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Figure 1. We leverage 2D edge detection to directly acquire 3D edge points by learning a neural implicit field and further reconstructing
3D parametric curves that represent the geometrical shape of the object. We introduce the details about extracting 3D edges from the
proposed Neural Edge Field in 3.1, and the coarse-to-fine optimization strategy to reconstruct parametric curves in 3.2. The whole pipeline
is self-supervised with only 2D supervision.

Abstract
We study the problem of reconstructing 3D feature

curves of an object from a set of calibrated multi-view im-
ages. To do so, we learn a neural implicit field repre-
senting the density distribution of 3D edges which we re-
fer to as Neural Edge Field (NEF). Inspired by NeRF [20],
NEF is optimized with a view-based rendering loss where
a 2D edge map is rendered at a given view and is com-
pared to the ground-truth edge map extracted from the im-
age of that view. The rendering-based differentiable opti-
mization of NEF fully exploits 2D edge detection, without
needing a supervision of 3D edges, a 3D geometric oper-
ator or cross-view edge correspondence. Several technical
designs are devised to ensure learning a range-limited and
view-independent NEF for robust edge extraction. The fi-
nal parametric 3D curves are extracted from NEF with an
iterative optimization method. On our benchmark with syn-
thetic data, we demonstrate that NEF outperforms exist-
ing state-of-the-art methods on all metrics. Project page:
https://yunfan1202.github.io/NEF/.

1. Introduction
Feature curves “define” 3D shapes to an extent, not

only geometrically (surface reconstruction from curve net-
works [15, 16]) but also perceptually (feature curve based
shape perception [4, 35]). Therefore, feature curve extrac-
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tion has been a long-standing problem in both graphics and
vision. Traditional approaches to 3D curve extraction often
work directly on 3D shapes represented by, e.g., polygo-
nal meshes or point clouds. Such approaches come with a
major difficulty: Sharp edges may be partly broken or com-
pletely missed due to imperfect 3D acquisition and/or re-
construction. Consequently, geometrically-based methods,
even the state-of-the-art ones, are sensitive to parameter set-
tings and error-prune near rounded edges, noise, and sparse
data. Recently, learning-based methods are proposed to ad-
dress these issues but with limited generality [18,19,33,39].

In many cases, edges are visually prominent and easy to
detect in the 2D images of a 3D shape. To resolve occlusion,
one may think of 3D curve reconstruction from multi-view
edges. This solution, however, relies strongly on cross-view
edge correspondence which itself is a highly difficult prob-
lem [28]. This explains why there is rarely a work on multi-
view curve reconstruction even in the deep learning era. We
ask this question: Can we learn 3D feature curve extraction
directly from the input of multi-view images?

In this work, we try to answer the question through learn-
ing a neural implicit field representing the density distribu-
tion of 3D edges from a set of calibrated multi-view im-
ages, inspired by the recent success of neural radiance field
(NeRF) [20]. We refer to this edge density field as Neu-
ral Edge Field (NEF). Similar to NeRF, NEF is optimized
with a view-based rendering loss where a 2D edge map is
rendered at a given view and is compared to the ground-
truth edge map extracted from the image of that view. The
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volumetric rendering is based on edge density and color
(gray-scale) predicted by MLPs along viewing rays. Dif-
ferent from NeRF, however, our goal is merely to optimize
the NEF which is later used for extracting parametric 3D
curves; no novel view synthesis is involved. The rendering-
based differentiable optimization of 3D edge density fully
exploits 2D edge detection, without needing a 3D geomet-
ric operator or cross-view edge correspondence. The latter
is implicitly learned with multi-view consistency.

Directly optimizing NEF as NeRF-like density is prob-
lematic since the range of density can be arbitrarily large
and different from scene to scene, and it is hard to select
a proper threshold to extract useful geometric shapes (e.g.,
3D surfaces for NeRF and 3D edges for NEF). Moreover,
NeRF density usually does not approximate the underlying
3D shape well due to noise. Therefore, we seek for confin-
ing the edge density in the range of [0, 1] through learning
a mapping function with a learnable scaling factor to map
the edge density to the actual NEF density. By doing so, we
can easily choose a threshold to extract edges robustly from
the optimized edge density.

