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Figure 1. Panoptic Visual Odometry. PVO takes monocular video as input and outputs the panoptic 3D map while simultaneously

localizing the camera itself with respect to the map.

Abstract

We present PVO, a novel panoptic visual odometry frame-
work to achieve more comprehensive modeling of the scene
motion, geometry, and panoptic segmentation information.
Our PVO models visual odometry (VO) and video panop-
tic segmentation (VPS) in a unified view, which makes the
two tasks mutually beneficial. Specifically, we introduce
a panoptic update module into the VO Module with the
guidance of image panoptic segmentation. This Panoptic-
Enhanced VO Module can alleviate the impact of dynamic
objects in the camera pose estimation with a panoptic-aware
dynamic mask. On the other hand, the VO-Enhanced VPS
Module also improves the segmentation accuracy by fusing
the panoptic segmentation result of the current frame on the
fly to the adjacent frames, using geometric information such
as camera pose, depth, and optical flow obtained from the
VO Module. These two modules contribute to each other
through recurrent iterative optimization. Extensive exper-
iments demonstrate that PVO outperforms state-of-the-art
methods in both visual odometry and video panoptic segmen-
tation tasks.

* indicates equal contribution. " indicates the corresponding author.

1. Introduction

Understanding the motion, geometry, and panoptic seg-
mentation of the scene plays a crucial role in computer vision
and robotics, with applications ranging from autonomous
driving to augmented reality. In this work, we take a step to-
ward solving this problem to achieve a more comprehensive
modeling of the scene with monocular videos.

Two tasks have been proposed to address this problem,
namely visual odometry (VO) and video panoptic segmen-
tation (VPS). In particular, VO [9, | 1,36] takes monocular
videos as input and estimates the camera poses under the
static scene assumption. To handle dynamic objects in the
scene, some dynamic SLAM systems [2, 43] use instance
segmentation network [14] for segmentation and explicitly
filter out certain classes of objects, which are potentially
dynamic, such as pedestrians or vehicles. However, such ap-
proaches ignore the fact that potentially dynamic objects can
actually be stationary in the scene, such as a parked vehicle.
In contrast, VPS [17,42,49] focuses on tracking individual
instances in the scene across video frames given some ini-
tial panoptic segmentation results. Current VPS methods
do not explicitly distinguish whether the object instance is
moving or not. Although existing approaches broadly solve
these two tasks independently, it is worth noticing that dy-
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namic objects in the scene can make both tasks challenging.
Recognizing this relevance between the two tasks, some
methods [5,7,19,21] try to tackle both tasks simultaneously
and train motion-semantics networks in a multi-task man-
ner, shown in Fig. 2. However, the loss functions used in
these approaches may contradict each other, thus leading to
performance drops.

In this work, we propose a novel panoptic visual odom-
etry (PVO) framework that tightly couples these two tasks
using a unified view to model the scene comprehensively.
Our insight is that VPS can adjust the weight of VO with
panoptic segmentation information (the weights of the pixels
of each instance should be correlated) and VO can convert
the tracking and fusion of video panoptic segmentation from
2D to 3D. Inspired by the seminal Expectation-Maximization
algorithm [26], recurrent iterative optimization strategy can
make these two tasks mutually beneficial.

Our PVO consists of three modules, an image panoptic
segmentation module, a Panoptic-Enhanced VO Module,
and a VO-Enhanced VPS Module. Specifically, the panoptic
segmentation module (see Sec. 3.1) takes in single images
and outputs the image panoptic segmentation results, which
are then fed into the Panoptic-Enhanced VO Module as ini-
tialization. Note that although we choose PanopticFPN [20],
any segmentation model can be used in the panoptic segmen-
tation module. In the Panoptic-Enhanced VO Module (see
Sec. 3.2), we propose a panoptic update module to filter out
the interference of dynamic objects and hence improve the
accuracy of pose estimation in the dynamic scene. In the
VO-Enhanced VPS Module (see Sec. 3.3), we introduce an
online fusion mechanism to align the multi-resolution fea-
tures of the current frame to the adjacent frames based on the
estimated pose, depth, and optical flow. This online fusion
mechanism can effectively solve the problem of multiple
object occlusion. Experiments show that the recurrent itera-
tive optimization strategy improves the performance of both
VO and VPS. Overall, our contributions are summarized as
four-fold.

