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Abstract

Neural implicit surface representation methods show
impressive reconstruction results but struggle to handle
texture-less planar regions that widely exist in indoor
scenes. Existing approaches addressing this leverage image
prior that requires assistive networks trained with large-
scale annotated datasets. In this work, we introduce a
self-supervised super-plane constraint by exploring the free
geometry cues from the predicted surface, which can fur-
ther regularize the reconstruction of plane regions without
any other ground truth annotations. Specifically, we in-
troduce an iterative training scheme, where (i) grouping
of pixels to formulate a super-plane (analogous to super-
pixels), and (ii) optimizing of the scene reconstruction net-
work via a super-plane constraint, are progressively con-
ducted. We demonstrate that the model trained with super-
planes surprisingly outperforms the one using conventional
annotated planes, as individual super-plane statistically oc-
cupies a larger area and leads to more stable training. Ex-
tensive experiments show that our self-supervised super-
plane constraint significantly improves 3D reconstruction
quality even better than using ground truth plane segmen-
tation. Additionally, the plane reconstruction results from
our model can be used for auto-labeling for other vision
tasks. The code and models are available at https:
//github.com/botaoye/S3PRecon.

1. Introduction

Reconstructing 3D scenes from multi-view RGB images
is an important but challenging task in computer vision,
which has numerous applications in autonomous driving,
virtual reality, robotics, etc. Existing matching-based meth-
ods [30, 31, 50] estimate per-view depth maps, which are
then fused to construct 3D representation. However, they do
not recover the depth of the scene in texture-less planar ar-
eas well (such as walls, floors, and other solid color planes),
which are abundant, especially for indoor scenes. Recent
data-driven methods [22, 26, 34, 38] alleviate this problem
to some extent by automatically learning geometric priors
from large-scale training data, but they either require nu-
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Figure 1. Reconstruction and Plane Segmentation Results. Our
method can reconstruct smooth and complete planar regions by
employing the super-plane constraint and further obtain plane seg-
mentation in an unsupervised manner.

merous and expensive 3D supervision (e.g., depth [22, 38],
normal [14], etc.) or lack fine-grain details [26, 34].

Recently, neural implicit representations have gained
much attention and shown impressive reconstruction results
without 3D supervision [39, 46, 47]. However, these meth-
ods purely rely on the photo-consistency to construct the
scene, which leads to texture-geometry ambiguities since
there are different plausible interpretations to satisfy this
objective. Several approaches address this problem by in-
troducing additional priors obtained from trained models
that can be considered as assistant networks. For instance,
ManhattanSDF [9] introduces the Manhattan assumption on
the floor and wall regions, which are predicted by a seman-
tic segmentation model. NeuRIS [37] and MonoSDF [48]
adopt additional normal supervision acquired from normal
prediction networks trained on large-scale labeled datasets.
Although these methods can regularize the reconstruction
process on indoor scenes, they all rely on large-scale an-
notated 2D or 3D datasets. In addition, these pretrained
geometric prediction networks are sensitive to different
scenes and not friendly across different domains or datasets.
For example, MonoSDF [48] reports that different normal
prediction networks significantly affect the reconstruction
quality. Thus, a natural question arises: can we improve the
RGB-based reconstruction results on texture-less regions
without any implicit supervision from assistant networks?

In this work, we propose a novel neural 3D reconstruc-
tion framework with the Self-Supervised Super-Plane con-
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straint, called S3P, which does not require any labeled data
or assistant networks. The intuition behind our approach
is simple: the constructed results provide a free geometry
cue, i.e., surface normal, which can be utilized to guide the
reconstruction process of planar regions. Specifically, pix-
els belonging to parallel planes tend to have similar normal
directions (shown in Fig 3). We group pixels sharing sim-
ilar normal values into the same cluster, which we call a
super-plane (analogous to a group of pixels is called super-
pixel). A super-plane constraint is then applied to force
normal directions within the same super-plane to be con-
sistent, thus constraining the reconstruction of large super-
plane regions. Due to the ambiguity of the prediction, espe-
cially at the early training stages, the grouped super-plane
can be inaccurate and introduces noisy self-supervision sig-
nals. Therefore, an automatic filtering strategy is further
designed to compare the normals of each pixel with the es-
timated super-plane normal, i.e., the average normal of all
pixels belonging to the same super-plane, and outliers with
large angular differences will be filtered out. We also detect
the discontinuity of the surface according to the geometry
and color features and mask out non-plane edge regions in
the super-plane segmentation maps.