Another issue with NEF optimization is the incompatible
visibility of the edge density field and the edges detected in
images. While the former is basically a wireframe represen-
tation of the underlying 3D shape and all edges are visible
from any view (i.e., no self-occlusion), edges in 2D images
can be occluded by the object itself. This leads to inconsis-
tent supervisions of different views with different visibility
and may cause false negative: An edge that should have
been present in NEF according to one view visible to the
edge may be suppressed by other views invisible. To ad-
dress this issue, we opt to 1) impose consistency between
density and color in NEF and 2) give less punishment on
non-edge pixels in the rendering loss, to allow the NEF to
keep all edges seen from all views. This essentially makes
NEF view-independent which is reasonable.

Having obtained the edge density, we fit parametric
curves by treating the 3D density volume as a point cloud of
edges. We optimize the control points of curves in a coarse-
to-fine manner. Since initialization is highly important to
such a non-convex optimization, we first apply line fitting
in a greedy fashion to cover most points. Based on the ini-
tialization, we then upgrade lines to cubic Bézier curves by
adding extra control points and optimize all curves simulta-
neously with an extra endpoint regularization.

We build a benchmark with a synthetic dataset consist-
ing of 115 CAD models with complicated shape structures
from ABC dataset [14] and utilize BlenderProc [7] to ren-
der posed images. Extensive experiments on the proposed
dataset show that NEF, which is self-trained with only 2D
supervisions, outperforms existing state-of-the-art methods
on all metrics. Our contributions include:

• A self-supervised 3D edge detection from multi-view

2D edges based neural implicit field optimization.
• Several technical designs to ensure learning a range-

limited and view-independent NEF and an iterative op-
timization strategy to reconstruct parametric curves.

• A benchmark for evaluating and comparing various
edge/curve extraction methods.

2. Related Work
Neural Radiance Fields. NeRF [20] have demonstrated
the remarkable ability for novel view synthesis. The basic
idea of NeRF to represent the geometry and appearance of
a scene as a radiance field, allowing querying color and vol-
ume density in continuous spatial positions and viewing di-
rections for rendering. Many extensions are designed on the
NeRF backbone, such as speeding up the training [25, 30]
and the inference [3, 13, 38], editing [17, 31, 40], generative
models [21, 27] and model reconstruction [22, 32, 37], and
more are discussed in [5, 9]. However, there are not many
works that utilize NeRFs to extract 3D skeletons/curves. We
propose Neural Edge Fields (NEF) to reconstruct 3D edges
from 2D images. The closest NeRF-based works to ours
are for model reconstruction [32,37], and we all recover the
precise shape geometry by defining the original density as a
transformed new representation. The difference is, they rep-
resent the surface by zero-level sets of the signed distance
function (SDF) and focus on surface reconstruction; while
we introduce edge density to represent the edge probability
at every spatial position by learning a NEF.

3D Parametric Curve Reconstruction. The basis of 3D
parametric curve reconstruction is point cloud edge detec-
tion algorithms. Traditional (non-learning) methods focus
on multi-view images [23], or local geometric properties of
point clouds such as normals [6, 34], curvatures [36], and
hierarchical clustering [8]. Recent data-driven methods of-
ten adopt edge detection as a binary classification for point
clouds. For each possible edge point, its neighborhood at-
tributes are taken as the learning features. With the progress
of network architectures, the classifier for edge detection
ranges from random forests [10, 11], Pointwise Multilayer
Perceptron (MLP) [33, 39] based on PointNet++ [24], to
capsule networks [2].

Representing point cloud edges as parametric curves is
more challenging. PIE-NET [33] learns to detect edges and
corners from point clouds, and generates parametric curve
proposals using networks, suppressing the invalid ones at
last. PC2WF [18] is composed of a sequence of feed-
forward blocks to sample point cloud as patches, to clas-
sify if the patch contains a corner. They regress the location
of corners, and connect all corners as parametric curves.
DEF [19] calculates estimates of the truncated distance-to-
feature field for each input point cloud by an extra set of
depth images in a patch-based manner, and fitting curves
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after corner detection and clustering. Unlike those works
requiring at least point clouds as input and training from la-
beled datasets, our method is self-supervised by 2D edges.