* We present a novel Panoptic Visual Odometry (PVO)
framework, which can unify VO and VPS tasks to
model the scene comprehensively.

* A panoptic update module is introduced and incorpo-
rated into the Panoptic-Enhanced VO Module to im-
prove pose estimation.

* An online fusion mechanism is proposed in the VO-
Enhanced VPS Module, which helps to improve video
panoptic segmentation.

» Extensive experiments demonstrate that the proposed
PVO with recurrent iterative optimization is superior
to state-of-the-art methods in both visual odometry and
video panoptic segmentation tasks.
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Figure 2. Illustration. Our PVO unifies visual odometry and
video panoptic segmentation so that the two tasks can be mutually
reinforced by iterative optimization. In contrast, methods such as
SimVODIS [19] optimize motion and semantic information in a
multi-task manner.

Instances

2. Related Work
2.1. Video Panoptic Segmentation

Video panoptic segmentation aims to generate consistent
panoptic segmentation and track the instances to all pixels
across video frames. A pioneer work, VPSNet [17] de-
fines this novel task and proposes an instance-level tracking-
based approach. SiamTrack [42] extends VPSNet by propos-
ing a pixel-tube matching loss and a contrast loss to im-
prove the discriminative power of instance embedding. VIP-
Deeplab [30] presents a depth-aware VPS network by in-
troducing additional depth information. While STEP [4 1]
proposes to segment and track every pixel for video panop-
tic segmentation. HybridTracker [49] proposes to track in-
stances from two perspectives: the feature space and the
spatial location. Different from existing methods, we in-
troduce a VO-Enhanced VPS Module, which exploits the
camera pose, depth, and optical flow estimated from VO
to track and fuse information from the current frame to the
adjacent frames, and can handle occlusion.

2.2. SLAM and Visual Odometry

SLAM stands for simultaneous self-localization and map
construction, and visual odometry, serving as the front end of
SLAM, focuses on pose estimation. Modern SLAM systems
roughly fall into two categories, geometry-based methods [8,

,27,48], and learning-based methods [35,37,40,54]. With
the promising performance of supervised learning-based
methods, unsupervised learning-based VO methods [31,51,

] have received much attention, but they do not perform

as well as supervised ones. Some unsupervised methods [ 15,
, 56] exploit multi-task learning with auxiliary tasks such
as depth and optical flow to improve performance.

Recently, TartanVO [38] proposes to build a generalizable
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Figure 3. Panoptic Visual Odometry Framework. Our method consists of three modules, namely, an image panoptic segmentation module
for system initialization (blue), a Panoptic-Enhanced VO Module (orange), and a VO-Enhanced VPS Module (red). The last two modules

contribute to each other in a recurrent iterative manner.

learning-based VO and tests the system on a challenging
SLAM dataset, TartanAir [39]. DROID-SLAM [34] pro-
poses to iteratively update the camera pose and pixel-wise
depth with a dense bundle adjustment layer and demonstrates
superior performance. DeFlowSLAM [50] further proposes
dual-flow representation and a self-supervised method to im-
prove the performance of the SLAM system in dynamic
scenes. To tackle the challenge of dynamic scenes, dy-
namic SLAM systems [4, 13] usually leverage semantic
information as constraints [23] or prior to improve the per-
formance of the conventional geometric-based SLAM, but
they [1,2,10,25,29,32,45,53,55] mostly act on the stereo,
RGBD, or LiDAR sequences. Instead, we introduce a panop-
tic update module and build the panoptic-enhanced VO on
DROID-SLAM, and can work on monocular videos. Such a
combination makes it possible to better understand of scene
geometry and semantics, hence more robust to the dynamic
objects in the scenes. Unlike other multi-task end-to-end
models [19], our PVO has a recurrent iterative optimization
strategy that prevents the tasks from jeopardizing each other.

3. Method

Given a monocular video, PVO aims for simultaneous
localization and panoptic 3D mapping. Fig. 3 depicts the
framework of the PVO model. It consists of three main mod-
ules: an image panoptic segmentation module, a Panoptic-
Enhanced VO Module, and a VO-Enhanced VPS Module.
The VO Module aims at estimating camera pose, depth, and
optical flow, while the VPS Module outputs the correspond-
ing video panoptic segmentation. The last two modules

contribute to each other in a recurrent interactive manner.