Notably, by using normals for grouping, multiple paral-
lel planes will be grouped together, so that our super-planes
are typically larger than individual planes. This property is
particularly beneficial for volume rendering-based training
process [25] since planes with more pixels will also have
more stable and accurate averaged normals when limited
pixels are sampled in each iteration. We experimentally
verify this benefit: our super-plane constraint yields better
results than adopting ground truth plane segmentation.

As a by-product, self-supervised plane segmentation of
the reconstructed scene can be easily obtained from the
super-plane masks by extracting connected components
separated by the detected non-plane edge regions. Thus, our
approach can be extended to reconstruct planes of a scene
without ground truth supervision. It can also be applied to
label new scenes automatically for applications that require
such training data. The main contributions of this work are:

• We introduce a super-plane constraint for neural im-
plicit scene reconstruction by first generating super-
planes in an unsupervised manner and then performing
automatic outlier filtering.

• Our super-plane segmentation method can be further
extended to get unsupervised plane reconstruction re-
sults, which can be used as auto-labeling.

• Experimental results show that our method signifi-
cantly improves the reconstruction quality of texture-
less planar regions, and the unsupervised plane recon-
struction results are comparable to those from state-of-
the-art supervised methods.

Methods
Explicit 3D
supervision

Implicit 2D/3D
supervision

Handle
texture-less

Patch Match-based MVS × × ×
Data-driven MVS ✓ × ✓

NeuS [39], VolSDF [46] × × ×
ManhattanSDF [9] × ✓(2D) ✓

NeuRIS [37], MonoSDF [48] × ✓(3D) ✓
Ours × × ✓

Table 1. Comparison between different reconstruction meth-
ods. Our method can handle texture-less planar regions without
implicit supervision provided by assistant networks.

2. Related Work

MVS-based 3D Reconstruction. Reconstructing 3D
scenes from images is a long-standing computer vision task.
Multi-view stereo (MVS) methods [29, 31, 31, 50] first es-
timate the per-view depth map based on feature matching,
followed by depth fusion [4, 24] and meshing [12]. How-
ever, these approaches do not handle texture-less planar re-
gions well because dense feature matching is intractable in
these regions. Recent learning-based MVS methods can
alleviate this problem by obtaining geometric priors from
training datasets. For instance, MVSNet [44] and their vari-
ants [8,35,45] extract image features to build cost volumes,
which are further fed into a 3D CNN to predict depth maps.
They also resort to exploiting the depth-normal consistency
to better handle texture-less regions [14, 22]. Such a two-
stage pipeline lacks global scene consistency due to the in-
dividual estimation of each view and thus often suffers from
noisy and incomplete results. Other approaches [26,34] ad-
dress this issue by regressing scene depth values using the
Truncated Signed Distance Function (TSDF). TSDF con-
structs a spatially discretized representation that leads to a
limited capability to model fine details, like thin surfaces.
Moreover, all these methods require large-scale training
datasets with 3D supervision, and the geometric priors are
acquired from specific training datasets, making them diffi-
cult to generalize due to the domain gap.
Neural Implicit Surface Reconstruction. Recently, neural
implicit representation methods [21, 25, 39, 46, 47] encode
the scene into light-weight Multi-layer Perceptrons (MLPs).
By combining neural radiance field with volume rendering
techniques, NeRF [25] shows impressive novel view syn-
thesis results but fails to extract accurate surface due to the
ambiguities of the underlying radiance field representation.
Therefore, NeuS [39] and VolSDF [46] instead use a signed
distance field (SDF) to represent the scene, which largely
improves the reconstruction quality. These methods can
learn the scene geometry purely from posed 2D images and
are able to produce high-resolution reconstruction without
large memory consumption. However, similar to the MVS
approaches, they cannot handle texture-less regions well
due to ambiguities. NeuralRGB-D [2] and Go-Surf [36]
use ground truth depth maps during training, and while im-
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Figure 2. Overview of S3P. By exploiting the free geometry cues (i.e., normal direction) existed in the constructed surface, we can generate
super-plane segmentation in an unsupervised manner, which is used to constrain the reconstruction process of planar regions.

