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Abstract

Text-supervised semantic segmentation is a novel re-
search topic that allows semantic segments to emerge with
image-text contrasting. However, pioneering methods could
be subject to specifically designed network architectures.
This paper shows that a vanilla contrastive language-image
pre-training (CLIP) model is an effective text-supervised se-
mantic segmentor by itself. First, we reveal that a vanilla
CLIP is inferior to localization and segmentation due to
its optimization being driven by densely aligning visual
and language representations. Second, we propose the
locality-driven alignment (LoDA) to address the problem,
where CLIP optimization is driven by sparsely aligning lo-
cal representations. Third, we propose a simple segmenta-
tion (SimSeg) framework. LoDA and SimSeg jointly amelio-
rate a vanilla CLIP to produce impressive semantic segmen-
tation results. Our method outperforms previous state-of-
the-art methods on PASCAL VOC 2012, PASCAL Context
and COCO datasets by large margins. Code and models
are available at github.com/muyangyi/SimSeg.

1. Introduction
Semantic segmentation is a fundamental task in com-

puter vision, with the purpose of allocating semantic classes
to the corresponding pixels. Most existing methods for se-
mantic segmentation are restricted by the scale of datasets.
The quantity or category is insufficient due to the high cost
of annotating segmentation masks. Text-supervised seman-
tic segmentation makes a breakthrough for this challenge,
where models are pre-trained with image-text pairs and
zero-shot transferred to semantic segmentation.

Figure 1 illustrates an abstraction of text-supervised
semantic segmentation in comparison with existing task
paradigms. The base domain is denoted as DB , which
contains the manually labeled samples. The target do-
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Figure 1. A comparison of our proposed approach with existing
paradigms, where DB ,DT ,DO denote base domain, target do-
main and open domain, respectively. The components in red are
those missing in SimSeg. Illustration inspired by [50].

main is denoted as DT , which contains test samples. And
open domain DO involves a large variety of linguistic in-
formation. It can provide additional textual descriptions
when segmenting the images. Open-vocabulary meth-
ods (e.g., LSeg [22], OpenSeg [17]) use pre-trained vision-
and-language models [20,33], but still need annotated sam-
ples to fine-tune. Weakly supervised methods [1, 2] are
free from mask labels but require image-level class la-
bels (DT ✓ DO). Text-supervision is an annotation-free
scheme, eliminating the need for mask annotations (DB) or
image-level labels (i.e., DT * DO). Text-supervision lever-
ages massive web image-text pairs and enables to generate
segmentation masks in a zero-shot manner. GroupViT [44]
is the first work of text-supervision, yet the non-universal
backbone design hinders its flexibility (e.g., novel backbone

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
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adaptation and multi-task joint learning). We could improve
current methods by creating a simple framework for text-
supervised semantic segmentation. To this end, we target
on the vanilla CLIP [33] architecture, a neat dual-stream
contrastive language-image pre-training model.

As the preliminary of this work, we explore the potential
problems of a vanilla CLIP-based segmentor. We mainly
study CLIP developed with Transformer-based encoders
due to their intrinsic properties for segmentation [6] and su-
perior performance. CLIP is originally driven by aligning
vision and textual holistic vectors (e.g., [cls] tokens from
Transformer-based encoders), and a simple revision facili-
tates CLIP models for segmentation, i.e., densely aligning
all image patches and caption words. A similarity map,
which describes correlations between all image patches and
one class word, is a coarse categorical segmentation mask
per se. However, we observe two problems that greatly sup-
press the ability of the CLIP-based segmentor: (1) Visual
encoder of the learned CLIP model focuses on contextual
pixels, and (2) image-text contrasting mainly relies on con-
textual words. These problems jointly reveal that the opti-
mization of CLIP is significantly driven by contextual in-
formation. As a consequence, the CLIP-based segmentor
yields poor semantic segmentation results, due to an infe-
rior ability to perceive both contextual and non-contextual
information in complex natural images.