3.1. Image Panoptic Segmentation

Image panoptic segmentation takes single images as input,
and outputs the panoptic segmentation results of the images,
which combines semantic segmentation and instance seg-
mentation to model the instances of the image comprehen-
sively. The output result is used to initialize video panoptic
segmentation and then fed into the Panoptic-Enhanced VO
Module (see Sec. 3.2). In our experiments, if not specifically
indicated, we use the widely-used image panoptic segmen-
tation network, PanopticFPN [20]. PanopticFPN is built
on the backbone of ResNet fp, with weight 6, and extracts
multi-scale features of image I;:

z = fo, () 6]

It outputs the panoptic segmentation results using a decoder
gq, with weights 6, consisting of semantic segmentation
and instance segmentation. The panoptic segmentation re-
sults of each pixel p are:

P(plz;) :ged(Pazt) (2

The multi-scale features which are fed into the decoder
are updated over time. In the beginning, the multi-scale
features generated by the encoder are directly fed into the
decoder (Fig. 3 blue part). In the later timesteps, these multi-
scale features are updated with the online feature fusion
module before being fed into the decoder (see Sec. 3.3).
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3.2. Panoptic-Enhanced VO Module

In visual odometry, where dynamic scenes are ubiqui-
tous, it is crucial to filter out the interference of dynamic
objects. The front-end of DROID-SLAM [34] takes monoc-
ular video {I; }f’: o as input and optimizes the residuals of
camera pose {G,}_, € SE(3) and inverse depth d, € R} <"
by iteratively optimizing optical flow delta r;; € RF*Wx2
with confidence w;; € R?*W>2_ 1t does not consider that
most backgrounds are static, foreground objects may be dy-
namic, and the weights of the pixels of each object should
be correlated. The insight of the Panoptic-Enhanced VO
Module (see Fig. 4) is to assist in obtaining better confidence
estimation (see Fig. 7), by incorporating information from
the panoptic segmentation. Thus, Panoptic-Enhanced VO
can get more accurate camera poses. Next, we will briefly
review the similar part (feature extraction and correlation)
with DROID-SLAM, and focus on the sophisticated design
of the panoptic update module.

3.2.1 Feature Extraction and Correlation

Feature Extraction. Similar to DROID-SLAM [34], the
Panoptic-Enhanced VO Module borrows the key compo-
nents of RAFT [33] to extract the features. We use two
separate networks (a feature encoder and a context encoder)
to extract the multi-scale features of each image, where the
features from the feature encoder are exploited to construct
4D correlation volumes of pair images, and the features from
the context encoder are injected into the panoptic update
module (see Sec. 3.2.2). The structure of the feature encoder
is similar to the backbone of the panoptic segmentation net-
work, and they can use a shared encoder. Note that for
implementation convenience, we use different encoders.
Correlation Pyramid and Lookup. Similar to DROID-
SLAM [34], we adopt a frame graph (¥,&) to indicate
the co-visibility between frames. For example, an edge
(i,]) € & represents the two images /; and /; maintaining
overlapped areas, and a 4D correlation volume can be con-
structed through dot product between the feature vectors of
these two images:

C7 = (go(I}),80(I))) 3)

The average pooling layer is followed to gain the pyramid
correlation. We use the same lookup operator defined in
DROID-SLAM [34] to index the pyramid correlation volume
values with bilinear interpolation. These correlation features
are concatenated, resulting in the final feature vectors.

3.2.2 Panoptic Update Module

The Panoptic-Enhanced VO Module (see Fig. 4) which in-
herits from the front-end VO Module of DROID-SLAM,
leverages the panoptic segmentation information to adjust
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Figure 4. Panoptic-Enhanced VO Module. The Panoptic-
Enhanced VO Module mainly feeds the 4D correlation volumes,
the context information from the context encoder, and the flow
information into the panoptic update module. The panoptic update
module iterates N times to obtain better depth, pose, and optical
flow estimation. The panoptic segmentation information is used to
adjust the correlation weight and the optical flow is initialized as 0
and iteratively updated with the DBA layer.

the weight of VO. The flow information obtained by feed-
ing the initial optical flow to the flow encoder and the 4D
correlation volumes established from the two frames and
the features acquired by the context encoder are fed to the
GRU as intermediate variables, and then the three convo-
lutional layers output a dynamic mask My;; € RHXWX2 5
correlation confidence map w;; € R¥*">2 and a dense opti-
cal flow delta r;; € R¥>*W>2 respectively. We can adjust the
dynamic mask to the panoptic-aware dynamic mask given
the initialized panoptic segmentation. For understanding, we
leave the notation unchanged. Especially, the stuff segmen-
tation will be set as static, while the foreground objects with
high dynamic probability will be set as dynamic. The confi-
dence and panoptic-aware dynamic mask are passed through
a panoptic-aware filter module to obtain the panoptic-aware
confidence:

Wp,; = sigmoid(w;; + (1 —Ma;;) - 1) “)

where 7 is set as 10 in our experiment.