pressive results are obtained, less common depth cameras
are required. Some recent approaches instead introduce
additional geometric priors (e.g., normal [37, 48] obtained
from assistant networks to guide the optimization of these
planar areas. However, these assistant networks need to
be carefully selected and trained on large-scale annotated
datasets [5] and are also sensitive to the domain gap. In this
work, we show that without additional ground truth or as-
sistant networks, the reconstruction quality in texture-less
regions can be improved by exploring the self-supervised
super-plane constraint. Comparison between the proposed
method and existing reconstruction models are summarized
in Tab. 1.
Plane Reconstruction. Traditional plane reconstruction
methods [3, 15, 33] recover 3D planes by mining the geo-
metric cues in 2D images such as line segments and van-
ishing points. However, they rely on strong assumptions
(e.g., Manhattan world assumption [6]) about the scene and
thus cannot generalize well to various application scenarios.
Recently, learning-based approaches [18, 19, 41, 43, 49] can
directly infer piecewise planar regions by obtaining rich ge-
ometric priors in the dataset. Some methods extend bottom-
up semantic segmentation [19,49] or top-town instance seg-
mentation [19] to predict the segmentation mask and param-
eters of the per-view plane. Recent methods [11,17,20] con-
struct planes from multi-view images to take advantage of
multi-view geometry. PlanarRecon [41] further constructs
scene-level plane reconstruction using the trained normal
and voting vector. In contrast to these approaches, we can
obtain super-planes in an unsupervised context, and recon-
struction models supervised using our super-plane surpass
that using the predicted plane.

3. Proposed Method

Given posed multi-view images of an indoor scene, we
aim to reconstruct the high-quality surfaces. We represent
the scene geometry via a signed distance field (SDF), which
is supervised by its multi-view images through volume ren-
dering (Sec. 3.1). We propose an unsupervised super-plane
segmentation method by exploiting the free geometric cues

in the reconstructed surface. The segmentation results are
further used as pseudo labels to regularize the reconstruc-
tion network during training (Sec. 3.2). To improve the self-
supervised segmentation and stabilize the network training,
we introduce two approaches to filter out mis-segmented
and non-plane edge regions (Sec. 3.3). We discuss the train-
ing details in Sec. 3.4. Furthermore, we extend our method
for unsupervised plane reconstruction, which can be used
for auto-labeling or reconstruction of the plane in unseen
new environments (Sec. 3.5). An overview of our approach
is shown in Fig. 2.

3.1. Preliminaries

Similar to [39,46], we represent the geometry of a scene
as an SDF via MLP. An MLP gθ maps a 3D point x ∈ R3

to a signed distance to its closest surface:

ŝ = gθ(x), ŝ ∈ R, (1)

where ŝ denotes the predicted SDF value. The surface
can be further defined as the zero level-set of the SDF:
Sθ =

{
x ∈ R3 | gθ(x; θ) = 0

}
. Aside from 3D geom-

etry, we predict continues radiance function to facilitate
photometric-based reconstruction. Another MLP is used to
predict radiance value ĉ:

ĉ = fϕ(x,v, n̂, ẑ), ĉ ∈ R3 (2)

where x and v are the input 3D point and its corresponding
view direction. The normal direction n̂ is computed by the
gradient of the SDF gθ at point x. The feature vector ẑ
corresponds to the output geometric feature of gθ as in [47].