3. Method
To obtain 3D parametric curves from multi-view images,

the method consists of two steps: building neural edge fields
(NEF) and reconstructing parametric curves. As illustrated
in Fig. 1, 2D edge maps are predicted by a state-of-the-
art edge detection network PiDiNet [29], and NEF is built
from these multi-view edge maps, as introduced in Sec. 3.1.
Adopting NeRF directly on edge maps is problematic, and
there are many differences between edge maps and original
images. Edges are sparse, and inconsistent among views
due to occlusions. To deal with them, We introduce sev-
eral training losses specifically designed for NEF. To recon-
struct the parametric curves from 3D edge points, we intro-
duce two-stage coarse-to-fine optimization in Sec. 3.2. In
the coarse-stage, we simplify curves to straight lines, and fit
a group of lines to 3D edge points in a fit-and-delete strat-
egy. In the fine-stage, we upgrade straight lines into cubic
Bézier curves by adding extra control points.

3.1. Reconstructing 3D Edge Points

In this section, we learn a neural implicit filed represent-
ing the spatial distribution of 3D edges, named neural edge
field (NEF). We first introduce preliminaries about NeRF in
Sec. 3.1.1. The design of NEF is introduced in Sec. 3.1.2.
Training NEF requires specific loss designs, as introduced
in Sec. 3.1.3.

3.1.1 Preliminaries

NeRF [20] represents a continuous scene with an MLP
network, which maps 5D coordinates (location (x, y, z)
and viewing direction (θ, φ)) among camera rays, to color
(r, g, b) and volume density σ. After training, novel views
can be rendered from arbitrary camera poses, following vol-
ume rendering. Given the camera origin o and ray direction
d with near and far bounds tn and tf , the predicted pixel
color Ĉ of camera ray r(t) = o+ td is defined as follows:

Ĉ(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t), d)dt, (1)

where T (t) = exp
(
−
∫ t
tn
σ(r(s))ds

)
, and densities σ and

colors c are predictions of the MLP network. The loss func-
tion of NeRF is a re-rendering loss defined by the mean
squared error (MSE) between the rendered color Ĉ and the
ground truth pixel color C:

Lcolor =
∑
r∈Ri

||(C(r)− Ĉ(r))||2, (2)

where Ri is the set of rays in each training batch.
In our scenario, we adopt the structure of NeRF as back-

bone, but modify the color c = (r, g, b) to one-dimensional
gray value as c = (gray) to represent edge intensities.

3.1.2 Neural Edge Fields

We introduce neural edge fields (NEF), training from 2D
edge maps to represent the edge probability at every spa-
tial positions. While NeRFs synthesize photorealistic novel
views images based on the differentiable volume rendering,
their volume density does not approximate the actual 3D
shape very well. Similar cases also exist for NEF. The NEF
density does not approximate the actual 3D edges. The
range and scale of NEF density also varies from scene to
scene, making the 3D edges difficult to extract from them.
Recently, NeuS [32] and VolSDF [37] represent the object
surface by the signed distance function (SDF) and mapping
SDF to volume density of NeRFs by a distribution function.
Similarly, we introduce an intermediate density field, called
edge density, before NEF densities, as illustrated in Fig. 3.
During training, with proper supervisions/constraints on
edge densities, they are expected to approximate the 3D
edges well. Edge density describes the edge probability
at each position. It is in the range of [0, 1], to be unified
with 2D edges (1 represents edge and 0 is non-edge). Af-
ter mapping functions, we can transform edge densities to
NEF densities, which are used for volume rendering. Given
x ∈ R3 represent the space occupied by the object in R3,
and E(x) represent the value of edge density in location x,
the NEF density σ is calculated by:

σ(x) = α(1 + e−g(E(x)−β))−1, (3)

where α is a trainable parameter to control the density scale,
β is the mean to control the function position, and g ad-
just the distribution around [0, 1]. The edge density is ex-
pected to adaptively match the distribution of NEF density,
and should also be easily binarized by a unified threshold.
Thus, to ensure a proper mapping from edge density to NEF
density, we set β = 0.8 and g = 10 in all experiments, and
α is a trainable parameter. As illustrated in Fig 2, α value
varies from scene to scene. The edge density is obtained
by adding an extra sigmoid layer after the original NeRF
MLPs. We add another MLPs of 4 hidden layers with a size
of 256 to predict the gray value c by edge densities and view
directions. The network architecture is shown in Fig. 3.