In the following, we attempt to solve the above prob-
lems. One practical strategy is avoiding optimization with
contextual information. For a versatile segmentor, both con-
textual and non-contextual information are essential. Con-
textual and non-contextual pixels should be sparsely aligned
to corresponding text entities. To this end, we propose
a locality-driven alignment (LoDA) strategy for training
CLIP models. Firstly, we propose to select partial features
with the maximum responses, in both image and text modal-
ities. Secondly, we propose to drive the image-text con-
trasting with only selected features. Our proposal success-
fully solves the problems from two aspects: (1) Vision en-
coder perceives main objects, (2) main objects and context
are equally significant in the image-text contrasting. Cou-
pled with LoDA, a simple but effective framework named
SimSeg is proposed to do zero-shot semantic segmentation.
Benefiting from our proposals, a simple CLIP framework is
equipped with impressive zero-shot semantic segmentation
performances. Our contributions are three-fold:

• We reveal the problems of a vanilla CLIP attached with
Transformer-based encoders when producing segmenta-
tion masks. To solve the problems, we propose a training
strategy named locality-driven alignment (LoDA).

• We design a simple but effective text-driven zero-shot
semantic segmentation framework named SimSeg. Our
proposed LoDA and SimSeg jointly allow a simple CLIP
to segment universal categories.

• We achieve remarkable improvements over previous
methods on PASCAL VOC, PASCAL Context and
COCO zero-shot segmentation tasks. Moreover, we pro-
vide extensive analyses and ablations of our proposals.

2. Related Work

Contrastive language-image pre-training (CLIP [33])
learns generic visual-textual representations by contrastive
alignment. It adopts a dual-encoder architecture to ex-
tract the image and text features separately, then com-
putes the cosine similarity of image and text embeddings
passed a linear projection layer. The learned representations
have been demonstrated effective across various down-
stream tasks, including retrieval and classification. Many
works [20, 23, 24, 31, 37, 41, 47, 49] further approve the
significant performance of contrastive learning techniques
for language-image pre-training. To avoid the problem of
private training data, ZeroVL [10] provides training guid-
ance that allows conducting CLIP with limited resources
and public academic datasets. The language supervision
paradigm also validates tasks other than classification, e.g.
object detection [14,18,46,52], segmentation [34,36,42,53],
and visual grounding [25,51]. The potential of CLIP is fully
explored in a variety of prominent vision tasks.

Semantic segmentation with less supervision has been
widely studied. In general, zero-shot semantic segmenta-
tion approaches [3, 4, 26, 43] aim to segment unseen cat-
egories without additional pixel-wise labels. The models
have learned from segmentation masks before zero-shot
transfer to unseen classes. Recent open-vocabulary meth-
ods [12, 17, 22, 29] facilitate the transfer procedure with
pre-trained vision-and-language models but still rely on
mask annotations. In the text-supervision paradigm, mask
annotations are always absent. Instead, models are pre-
trained with image-text pairs and zero-shot transferred to
semantic segmentation. GroupViT [44] introduces a hier-
archical grouping Transformer architecture that partitions
image patches into arbitrary shapes based on object se-
mantics learned from captions. Compared with weakly-
supervised semantic segmentation [2,7,9,16,27,45,48] that
adopts image-level category labels, text-supervision further
reduces the labeling requirement. It can be roughly con-
sidered the models automatically extract object categories
from captions.

3. Exploring a CLIP-based Segmentor

In this part, we first revisit the semantic segmentation
ability of CLIP [33] and introduce a CLIP-based segmentor.
Then, we reveal problems that prevent the segmentor from
achieving satisfactory segmentation performances.
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Figure 2. Left: Holistic alignment, where image-text contrasting is driven by holistic vectors, e.g., [CLS]. Middle: Dense alignment, where
image-text contrasting is optimized by aligning all image patches with all words. Right: A CLIP-based segmentor that generates categorical
segmentation masks, which is trained with the dense alignment target.

3.1. Preliminary
With the advancement of Transformers [11,13,40], most

works following CLIP developed contrastive objectives
with image and text holistic feature vectors, e.g., [cls]
tokens from Transformer-based encoders, as shown in Fig-
ure 2 (left). Recent works [28, 47] proposed to train CLIP
with dense (fine-grained) alignment targets, where all fea-
tures of one modality would be aligned with features of
the other modality. It enables CLIP to produce patch-word
dense similarity matrices, as shown in Figure 2 (middle),
and each element in the matrix represents the similarity be-
tween an image patch and a word.