A differentiable volume rendering technique [25] is
adopted for training the geometry network. For each image
pixel to be rendered, we first sample N points {xi} along its
camera ray r starting from the camera center o and pointing
to v, namely xi = o + div. Then, the signed distance and
color value of xi are predicted by Eq. 1 and 2 separately.
The color Ĉ(r) of ray r is accumulated by:

Ĉ(r) =

N∑
i=1

Tiαiĉi, αi = (1− exp (−σiδi)) . (3)
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Figure 3. Motivation of Our Unsupervised Super-plane Segmentation. The normals from parallel planes are essentially grouped
together and can therefore be used to generate super-planes. After applying the super-plane constraint, normals of different super-planes
are more separable, which means they are pushed closer. The points with different colors represent normals from different planes.

Here, δ is the volume density transformed from the
predicted sign distance value ŝ [46], αi and Ti =

exp
(
−
∑i−1

j=1 σjδj

)
represent the alpha value and the accu-

mulated transmittance respectively, and δi = ∥xi+1 − xi∥2
is the distance between adjacent points. Similarly, we can
also obtain the surface depth D̂(r) and surface normal N̂(r)
corresponding to ray r as:

D̂(r) =

N∑
i=1

Tiαid̂i, N̂(r) =

N∑
i=1

Tiαin̂i (4)

During training, we randomly sample a batch of pixels in
each iteration and construct the camera ray set R, in which
each r ∈ R goes through the corresponding image pixel
and calculate Ĉ(r), D̂(r), and N̂(r) using Eq. 3 and 4.

3.2. Self-supervised Super-plane Constraint

As aforementioned, the existing neural scene reconstruc-
tion methods [39, 46] are not effective for recovering struc-
tures in texture-less planar regions. To deal with this prob-
lem, we estimate the planar normal and force normal direc-
tions within the same plane to be consistent with it, thereby
guiding the reconstruction of these regions. However, how
to obtain the plane segmentation is challenging, and a naive
solution may be to use ground truth plane segmentation
masks or the results predicted by a plane reconstruction net-
work [18, 19]. Such approaches have two main limitations:
1) training the network requires large-scale 3D annotation,
i.e., the planes, and 2) as described in Sec. 3.1, due to mem-
ory limitations, only a small fraction of pixels can be sam-
pled in each iteration compared to the total number of pix-
els present in each image, while small-sized planes widely
exist. Therefore, small planes do not receive sufficient su-
pervision, and the estimated plane normals are noisy.

In contrast, we propose an unsupervised super-plane seg-
mentation method that groups pixels belonging to parallel
planes into the same cluster by exploiting free surface nor-
mal information. Thus, no labeled data or pretrained net-
works, are required and the super-plane structure increases
the probability of sampling points in the same cluster at
each iteration.
Super-plane Segmentation via Grouping. Our goal is to
construct super-planes, and the surface normal N̂(r) ∈ R3

provides a suitable initial source of super-plane segmenta-
tion. As shown in Fig. 3, despite some noise, points be-
longing to parallel planes generally have much more simi-
lar normal directions compared with others. This motivates
us to treat the normal as a super-plane embedding vector,
which has greater similarity within parallel planes. Since
the total number of planes is not determined at the time of
grouping, the K-means clustering is not applicable, and we
instead adopt the Mean-shift clustering method [49] to ob-
tain the super-plane segmentation from the normal maps.
We denote each super-plane mask as Mi, i ∈ [1,K], and
K is the total number of clusters.
Super-plane Constraint. With the obtained super-planes,
we estimate the super-plane normal Ni by averaging nor-
mals of pixels belonging to the same super-plane. The aver-
aged normals filter out noise in the initial individual surface
normals and capture the global structure of the super-planes.
By enforcing all normals in the same super-plane region to
be the same as Ni, the accurate planar geometry can be re-
covered. The super-plane loss is defined as:

Lplane =

K∑
i=1

∑
r∈R

∥1−NiN̂(r)∥1. (5)