3.1.3 Training NEFs

Training NEF as NeRF is problematic due to several prob-
lems. Firstly, 3D edges are similar to 3D skeletons of the
object, and in volume rendering, samples are sparse along
rays, making the network easily stuck in local optima. Sec-
ondly, 2D edge maps do not match the actual 3D wire-
frame, due to occlusions. Edges may not be visible in all
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(a) The curves of the transforma-
tion from edge density to the volume
density with different α.

(b) The curves of five randomly se-
lected samples that show α× 10−4

during training iterations.

Figure 2. Examples of the transformation and variety trend of α
in Eqn 3. As in (a), with edge density ranging from 0 to 1, we
can adaptively match NEF density. Adapting to different scenes is
controlled by the trainable parameter α as in (b).
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Figure 3. 3D location (x, y, z) and viewing direction (θ, φ) are fed
into the network after positional encoding (PE). The NEF density
σ is mapped from the edge density with a learnable scale.

views, leading to inconsistencies among views. We intro-
duce the weighted mean squared error loss (W-MSE) and
consistency loss to solve these two problems. Furthermore,
to encourage the sparsity of points in NEF, we also intro-
duce a sparsity loss.

With three loss designs, we are able to stably train NEF
supervised by 2D images. The final loss function is repre-
sented as:

L = λ1Lcolor + λ2Lconsistency + λ3Lsparsity, (4)

where the balancing parameters λ1, λ2, λ3 are set to 1, 1
and 0.01 respectively in all experiments.

Once NEF is trained, we set a fixed threshold of 0.7 to
binarize edge densities, to extract 3D edge points from NEF.

W-MSE loss. We obtain 2D edge maps from a
lightweight edge detector PiDiNet [29]. On edge maps,
edge pixels are in white color and often sparsely distributed.
Therefore, when training NEF, edge and non-edge pixels
are highly imbalanced, which leads to very sparse samples
along rays. In this case, the network is easy to degenerate to
local optima. A most common degeneration case is to pre-
dict all densities and colors are zeros, and the rendered im-
ages are all black. Therefore, we modify the original color
loss by adding an adaptive weight W (r) in each batch. The
weighted mean squared error loss (W-MSE) is defined as:

Lcolor =
∑
r∈Ri

W (r)||(C(r)− Ĉ(r))||2, (5)

Input Image Input Edge Map Rendered Edge Map

Figure 4. The green points denotes the edges that can be seen
and detected in a given view. The yellow points mean edges that
are visible in this view, but are hard to be detected (i.e. improper
illumination). The red ones mean edges that are totally occluded
but can be seen in other views. Our method integrates edges seen
from multiple views, and can re-render all edges for this view.

in which

W (r) =


|C+|

|C+|+|C−| , if C(r) <= η,

|C−|
|C+|+|C−| , if C(r) > η,

(6)

whereC+ andC− denote the number of edge and non-edge
pixels in each batch decided by the threshold η. We set η to
0.3 throughout the paper. The adaptive weight is simple yet
effective by enforcing the network to focus more on edge
pixels/rays, avoiding degenerating.

Consistency loss. The edge map of each view does not
match the real 3D wireframe. On a 2D edge map, not all
edges are visible due to occlusions. It means the “ground
truths” are not exactly correct, missing those invisible edges
in each view.

To successfully reconstruct 3D edge points from these
2D edge maps, we should recover the complete edge map of
each view by integrating the information from other views
where the occluded edges are visible, as shown in Fig 4. For
each view, occluded edges are invisible in the image, as well
as the edge map. NEF will be confused during training due
to such inconsistencies among views. In each view, there
are many false-negative pixels which on “ground truth” are
non-edges. Such inconsistency brings noisy NEF around
the object surface in spatial positions. For these occluded
edges, the value of edge density is close to 1, but the color is
close to 0 to fit those false-negative samples. Therefore, we
enforce the value of edge density and color intensity (both
are within [0, 1]) to be consistent for all samples along rays,
to reduce the false-negative pixels. The consistency loss is
also calculated by mean squared error, and defined as:

Lconsistency =
∑
r∈Ri

||(E(r)− c(r))||2. (7)

Since the W-MSE loss in Eqn. 5 encourages NEF to fo-
cus more on edge pixels and give less punishment to non-
edge pixels. Thus, combining W-MSE loss and consistency
loss, not only stabilizes the training process, but also en-
courages NEF to occluded edges, by learning from other
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views. After training, the re-rendered edge maps by NEF
successfully recover those invisible edges, as illustrated in
Fig. 4. Thus, adopting different 2D edge detectors have lim-
ited influences on NEF reconstruction. With the consistency
loss, NEF automatically corrects missing 2D edges, no mat-
ter they are occluded or missed by detectors (See Sec. 4.3).

Sparsity loss. As mentioned, edges are sparse in both 2D
and 3D spaces. To encourage spatial sparsity, as well as
accelerating the convergence, we add an extra regularizer,
sparsity loss, to penalize unnecessary edge densities along
rays of non-edge pixels during training. We adopt Cauchy
loss [1] as the sparsity regularizer, which is highly robust to
outliers. The sparsity loss is defined as:

Lsparsity =
∑
i,j

log
(
1 +

E(ri(tj))
2

s

)
, (8)

where i indexes non-edge pixels of input edge maps, j in-
dexes samples along the corresponding rays, s control the
scale of the regularizer. We fix s = 0.5.

3.2. Extracting 3D Parametric Curves

With 3D edge point clouds from NEF, we further extract
parametric curves. We extract Bézier curves from 3D edges
in a coarse-to-fine manner. The objective of optimization
is introduced in Sec. 3.2.1. The coarse-to-fine pipeline is
introduced in Sec. 3.2.2.

3.2.1 Bézier Curves Optimization.

We adopt cubic Bézier curves to represent the geometri-
cal shape of 3D edges. For each curve, we optimize the
positions of four control points. The first and last con-
trol points define the beginning and ending positions, and
the other two control points lead to different curvatures.
Straight lines can be considered as linear Bézier curves with
two control points. The goal is to optimize a set of pa-
rameters (positions of four control points) for all curves
{curvei}ni=1 = {{pji}4j=1}ni=1 to fit the 3D point cloud.
The number of curves n varies for different objects. To
optimize the curve fitting, we sample 100 points on each
curve, and dilate them up to 500 by adding Gaussian noise
around them. We apply the widely-used Chamfer Distance
(CD) to compute the distances between the curve points and
3D edge points. Pc and Pt represent the sampled points
from curves and the target 3D edge points, respectively, the
Chamfer loss is defined as:

LCD(Pc, Pt) = γ
1

|Pc|
∑
x∈Pc

min
y∈Pt

‖x− y‖22+

1

|Pt|
∑
y∈Pt

min
x∈Pc

‖x− y‖22,
(9)

where γ is the parameter to control the tendency for each
side (γ = 1 for original Chamfer loss). Each point in Pc

. . .

Optimize one by one
Delete edge points
Optimize all curves

Input point 
cloud edges

Figure 5. We iteratively optimize lines one by one to fit the 3D
edge points, and follow a fit-and-delete strategy. The process con-
tinues until very few points are left. Fitted lines are shown with
different colors.

finds the closest point in Pt (and vice-versa), and calcu-
lates the average pair-wise point-level distance. A bigger γ
means the optimization focus more on minimizing the dis-
tance from Pc to Pt.

By minimizing CD, we fit Bézier curves to 3D edge
points. However, the optimization of CD is insensitive to
endpoint details, and we find that many curves are not con-
nected. To encourage curve connections, we add a reg-
ularizer in the objective function, to encourage endpoints
which are close in space to meet. Two endpoints of each
Bézier curve are the first and the last control points, and the
endpoints of all curves {curvei}ni=1 are termed as PE =

{{pji}j=1,4}ni=1. The endpoint regularizer is defined as:

LEP =
∑

x,y∈PE

M‖x− y‖22, (10)

in which

M =

{
1, if x− y <= d,
0, if x− y > d,

(11)

M is a mask to ensure the endpoints loss only regularize
those endpoints that are close enough to each other (within
the distance d). At last, the objective function to optimize
all curves:

argmin
{{pji}4j=1}ni=1

(LCD + λLEP ), (12)

where λ is set to 0.01 in all experiments.