The obtained flow delta r;; adding the original optical
flow is fed to the dense bundle adjustment (DBA) layer to
optimize the residual of the inverse depth and the pose. The
panoptic update module is iteratively optimized N times until
convergence. Following DROID-SLAM [34], the pose resid-
uals A& (" are transformed on the SE3 manifold to update
the current pose, while the residuals of depth and dynamic
mask are added to the current depth and dynamic mask,
respectively:

G+ = Exp(A& (")) oG (5)
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0"l = A0 + 0™, 0 € {d,Mq} ©

Correspondence. We first use the current pose and depth
estimates at each iteration to search for the correspondence.
Refer to DROID-SLAM [34], for each pixel coordinates
p: € RF*W>2 in frame i, the dense correspondence field p;;
for each edge (i, j) € & in the frame graph can be computed
as follows:

pij =Ie(GijoIL ' (pi,dy), pij € RTM*2, Gy = GjoG !
N
where I, is the camera model that reprojects 3D coordinate
points to the image plane, while IT_! is the inverse function
that projects the 2D coordinate grid p; and the inverse depth
map d to the 3D coordinate points. G;; represents the rela-
tive pose of the images I; and /;. p;; is 2D coordinate grid
when the coordinate of pixel p; is mapped to j frame with the
current estimated pose and depth. The corrected correspon-
dence represents the sum of the predicted correspondence
and the optical flow residuals, i.e. p;; = pi;j +rij.
DBA Layer. We use the dense bundle adjustment layer
(DBA) defined in DROID-SLAM [34] to map stream revi-
sions to update the current estimated pixel-wise depths and
poses. The cost function can be defined as follows:

EG,d)= Y ||pj;—(G,oIL (p.d))2 @)
(i) Y

Y= diagwpij 9

We use the Schur complement to solve this non-linear least
squares problem, Eq. 8. The Gauss-Newton algorithm is
exploited to update the residuals of the pose (A), the depth,
and the mask (A®).

3.3. VO-Enhanced VPS Module

Video panoptic segmentation aims to obtain panoptic
segmentation results for each frame and maintain the seg-
mentation’s consistency between frames. To improve the
segmentation accuracy and tracking accuracy, some methods
such as FuseTrack [17] try to use optical flow information
to fuse features and track them according to the similarity
of features. These methods only come from a 2D perspec-
tive that may encounter occlusion or violent motion. We
live in a 3D world where additional depth information can
be used to model the scene better. Our VO-Enhanced VPS
Module is based on this understanding and can better solve
the mentioned problems.

Fig. 5 shows the VO-Enhanced VPS Module, which ob-
tains the warped feature by warping the feature of the previ-
ous frame ¢ — 1 to the current frame t, using the depth, pose,
and optical flow information obtained from visual odometry.
An online fusion module will fuse the features of the current
frame t and the warped features to obtain the fused features.

ﬁ Feature Map t
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Feature Map t-1 ! Map -1 E
v v
Pose Decoder ]

Depth —— v A
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-——m h

Video Panoptic Segmentation t

Figure 5. VO-Enhanced VPS Module. VO-Enhanced VPS Mod-
ule enables feature tracking and fusion of different frames using
the pose, depth, and optical flow information obtained from Visual
Odometry. An online fusion module is included to better cope with
occlusion challenges. The video panoptic segmentation results will
be fed into the Panoptic-Enhanced VO Module.