During training, we detach the gradients of Ni to ease the
burden of the optimization process.
Iterative Optimization. We apply the super-plane normal
estimation and surface structure optimization in an iterative
manner. To be specific, we re-rendering normal maps in
every t iterations and also update the super-plane segmen-
tation and the super-plane normal estimation. Note that the
first t iterations are used to initialize the geometric structure
and the super-plane loss in Eq. 5 will not be added. Through
this training process, better reconstruction results bring bet-
ter segmentation and vice versa. The overall optimization
process can be found in the supplementary material.
Accelerating rendering via Sphere Tracing. In Sec. 3.1,
we introduce the volume rendering used during training.
However, it is computationally expensive to render normal
maps of all training images. To solve this problem, we apply
sphere tracing [10] to approach surface points xsuf along
each ray r and the corresponding surface normal is used to
perform clustering. The detailed algorithm of sphere tracing
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can be found in the supplementary material. Sphere Tracing
is only used for generating normal maps for plane segmen-
tation, and we still adopt volume rendering during training
since it handles occlusions better [39].

3.3. Super-plane Segmentation Refinement

Auto-filtering for Plane Segmentation. The core idea
of our super-plane constraint is to enforce a global con-
straint for the pixels belonging to the same super-plane.
However, since the unsupervised super-plane segmentation
might include some noisy segmentation results, which can
be non-plane regions or wrongly grouped pixels, we pro-
pose a self-guided auto-filtering strategy to filter out these
outliers. Specifically, we compare the normal of all pixels
in the super-plane with the averaged normal Ni mentioned
in Sec. 3.2, and all pixels with normal direction differences
from Ni larger than α are considered outliers, which will
not be used for estimate super-plane normal and calculate
the super-plane loss in Eq. 5.
Non-plane Edge Region Detection. In addition to the auto-
filtering strategy, we also directly mask out non-plane edge
regions. Typically, these regions will be more color and ge-
ometry discontinuous. As such, we use this property to de-
tect object edges and some non-plane regions [16]. Specif-
ically, for each pixel p, we calculate the geometry disconti-
nuity as:

dn(p) = [
∑
q∈Q

∥∥N(p)−N(q)
∥∥
2
], (6)

where Q is the 3 × 3 adjacent regions of p and [·] is the
normalization operation. Similarly, the color discontinuity
is defined as:

dc(p) = [
∑
q∈Q

∥C(p)−C(q)∥2], (7)

where C is the ground-truth pixel color value. The final
discontinuity d(p) is then defined as the maximum value
of dn(p) and dc(p). Pixels with discontinuity d(p) > γ
are seen as non-plane edge regions, which will not be used
to calculate the super-plane loss in Eq. 5. Note that some
textured planar regions (e.g., painted) may also be detected
and masked out in this step. However, our method aims to
better reconstruct the untextured planar regions, while the
textured regions can already be reconstructed by existing
schemes and therefore have little impact on the results.

3.4. Training Objectives

In addition to the super-plane constraint loss in Eq. 5,
the following losses are applied during training for each ray
r ∈ R described in Sec, 3.1.
Color Loss. The link between the scene geometry is built
in Eq. 2 and 3, thus the scene reconstruction process can be

supervised by the following color loss:

Lcolor =
∑
r∈R

∥Ĉ(r)−C(r)∥1, (8)

where C(r) is the ground-truth pixel color value.
Eikonal Loss. As suggested by [39,46,47], Eikonal loss [7]
is added to regularize the SDF:

Leik =
∑
y∈Y

(∥∇gθ(y)∥2 − 1)
2
, (9)

where Y is a concatenated set of uniformly sampled points
and surface points.
Depth Loss. Depth supervision has been proven to be ben-
eficial for the geometric representation [9, 40]. In addition,
sparse depth maps are generated as a side effect during cam-
era calibration using COLMAP [29]. Therefore, we also
add sparse depth supervision:

Ld =
∑
r∈R

|R̂(r)−D(r)|1, (10)

where R represents the subset of rays which have valid
sparse depth D(r) produced by COLMAP [29].

The overall loss for the proposed model is defined by

L = Lcolor + λeikLeik + λdLd + λplaneLplane, (11)

where λeik, λd, and λplane are hyperparameters for weighting
each loss term.

3.5. Plane Reconstruction

Although our super-plane fits the training demand well,
further process is needed to obtain desired plane segmenta-
tion results. To do so, we directly apply the non-plane edge
region mask mentioned in Sec. 3.3 to separate the super-
planes Mi into continuous planes. Specifically, each con-
nected component in the super-plane mask separated by the
non-plane edge region mask is considered a plane.