3.2.2 Coarse-to-fine Scheme

The objective function of optimization is highly non-
convex, making it easy for control points to converge to lo-
cal minima. Therefore, the initialization of Bézier curves
has a significant impact on the final result of the optimiza-
tion. It is also difficult to select a proper number of curves
that is suitable for all objects. Thus, we design a coarse-to-
fine pipeline to extract curves. At coarse-level, we down-
grade cubic Bézier to straight lines, and fit a set of lines to
3D edge points. At fine-level, we upgrade lines to cubic
Bézier curves, and connect the endpoints of curves.
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PIE-NET PC2WF Ours (Curve) Ours (Edge) GTImage DEF

Figure 6. Qualitative comparisons against other methods. From left to right, we present the rendered image, the results of PIE-NET,
PC2WF, DEF, our reconstructed curves, our point cloud edges obtained from edge densities, and the ground truth edges. Other approaches
are trained on point clouds from ABC dataset, and ours is self-supervised by 2D edge maps.

Coarse-level optimization. Instead of optimizing all
lines simultaneously, we iteratively optimize the lines one
by one with a fit-and-delete strategy. Specifically, during
each iteration, we enlarge γ to 5 in Chamfer loss (Eqn. 9),
to encourage one line (linear curve) to fit partial 3D edge
points to the utmost. After one line is decided, we delete
the 3D edge points around the line and record its param-
eters. The process continues until there are not many 3D
edge points left (i.e. <20). The group of lines fitted works
as initialization to the fine level. We demonstrate the pro-
cess of coarse-level optimization in Fig 5. Since the lines
are fitted one by one, we do not consider endpoints regular-
ization at this level.

Fine-level optimization. Coarse-level optimization ini-
tializes the number of lines, as well as the beginning and
ending positions. In fine-level, we upgrade all straight lines
back to cubic Bézier curves by interpolating another two
control points between the endpoints pair, and solve the op-
timization in Eqn. 12. The resulting parametric curves pre-
cisely match the 3D edge points as demonstrated in Fig. 6.

4. Experiments
We compare with state-of-the-art methods and conduct

ablations on the contributed ABC-NEF dataset. More ex-
periments, discussions, training details and video demos are
in the Supplementary.

4.1. ABC-NEF Dataset.

As previous works [18, 19, 33], we conduct experiments
on the ABC dataset [14] which consists of more than one
million CAD models with edge annotations. To evaluate our
pipeline, we provide a dataset called ABC-NEF, consisting
of 115 distinct and challenging CAD models. They include

various types of surfaces and curves, from the first chunk
of the ABC dataset. We adopt BlenderProc [7] to render
posed images facing the center of the object. We sample
50 views of 800 × 800 image rays for each object. The 50
views are sampled by evenly placing cameras on a sphere
by Fibonacci sampling [12]. Statistical analysis of ABC-
NEF dataset and ablations about the number of views are
included in the supplementary material.

4.2. Comparisons with state-of-the-arts

Comparison Settings. We compare the proposed
method with three most state-of-the-art data-driven meth-
ods of parametric curve reconstruction, PIE-NET [33],
PC2WF [18] and DEF [19]. All three methods require
point clouds as inputs, while ours require only 2D images.
Following the settings in their papers, for PIE-NET, we
apply the farthest point sampling method to uniformly
sample 8096 clean point clouds that represent the object
shape as the inputs, the outputs of PIE-NET contains closed
and open curves. For PC2WF, we sub-sample 200,000
points for each object from surface meshes as the inputs,
it outputs pairs of endpoints representing straight lines.
For DEF, the inputs contain 128 views of depth maps and
point clouds. In DEF, depth maps are collected to build a
distance-to-feature field, which is used to detect corners on
point clouds and extract spline curves.

We adopt their pre-trained models to reconstruct para-
metric curves for evaluation. Since PC2WF is designed to
detect straight lines, we also make comparisons on a subset
of the proposed ABC-NEF which contains 26 CAD models
of only lines, named ABC-NEF-Line.