To keep the consistency of the video segmentation, we first
feed the warped features t — 1 (containing geometric motion
information) and the fused feature map ¢ into the decoder
to obtain the panoptic segmentation ¢ — 1 and ¢, respectively.
Then a simple IoU-match module is used to obtain a consis-
tent panoptic segmentation. This result will be fed into the
Panoptic-Enhanced VO Module.
VO-Aware Online Fusion. The feature fusion network
first concatenates the two features z,_; and z;, and then
passes through a convolutional layer with ReLU activations
to obtain the fused features Z,. Inspired by NeuralBlox [24],
we propose two loss functions for supervision to ensure that
online feature fusion can be effective (see Tab. 5).
Feature Alignment Loss [24]. We employ a feature align-
ment loss to minimize the distance between z¢* and Z; in
latent space:

Lea =l ], (10)

where z;* denotes the average feature of the same pixel
warped from different images to the same image.
Segmentation Consistent Loss. Additionally, we add a
segmentation loss that minimizes the logit differences of
query pixels p decoded using different features z¢* and Z:

ﬁeg = Z ngd(p7zt*)_ged(p7z,\t)H1 (11)
peP
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Method K00  KO1 K02 K03 K04 KOS5 K06 K07 KO8 K09 K10 VKOl VK02 VK06 VKI8 VK20
DynaSLAM [2] 8.07 38533 21.776 0.873 1.402 4.461 14364 2.628 50.369 4191 7.519 27.830 X X X 2.807
DROID-SLAM [34] 4.86 9545 1881 0893 0.816 16.03 42786 27.402 1634 464 11308 1.091 0.025 0.113 1.156 8.285
Ours 5.69 9119 236 0.855 0.808 8.41 13.57 8.89 6.67 14.65 8.66 0369 0.055 0.113 0822 3.079

Table 1. SLAM Comparison Results on KITTI (K) & Virtual KITTI (VK) Datasets with Metric: ATE[m]. X means system failure.

Sequences

Trans. RMSE of trajectory alignment [m]

DVO SLAM [16] ORB-SLAM2 [28]  PointCorr [6] ‘ DROID-SLAM [34]  Ours

fr2/desk-person 0.104 0.006 0.008 0.017 0.013

fr3/sitting-static 0.012 0.008 0.010 0.007 0.006

slightly dynamic fr3/sitting-xyz 0.242 0.010 0.009 0.016 0.014
fr3/sitting-rpy 0.176 0.025 0.023 0.029 0.027

fr3/sitting-halfsphere 0.220 0.025 0.024 0.026 0.022

fr3/walking-static 0.752 0.408 0.011 0.016 0.007

highly dynamic fr3/walking-xyz 1.383 0.722 0.087 0.019 0.018
fr3/walking-rpy 1.292 0.805 0.161 0.059 0.056
fr3/walking-halfsphere 1.014 0.723 0.035 0.312 0.221

Table 2. Absolute Trajectory Error (ATE) Comparison on TUM-RGBD Dynamic Sequences. The best results are shown in bold. PVO
achieves competitive and even best performance, outperforming DROID-SLAM in all sequences.

3.4. Recurrent Iterative Optimization

We can optimize the proposed Panoptic-Enhanced VO
Module and VO-Enhanced VPS Module in a recurrent itera-
tive manner until convergence, which is inspired by the EM
algorithm. Experimentally, it generally takes only two itera-
tions for the loop to converge. Tab. 5 and Tab. 6 demonstrate
that recurrent iterative optimization can boost the perfor-
mance of both the VPS and VO Modules.

3.5. Implementation Details

Implemented by PyTorch, PVO consists of three main
modules: image panoptic segmentation, Panoptic-Enhanced
VO Module, and VO-Enhanced VPS Module. We use three
stages to train our network. Image panoptic segmentation
is trained on Virtual KITTI [3] dataset as initialization. Fol-
lowing PanopticFCN, we adopt a multi-scale scaling policy
during training. We optimize the network with an initial
rate of 1e-4 on two GeForce RTX 3090 GPUs, where each
mini-batch has eight images. The SGD optimizer is used
with a weight decay of 1e-4 and momentum of 0.9. The train-
ing of the Panoptic-Enhanced VO Module follows DROID-
SLAM [34], except that it additionally feeds the ground-truth
panoptic segmentation results. Specifically, we trained this
module on the Virtual KITTI dataset with two GeForce RTX-
3090 GPUs for 80,000 steps, which took about two days.
When training the VO-enhanced video panoptic segmenta-
tion module, we use the ground-truth depth, optical flow, and
pose information as geometric priors to align the features,
and fix the backbone of the trained single-image panoptic
segmentation, and then train the fusion module only. The
network is optimized with an initial learning rate of 1e-5 on
one GeForce RTX 3090 GPU, where each batch has eight
images. When the fusion network has largely converged, we
add a segmentation consistency loss function to refine our
VPS Module further.