4. Experiments
4.1. Implementation Details

Architecture. Our method is implemented in Python using
PyTorch and trained with the Adam optimizer [13] with an
initial learning rate of 5e−4. We train 50k iterations for each
scene and randomly sample 1024 rays per iteration, and we
adopt the error-bounded sampling strategy [46] to sample
points along each ray. During training, images are resized to
640×480 pixels, and all cameras are normalized to fit inside
a unit sphere [1]. The Marching Cubes algorithm [23] is
used to extract mesh from the learned SDF. More details on
network architecture and the training process are presented
in the supplementary material.
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Figure 4. Ablation of Super-plane Constraint. By adding the super-plane constraint, the reconstruction quality on large-scale plane
regions is significantly improved without any additional supervision. “SPC.” represents the super-plane constraint. Zoom in for details.

#Num Plane Source Plane Constraint Super-plane Filter Mask Acc↓ Comp↓ Prec↑ Recall↑ F-score↑
1 × 0.073 0.071 0.604 0.575 0.589
2 GT ✓ 0.060 0.062 0.687 0.632 0.658
3 Un ✓ ✓ 0.060 0.063 0.676 0.619 0.646
4 Un ✓ ✓ ✓ 0.058 0.060 0.693 0.645 0.668
5 Un ✓ ✓ ✓ 0.060 0.062 0.686 0.627 0.655
6 Un ✓ ✓ ✓ 0.059 0.062 0.690 0.641 0.664
7 Un ✓ ✓ ✓ ✓ 0.055 0.059 0.709 0.660 0.683

Table 2. Ablation studies on ScanNet. Our method improves the performance notably and shows better performance compared with
using ground truth plane segmentation masks. Here, “GT” and “Un” denote ground truth plane segmentation and our unsupervised plane
segmentation, respectively.

Datasets. We evaluate our method on Scannet [5] and 7-
Scenes [32]. Scannet is a large-scale RGB-D dataset con-
taining 1613 indoor scenes with ground-truth camera pa-
rameters and surface reconstructions. 7-Scenes is a collec-
tion of RGB-D frames whose camera tracks and dense 3D
models are obtained with KinectFusion [27]. We use the
eight randomly selected scenes (four from Scannet valida-
tion set and four from 7-Scenes) to perform the experiments
as in [9]. In each scene, one-tenth of views are uniformly
sampled for reconstruction, and we do not use any addi-
tional implicit or explicit supervision during training.

Baselines. We evaluate our 3D reconstruction model
against 1) MVS methods: COLMAP [29] and variants
with the plane fitting [9] (denoted as COLMAP∗). 2)
MVS method with plane regularization: ACMP [42]. 3)
Vanilla neural volume rendering methods: NeRF [25],
UNISURF [28], NeuS [39] and VolSDF [46]. 4) Neural
volume rendering methods with explicit supervision: Man-
hattanSDF [9], NeuRIS [37], and MonoSDF [48]. For the
plane reconstruction task, we compare with the state-of-the-
art supervised Plane R-CNN [18] method.

Evaluation Metrics. For the 3D reconstruction task, we
evaluate five standard metrics following [26]: accuracy,

completeness, precision, recall, and F-score. Among these,
F-score is considered as the main metric following [34].
For the plane segmentation task, plane and pixel recalls
are used as evaluation metrics following [18, 19], differ-
ent depth thresholds over the overlapping region vary from
0.05m to 0.6m are evaluated. Detailed definitions of these
metrics can be found in the supplementary material.