Evaluation Metrics. We sample points on reconstructed
parametric curves and evaluate distances between the sam-
pled points and ground truth edge points. To ensure the
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Image Detected Edge ℒ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ℒ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+ ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ℒ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+ ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + ℒconsistency

Figure 7. From left to right, we present 2D images and detected edge maps in a given view, followed by the rendered edge map and depth
map of three loss combinations. Rendered depth maps show the spatial distribution of the edge density field. The sparsity regularization
eliminates most noise around the object, and the consistency loss makes the edge density clearly aligned with 2D edges and easy to be
separated from the background.

points are evenly distributed, we down-sample the points
on voxel grids, so there is at most one point per voxel.

To measure the location of reconstructed 3D edges, we
adopt the Intersection over Union (IoU), precision, recall
and their F-score. However, a small shift between two point
clouds may lead to large changes on above metrics. We also
adopt the Chamfer Distance (CD) between point clouds, to
measure the geometric accuracy of reconstructed paramet-
ric curves. A small shift between point clouds would not
affect much for CD. Before comparison, we normalize and
align all ground truth edges and curve predictions into the
range of [0, 1]. After normalization, when evaluating IoU,
precision, recall and F-score, points are considered matched
if there exists at least one ground truth point with the L2 dis-
tance smaller than 0.02.

Comparison Results. As reported in Table 1, our self-
supervised method with only 2D supervisions signifi-
cantly outperforms other state-of-the-arts in all metrics and
datasets. We observe that PIE-NET and PC2WF both
achieve much higher precision than recall, which means
they often miss curves, but the detected curves locate pre-
cisely. Although PC2WF is designed to detect straight
lines, we notice on ABC-NEF-Line dataset, our method still
achieves better performance.

We illustrate qualitative performance in Fig. 6. The re-
sults show that PIE-NET and DEF can detect and locate
most curves well, and PC2WF is proficient in reconstruct-
ing line structures. However, limited by the design, PC2WF
can only detect lines and struggles in capturing any other
types of curves. Since PIE-NET is exactly trained on sharp
features, leading to incompetent performance around ellipse
edges and areas with relatively weak curvature. Meanwhile,
DEF reconstructs curves mainly based on a continuous and
smooth distance-to-feature field, thus has trouble in dis-
criminating close curves and tends to incorrectly connect
adjacent curves. We also notice these methods reconstruct
curves heavily relying on corner detection, thus failing to
cover all edges if some corners are missed. Essentially,

Dataset Method CD↓ precision↑ recall↑ F-score↑ IoU↑

A-N

PIE-NET 0.0708 0.9072 0.7204 0.7846 0.6709
PC2WF 0.1382 0.9043 0.5525 0.6348 0.5074

DEF 0.0402 0.8343 0.7802 0.8009 0.7368
Ours 0.0353 0.9387 0.8838 0.9044 0.8283

A-N-L

PIE-NET 0.0409 0.9481 0.8321 0.8803 0.7934
PC2WF 0.0614 0.9317 0.7746 0.8200 0.7492

DEF 0.0433 0.8118 0.7551 0.7757 0.7197
Ours 0.0287 0.9717 0.9070 0.9353 0.8766

Table 1. Quantitative comparisons to state-of-the-art methods.
Note that our method is self-supervised by 2D edge maps, while
others are trained on point clouds sampled from the ABC dataset.
“A-N” denotes ABC-NEF dataset and “A-N-L” denotes ABC-
NEF-Line dataset.

these data-driven methods, may suffer from reconstructing
curves for out-of-distribution shapes. On the contrary, our
method benefits from the self-supervised pipeline, and can
be trained on natural images. More comparisons and dis-
cussions are in the supplementary material.

4.3. Ablation Studies

We perform ablation studies to verify the inclusion of
each loss and design. W-MSE loss in Eqn. 5 is essential
to learn the NEF due to the imbalanced edge and non-edge
pixels (rays). Without W-MSE loss, the training of NEF
would suffer from degenerating of predicting all-zero fields.
Therefore, we take NEF with W-MSE loss as the baseline
version, and evaluate sparsity and consistency losses.