4. Experiments

For visual odometry, we conduct experiments on three
datasets with dynamic scenes: Virtual KITTI, KITTI, and
TUM RGBD dynamic sequences. Absolute Trajectory Error
(ATE) is used for evaluation. For video panoptic segmen-
tation, we use Video Panoptic Quality (VPQ) metric [17]
on Cityscapes, and VIPER datasets. We further perform
ablation studies on Virtual KITTI to analyze the design of
our framework. Finally, we demonstrate the applicability
of our PVO on video editing, shown in the supplementary
materials.

4.1. Visual Odometry

VKITTI2. Virtual KITTI dataset [3] consists of 5 sequences
cloned from the KITTI tracking benchmark, which provides
RGB, depth, class segmentation, instance segmentation, cam-
era pose, flow, and scene flow data for each sequence. As
shown in Tab. 6 and Fig. 6, our PVO outperforms DROID-
SLAM by a large margin for most sequences and achieves
competitive performance in sequence 02.

J KITTI 10

KITTI 09 VKITTI2 01 VKITTI2 18 VKITTI2 20

Figure 6. Trajectory Comparison on KITTI and VKITTI2.
Our method performs better than DROID-SLAM, having better
trajectory estimation results.

KITTI. KITTI [12] is a dataset capturing real-world traffic
scenarios, ranging from freeways over rural areas to urban
streets with plenty of static and dynamic objects. We ap-
plied the PVO model trained on the VKITTI2 [3] dataset
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Methods Temporal window size

on Cityscapes-VPS val k=0 k=5 k=10 k=15 VPQ FPS
VPSNet-Track 63.1/56.4/68.0 | 56.1/44.1/64.9 | 53.1/39.0/63.4 | 51.3/354/629 | 559/43.7/64.8 | 4.5
VPSNet-FuseTrack 64.5/58.1/69.1 | 57.4/452/66.4 | 54.1/39.5/64.7 | 52.2/36.0/64.0 | 57.2/44.7/66.6 | 1.3
SiamTrack 64.6/583/69.1 | 57.6/45.6/66.6 | 54.2/39.2/65.2 | 52.7/36.7/64.6 | 57.3/44.7/664 | 4.5
PanopticFCN [22] + Ours 65.6/60.0/69.7 | 57.8/45.7/66.6 | 543/39.5/65.1 | 52.1/35.4/64.3 | 57.5/45.1/66.4 | 5.1
VPSNet-FuseTrack + Ours 65.0/59.0/69.4 | 57.6/45.0/66.7 | 54.4/39.1/65.6 | 52.8/35.8/65.2 | 57.5/44.7/66.7 | 1.1

Table 3. Video Panoptic Segmentation Comparison Results on Cityscapes-VPS Validation Dataset with VO-Enhanced VPS Module
Variants. Each cell contains VPQ / VPQ™ / VPQS! scores. The best results are highlighted in boldface. Our method generally outperforms

VPSNet-FuseTrack [ 18] and SiamTrack [42].

Methods Temporal window size

on VIPER k=0 k=5 k=10 k=15 vPQ FPS
VPSNet-Track 48.1/38.0/57.1 | 493/45.6/53.7 | 459/37.9/52.7 | 43.2/33.6/51.6 | 46.6/38.8/53.8 | 5.1
VPSNet-FuseTrack 49.8/40.3/57.7 | 51.6/49.0/53.8 | 47.2/40.4/52.8 | 45.1/36.5/52.3 | 48.4/41.6/532 | 1.6
SiamTrack 51.1/423/58.5 | 53.4/51.9/54.6 | 49.2/44.1/53.5 | 47.2/40.3/529 | 50.2/44.7/55.0 | 5.1
PanopticFCN [22] + Ours | 54.6/50.3/57.9 | 51.7/44.5/57.3 | 50.5/41.8/57.2 | 49.1/389/56.9 | 51.5/439/573 | 3.6

Table 4. Video Panoptic Segmentation Comparison Results on VIPER with VO-Enhance VPS Variants. Each cell contains VPQ
/ VPQTP / VPQS! scores. The best results are highlighted in boldface. Our method generally outperforms VPSNet-FuseTrack [18] and

SiamTrack [42].