4.2. Ablation Study and Analysis

To illustrate the effectiveness of each design in S3P, we
conduct ablation studies on ScanNet. We train seven varia-
tions: (1) VolSDF∗ with only image and sparse depth super-
vision, and this is treated as our baseline, (2) VolSDF∗ with
plane loss (ground truth plane segmentation), (3) VolSDF∗

with super-plane loss, (4) add auto-filtering strategy to the
super-plane loss, (5) add non-plane masks to the super-
plane loss, (6) use plane loss instead of super-plane, (7) our
full framework. All results are shown in Tab. 2.
Overall Super-plane Constraint. We first demonstrate the
effectiveness of our overall super-plane constraint by show-
ing qualitative results in Fig. 4 and quantitative results in
Tab. 2. Comparing #1 and #7 in Tab. 2 shows that the pro-
posed super-plane constraint brings about 0.094 F-score im-
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Input View Baseline GT Plane Sup. Pred. Plane Sup. Pred. Super-plane. Sup.GT Plane Mask

Figure 5. Effectiveness of Super-plane Structure. Introducing of super-plane structure can provide more ample and stable constraints.
Therefore, the proposed super-plane constraint better recovers the structure in small plane regions compared with ground truth plane
segmentation-assisted plane constraint.

Input View Baseline + Super-plane Constraints + Filter + Mask

Figure 6. Reconstruction of thin edge regions. By adding the super-plane constraint, the reconstruction quality of planar regions is
significantly improved but some thin edge regions disappeared due to noisy segmentation. Our auto-filter and edge detection mechanism
can eliminate this negative effect.

provements. Fig. 4 shows that after adding the proposed
super-plane supervision, the reconstruction quality on both
large-scale texture-less regions (e.g., wall, floor) and small
plane regions (e.g., tables, sofa) can be largely improved
since ambiguities caused by the lack of texture can be re-
solved. In addition, our method can complement some in-
complete reconstructed regions of the baseline model, as
there are additional cues available. It is worth noting that
these are cues at our disposal that do not require additional
labeled data or trained networks.

Super-plane vs. Plane Segmentation. We then analyze
how the introduced super-plane structure affects the recon-
struction performance. Fig. 5 shows that a smoother sur-
face can be reconstructed in large planes (walls) using either
ground truth plane segmentation, predicted plane segmenta-
tion, or the constraints provided by our super-plane segmen-
tation compared to the VolSDF∗ baseline. However, simply
using ground truth plane segmentation or predicted plane
segmentation does not construct small planes well (sofa as
indicated by arrows). These results show that simply taking
ground truth plane segmentation to provide plane constraint
is insufficient for the volume rendering-based optimization
since only a small portion of pixels is sampled in each iter-
ation. Thus, the sampled pixels may not be sufficient to
recover the plane structure. In contrast, our super-plane
constraint provides more supervision by grouping parallel
planes into the same cluster. Tab. 2 shows that using super-
plane constraint gives better performance compared with
ground truth or predicted plane segmentation.

Noise Reduction. We demonstrate that the adopted non-
plane edge region detection and self-filtering mechanism
can filter out noisy non-plane regions in the super-plane
segmentation results. Fig. 6 shows VolSDF∗ can faithfully
reconstruct the thin structure in the edge regions (chair arm-

rests indicated by light grey arrows) but shows noisy recon-
struction results in planar regions like floor and window. Di-
rectly adding our super-plane constraint reconstructs these
planar regions better but, unfortunately, makes the results
worse for the non-planar regions at these edges, as the seg-
mentation results are far from perfect. Adapting the self-
guided filtering strategy automatically filters out wrongly
segmented pixels and thus can keep most of the fine details.
Then, masking out the detected edge regions further im-
proves the reconstruction quality of edges (as indicated by
dark grey arrows). Tab. 2 also shows that both the non-plane
region detection and self-filtering mechanism improve the
performance over only adding the super-plane constraint,
and adding both of them gives the best performance.

4.3. Comparison with State-of-the-arts

3D Reconstruction. Tab. 3 shows the quantitative re-
sults compared with other methods on Scannet [5] and 7-
Scenes [32]. The first four methods in Tab. 3 adopt assistive
networks to provide additional priors, while the remaining
methods do not need. The results show that our method
significantly outperforms other assistant network-free MVS
and volume rendering methods. In addition, our model per-
forms better than the method requiring a segmentation net-
work trained on annotated 2D datasets (ManhattanSDF [9])
and on par with the scheme requiring a normal network
trained on 3D datasets (NeuRIS [37]).

