCE with VL-model ALBEF on more VL
benchmarks VQA and NLVR2.

DANCE Ratio 50% 30% 10% 0% 50→10%

OK-VQA Acc 30.32 32.48 32.03 29.45 33.14
Table 6. Ablation of proportions of DANCE-augmented data.

not fine-tuned on the specific downstream tasks, e.g., VQA.
For fairness, DANCE and the corresponding baseline are
fine-tuned on the same number of batches and steps, and on
the same training set of COCO images. The results are re-
ported in the last two rows of Table 3. Compared with the
baseline, DANCE fine-tuning brings significant improve-
ment in the commonsense test sets, and can still obtain com-
parable results on COCO.
Ablation. In the Table 6, we study the impact of different
proportions of DANCE-augmented data, i.e., p, on the per-
formance in the downstream OK-VQA task. We find that
a suitable ratio (30%) is beneficial to the performance im-
provement, while too high (50%) or too low (10%) reduces
the performance improvement, and the curriculum learning
strategy that linearly decreases the ratio from 50% to 10%
achieves the best performance. The experiments are based
on ViT-B backbone and 14M pre-train data.

6. Conclusion and Future Work

This paper takes a step towards injecting commonsense
capability into VL-models. We first observed that VL-
models are lacking commonsense ability as existing popular
VL datasets do not contain much commonsense knowledge.
Therefore, we propose a new training strategy DANCE
which is compatible with most VL-models, by training on
images paired with our generated entity-hidden common-
sense riddles, in a scalable and automatic way. To sup-
port the commonsense evaluation of a suite of VL-models
in a well-received way, a retrieval-based commonsense di-
agnostic benchmark is built. We then empirically verify
the weaknesses of existing VL-models and the effective-
ness of DANCE. Despite significant improvements in both
the existing commonsense and our diagnostic benchmarks,
we still face challenges. Towards human-like intelligence,
awareness of commonsense knowledge is not enough. The
model should be able to do reasoning, such as mathematical
and physical calculations in real-life scenarios. This is still
weak in existing VL-models and is not included in exist-
ing commonsense knowledge bases. Future research could
be conducted to analyze and improve various reasoning as-
pects of VL-models.
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