to the KITTI [12] sequences. As shown in Fig. 6 (KITTI
09 and 10 sequences), the pose estimation error of PVO is
only half that of DROID-SLAM, which proves the good
generalization ability of PVO. Tab. 1 shows the complete
SLAM comparison results on KITTI and VKITTI datasets,
where PVO outperforms DROID-SLAM and DynaSLAM by
a large margin in most scenarios. Note that we use the code
of DynaSLAM, which is a classic SLAM system with in-
stance segmentation. DynaSLAM falls into the catastrophic
system failure in the VKITTI2 02, 06, and 18 sequences.
TUM-RGBD. TUM RGBD is a dataset capturing indoor
scenes with a handheld camera. We choose the dynamic
sequences of the TUM RGBD dataset to show the effec-
tiveness of our method. We compare PVO with DROID-
SLAM and three state-of-the-art dynamic RGB-D SLAM
systems, namely DVO SLAM [16], ORB-SLAM2 [28] and
PointCorr [6]. Note that PVO and DROID-SLAM only use
monocular RGB videos. Tab. 2 demonstrates that PVO out-
performs DROID-SLAM in all scenes. Compared to the
conventional RGB-D SLAM systems, our method also per-
forms better in most of the scenes.

4.2. Video Panoptic Segmentation

We compare PVO with three instance-based video panop-
tic segmentation methods, namely VPSNet-Track, VPSNet-
FuseTrack [18], and SiamTrack [42]. Built on the im-
age panoptic segmentation model UPSNet [44], VPSNet-
Track additionally adds MaskTrack head [46] to form the
video panoptic segmentation model. VPSNet-FuseTrack
based on VPSNet-Track additionally injects temporal fea-
ture aggregation and fusion. While SiamTrack finetunes
VPSNet-Track with the pixel-tube matching loss [42] and
the contrast loss and has slight performance improvement.

VPSNet-FuseTrack is mainly compared because the code of
SiamTrack is not available.

Cityscapes. We adopt the public train/val/test split of
Cityscapes in VPS [17], where each video contains 30 con-
secutive frames, with the corresponding ground truth anno-
tations for every five frames. Tab. 3 demonstrates that our
method with PanopticFCN [22] outperforms the state-of-
the-art method on the val dataset, achieving +1.6% VPQ
higher than the VPSNet-Track. Compared with VPSNet-
FuseTrack [17], our method has slight improvement and
can keep consistent video segmentation, shown in the sup-
plementary materials. The reason is that our VO Module
only obtains 1/8 resolution optical flow and depth due to the
limited memory.

VIPER. VIPER maintains plenty of high-quality panoptic
video annotations, which is another video panoptic segmen-
tation benchmark. We follow VPS [18] and adopt its public
train/val split. We use 10 selected videos from day scenarios
and the first 60 frames of each video are used for evaluation.
Tab. 4 demonstrates that compared with VPSNet-FuseTrack,
our method with PanopticFCN achieves much higher scores
(+3.1 VPQ) on the VIPER dataset.

4.3. Ablation Study

VPS-Enhanced VO Module. In the Panoptic-Enhanced VO
Module, we use DROID-SLAM [34] as our baseline. (VPS-
>VO) means the panoptic information prior was added to
enhance the VO baseline. (VPS->VO x2) means that we can
iteratively optimize the VO Module twice. (VPS->VO x3)
means recurrent iterative optimization on the VO Module 3
times. Tab. 6 and Fig. 7 show the panoptic information can
help improve the accuracy of DROID-SLAM on most of the
highly dynamic VKITTI2 datasets. The recurrent iterative
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Methods Temporal window size VPQ

on VKITTI2 k=0 k=5 k=10 k=15

VPS baseline 58.24/60.11/57.93 | 55.50/53.78/56.28 | 54.13/50.29/55.53 | 53.65/48.53/55.46 | 54.90/51.95/56.05
VPS baseline + w/fusion 59.16/67.00/56.91 | 56.27/60.98 /54.96 | 54.96/57.74/54.18 | 54.58/55.97/54.19 | 55.81/59.23/54.85

Ours (VO->VPS + w/o fusion)
Ours (VO->VPS + w/fusion + w/o fea loss)
Ours (VO->VPS + w/fusion + w/o seg loss)