Fig. 7 shows qualitative scene-level reconstruction re-
sults of evaluated methods. Both the MVS-based method
(COLMAP [29]) and the vanilla volume rendering-based
method (VolSDF [46]) do not reconstruct complete or
smooth planar structures. ManhattenSDF [9] achieves com-
pelling results by introducing an assistive segmentation net-
work to find floors and walls, then applying Manhattan as-
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COLMAP VolSDF ManhattanSDF Ours Ground Truth

Figure 7. Qualitative reconstruction comparisons. Our method can construct smooth and complete structures in both large and small
planar regions compared with others. Zoom in for details.

Method ScanNet 7-Scenes
Acc↓ Comp↓ Prec↑ Recall↑ F-score↑ Acc↓ Comp↓ Prec↑ Recall↑ F-score↑

COLMAP* 0.396 0.081 0.271 0.595 0.368 0.670 0.215 0.116 0.215 0.149
ManhattanSDF 0.072 0.068 0.621 0.586 0.602 0.112 0.133 0.351 0.326 0.336

NeuRIS 0.050 0.049 0.717 0.669 0.692 - - - - -
MonoSDF 0.035 0.048 0.799 0.681 0.733 - - - - -
COLMAP 0.047 0.235 0.711 0.441 0.537 0.069 0.417 0.536 0.202 0.289

NeRF 0.735 0.177 0.131 0.290 0.176 0.573 0.321 0.159 0.085 0.083
UNISURF 0.554 0.164 0.212 0.362 0.267 0.407 0.136 0.195 0.301 0.231

NeuS 0.179 0.208 0.313 0.275 0.291 0.151 0.247 0.313 0.229 0.262
VolSDF 0.414 0.120 0.321 0.394 0.346 0.285 0.140 0.220 0.285 0.246

Ours 0.055 0.059 0.709 0.660 0.683 0.108 0.147 0.493 0.480 0.483

Table 3. Reconstruction Results Comparison. Note that the first four methods require well-trained assistant networks to provide ad-
ditional geometric priors. Our method achieves the best performance among all assistant network-free methods while being on par with
methods using additional normal information.
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Figure 8. Plane Reconstruction Comparisons. The unsupervised
plane reconstruction performance are comparable with state-of-
the-art supervised method Plane R-CNN [18].

sumption on these areas, but does not recover small planar
regions. In contrast, thanks to the super-plane constraint,
our approaches can reconstruct smooth and complete struc-
tures on both small and large planar regions without any
assistant networks.

Input Image Plane R-CNN Ours Ground Truth

Figure 9. Plane Segmentation Comparisons. Our method can
generate way more accurate segmentation results in edge regions
compared with Plane R-CNN [18].

Plane Reconstruction. To demonstrate the capability of
our method on the unsupervised plane reconstruction task,
we compare its reconstruction performance with the state-
of-the-art supervised Plane R-CNN [18] method. Quanti-
tative results in Fig. 8 show that our method outperforms
the Plane R-CNN in terms of per-pixel and per-plane re-
call when accurate depth prediction is required (low depth
threshold). When using a loose depth threshold, we obtain
competitive results in terms of per-plane recall and still out-
perform Plane R-CNN in per-pixel recall even without ex-
posure to the ground truth plane segmentation during train-
ing. This quality of unsupervised plane segmentation re-
sults can also be analyzed in Fig. 9. Compared to the super-
vised baseline, we can obtain more accurate and complete
segmentation results.

5. Conclusion

This work presents a novel neural scene reconstruction
method based on the super-plane constraint. The key idea
is to enforce all pixels in parallel planes to have the same
normal orientation. We first group pixels belonging to par-
allel planes into the same cluster in an unsupervised man-
ner, and then design a self-guided filtering and non-planar
edge region detection strategy to filter out outliers. The
remaining clean pixels are further used to compute super-
plane normal and super-plane loss. Experimental results
show that our method can reconstruct accurate and complete
planar regions with missing texture information without ad-
ditional implicit or explicit supervision. Furthermore, our
method can be extended to obtain plane reconstruction re-
sults, which can be used to automatically label new scenes.
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