For better visualization, we compare the quality of edge
densities by illustrating the rendered depth maps. Since a
depth map is essentially rendered by accumulated NEF den-
sities along rays, and exactly conveys the spatial distribution
of edge density. As shown in Fig. 7, the network may gener-
ate random noisy densities in the scene without sparsity reg-
ularization. Without consistency loss, the network is trained
to fit the incorrect “ground truth”, missing occluded edges,
thus overfit 2D edges in each view and fails to reconstruct
consistent 3D edges.

After getting 3D edge points, we reconstruct paramet-

8492



Without
Endpoints Loss

Without
Initialization

Without
Line-to-curve Full result GTEdge 

Density

Figure 8. Based on 3D edge points, we show the reconstructed
parametric curves of ablations by excluding critical designs from
the full version.

ric curves in a coarse-to-fine manner. We demonstrate the
necessity of our designs by removing each part individu-
ally. We show the optimization results with and without the
coarse-level initialization, the line-to-curve strategy, and the
endpoint loss in Fig. 8. Quantitative results of the selected
samples are shown in Table 2. The curves are quite noisy
without the coarse-level initialization. In the coarse-level,
if we try to fit cubic Bézier curves without initializing from
straight lines, one cubic Bézier curve may fit multiple con-
nected straight lines. Therefore, without the line-to-curve
strategy, the total number of curves may be insufficient for
global optimization and further influence the endpoints loss.
The endpoints loss works to refine all curves to be com-
pactly connected. With all designed strategies, our full re-
sults are clean, compact and fit the geometrical shapes.

Method CD↓ F-score↑ IoU↑
Without Initialization 0.0734 0.5016 0.3216
Without Line-to-curve 0.0202 0.9715 0.9387

Without Endpoints Loss 0.02 0.9805 0.959
Full result 0.0189 0.9935 0.9851

Table 2. Quantitative results of data in Fig. 8. Initialization im-
proves performance on all metrics significantly. Although the
line-to-curve strategy and the endpoints loss seem to bring little
improvement, but they help to refine the curves to match the real
geometrical shape and to be visually plausible.

We also conduct ablations on other edge detector (i.e.
Canny), noisy 2D edge maps detected on blurred images
(Gaussian Blur with a 9 × 9 kernel size), and randomly
dropout 30% and 50% image (edge) pixels for all views to
test the robustness of our method. As in Fig. 9, all alter-
natives perform reasonably. Even if edge maps are badly
broken, it still restores the rough 3D shape.

4.4. Real-world Scene

We also test the performance of NEF for several col-
lected toys with sharp geometry in the real-world scene. We
took a video surrounding and looking at the target toys, and
cut about 60 frames as the input. We apply COLMAP [26],

Image PiDiNet Canny

Dropout 50%Dropout 30%Blur

Figure 9. Ablations of Canny detector and low-quality 2D edge
maps. For each ablation, from left to right, it shows the detected
2D edge, the rendered edge and depth map (which reveals the dis-
tribution of edge densities).

…

…

Input 2D Images Get Poses and 2D Edges 3D Edge Points 3D Parametric Curves

Figure 10. Input a set of multi-view images cut from a video, we
use COLMAP [26] to get camera poses, detect 2D edge maps by
PiDiNet [29], and reconstruct 3D curves.

a well-known structure-from-motion (SFM) solver, to esti-
mate the camera poses for the input images. We still ap-
ply the pre-trained PiDiNeT [29] to extract 2D edge maps,
train the NEF, and reconstruct curves from extracted edge
points. The process is illustrated in Fig. 10. The recon-
structed results show the potential of our method to extract
3D edge points and reconstruct parametric curves in real-
world scenes, even with camera poses that are not com-
pletely correct.

5. Conclusions

We presented the first self-supervised pipeline for 3D
parametric curve reconstruction by learning a neural edge
field. Self-supervised by only 2D supervisions, our method
achieves comparable and even better curve reconstruction
than alternatives taking clean and complete point clouds as
inputs. Our method shows the potential of generalization
ability and leveraging advantages of multi-modal informa-
tion. The method has limitations in dealing with textured
objects, edges inside the objects, and the network architec-
ture would be optimized to be simpler. More discussions
are in the Supplementary.
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