58.24/60.11/57.93
58.51/64.07/56.97
58.73/65.05/56.95

55.67/54.44/56.28
55.62/58.53/54.86
55.83/59.34/54.89

54.29/50.91/55.53
54.29/55.15/54.13
54.51/56.01/54.15

53.83/49.22/55.46
53.94/53.40/ 54.19
54.15/54.26 / 54.19

55.04/52.48/56.05
55.14/56.62/54.81
55.37/57.49/54.82

Ours (VO->VPS)
Ours (VO->VPS + w/o depth ) x2
Ours (VO->VPS) x2

59.18/67.00/ 56.94
59.17/66.87 / 56.95

59.18/67.00/ 56.94

56.25/61.00/54.93
56.39/61.45/56.25
56.42/61.67/54.93

54.94/57.77/54.15
55.04/58.15/54.15
55.10/58.40/54.15

54.57/56.01/54.17
54.72/56.46 / 54.22
54.84/56.67/54.17

55.80/59.25/54.83
55.89/59.57/54.83
55.94/59.77/54.83

Table 5. Ablation Study of VO-Enhanced VPS Module Variants on VKITTI2 Dataset. Each cell contains VPQ / VPQ™ / VPQS! scores.
The best results are highlighted in boldface. Our method performs better than existing video panoptic segmentation methods.

Monocular ‘ 01 02 06 18 20 Avg
DROID-SLAM [34] 1.091 0.025 0.113 1.156 8.285 2.134
Ours (VPS->VO w/o filter) 0.384 0.061 0.116 0936 5375 1.374
Ours (VPS->VO) 0374 0.057 0.113 0960 3.487 0.998
Ours (VPS->VO x2) 0.371 0.057 0.113 0954 3.135 0.926
Ours (VPS->VO x3) 0.369 0.055 0.113 0.822 3.079 0.888
DROID-SLAM’s runtime (FPS) | 573  12.67 19.96 7.08 1020 11.13
Ours’ runtime (FPS) 4.45 9.69 1452 622 810 8.60

Table 6. Ablation Study of Panoptic-Enhanced VO Module
Results on VKITTI2 Dataset. Our method outperforms DROID-
SLAM on most of the highly dynamic VKITTI2 datasets, and
the accuracy of the pose estimation is significantly improved and
slightly slowed down after recurrent iterative optimization.

RGB Image

DROID-SLAM Confidence

PVO Confidence
Figure 7. Panoptic-Aware Confidence. We visualize the confi-
dence of the PVO model vs. DROID-SLAM. We can see that with
panoptic information, the panoptic weights can better remove the
dynamic interference and keep the static features for solving the
camera pose. The black color indicates that the confidence tends to
be close to 0.

optimization can further improve the results.

VO-Enhanced VPS Module. To evaluate whether VO helps
VPS, we first use PanopticFPN [20] to get the panoptic seg-
mentation results for each frame, and then use the optical

flow information from RAFT [33] for inter-frame tracking.
This is set as VPS baseline. (VPS baseline + w/fusion)
means we additionally fuse the feature with the flow estima-
tion. (VO->VPS + w/o fusion) means that we use additional
depth, pose, and other information on top of the baseline.
(VO->VPS) means we additionally fuse the feature. (VO-
>VPS x2) means that we use the recurrent iterative optimiza-
tion module to enhance the VPS results further. As shown in
Tab. 5 and in the supplementary materials, the VO-Enhanced
VPS Module is effective in improving segmentation accuracy
and tracking consistency.

Online Fusion in VO-Enhanced VPS Module. To validate
the effectiveness of the proposed Feature Alignment Loss
(fea loss) and Segmentation Consistent Loss (seg loss), the
methods are followed: (VO->VPS + w/fusion + w/o fea
loss) means that we train the online fusion module without
Feature Alignment Loss. (VO->VPS + w/fusion + w/o seg
loss) means that we train the online fusion module with-
out Segmentation Consistent Loss. Tab. 5 demonstrates the
effectiveness of these two loss function.

5. Conclusion

We have presented a novel panoptic visual odometry
method, which models the VO and the VPS in a unified view,
enabling the two tasks to facilitate each other. The panoptic
update module can help improve the pose estimation, while
the online fusion module helps improve the panoptic seg-
mentation. Extensive experiments demonstrate that our PVO
outperforms state-of-the-art methods in both tasks.
Limitations. The main limitation is that PVO is built on
DROID-SLAM and panoptic segmentation, which makes
the network heavy and requires much memory. Although
PVO can perform robustly in dynamic scenes, it ignores
the problem of loop closure when the camera returns to the
previous position. Exploring a low-cost and efficient SLAM
system with loop closure is our future work.
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