3.2. A CLIP-based Segmentor
We introduce a CLIP-based segmentor with notations.

As illustrated in Figure 2 (right), CLIP adopts two encoders,
f for image data I and g for text data T , which are pre-
trained with the dense alignment target. Given an image
xI 2 I, the encoded feature is f(xI) 2 Rn

I⇥d, where nI is
the number of visual tokens (i.e., patches) in image xI and
d is the feature dimension. Similarly, the encoded feature is
g(xT ) 2 Rn

T⇥d for a text sequence xT 2 T , where nT is
the length of word tokens. In segmentation, xT is a sentence
prompted by the name of an object class to segment.

For the k-th image patch (xI)k 2 xI with encoded fea-
ture

⇥
f(xI)

⇤
k
, the similarity scores with respect to the over-

all image and text features are:

sIk =
1
nI

n
IX

j=1

h
f(xI)

i>
j

h
f(xI)

i

k

2 R1,

sTk =
1
nT

n
TX

j=1

h
g(xT )

i>
j

h
f(xI)

i

k

2 R1.

(1)

Denote sI2I , {sI
k
}nI

k=1 and sT2I , {sT
k
}nI

k=1 as the
patch-wise similarity maps regarding to image and text fea-
tures, respectively. Based on similarity map sT2I , we could
further produce a categorical segmentation mask by post-

processing operations, e.g., reshaping, thresholding, etc.
Based on millions of academic web image-text pairs,

we first train a CLIP model with the aforementioned dense
alignment target 1. Next, we transform the CLIP model to
a segmentor and reveal two problems that prevent it from
producing good segmentation masks.

3.3. Problems of the Segmentor
Context is a statistical property that helps people and net-

works solve perceptual inference tasks [30]. It plays impor-
tant roles in image and text understanding tasks [30, 32].
We define “contextual words” and “non-contextual words”
to better describe visual concepts. In captions, contextual
words (e.g., forest or sea) refer to scenes, environments,
etc. Non-contextual words (e.g., person, bike, or cat) re-
fer to main objects (or foregrounds). Contextual and non-
contextual pixels represent the image regions corresponding
to contextual and non-contextual words, respectively.
Problem 1: Visual encoder focuses on contextual pixels.
Intuitively, an encoder for segmentation should consider the
non-contextual pixels as the primary content of an image.
However, our observation indicates the visual encoder of
CLIP focuses on the contextual pixels. Illustrations are in
Figure 3, the “w/o LoDA” rows.

sI2I is the similarity map regarding the global image fea-
ture. It could be interpreted as the contribution of each patch
feature to the global feature. The contextual patches have
higher similarity (brighter color), while the non-contextual
patches have lower similarity (darker color), signifying the
context contributes more to the global feature. Thus, the
visual encoder focuses on contextual pixels.
Problem 2: Image-text contrasting relies on contextual
words. Generally, the training of CLIP is driven by con-
trasting positive and negative image-text pairs. Each image-
text pair in a batch produces a similarity score, and the In-
foNCE loss maximizes/minimizes the similarities of posi-
tive/negative pairs. In the following, we manually replace

1Training details are attached in Appendix A.1
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Figure 3. Visualization of the patch-wise similarity maps on Flickr30K test set. For each sample, we show (1) original image-text
pair, (2) sI2I , (3) sT2I regarding to the original caption, and (4) sT2I regarding to manually revised captions (non-contextual words vs.
contextual words). In each revised caption, the modified key entity words are marked in colors. For sT2I maps, the overall image-text
similarity score provided by CLIP is attached. More examples are provided in Appendix.

key entity words in the image caption, observe the alter-
ations of image-text similarities, and analyze the image-text
contrasting behaviors of CLIP.

Effects of non-contextual words on contrasting. When
replacing the words of main objects (e.g., “boy!car”
and “ducks!rabbits”), the similarity map sT2I barely
changes, as shown in Figure 3 (w/o LoDA). Meanwhile,
the image-text similarity scores also barely change (e.g.,
“0.457!0.431”). Especially, “tree!flower” causes an ir-
rational rise of the similarity score (0.399 to 0.403). Thus,
CLIP is insensitive to revisions of non-contextual words,
even original and revised words are greatly irrelevant.

Effects of contextual words on contrasting. When
replacing the contextual words (e.g., “yard!park” and
“leaves!puddles”), the similarity maps sT2I change inten-
sively. As illustrated in Figure 3 (w/o LoDA), the similarity
maps become much darker than the original ones. More im-
portantly, replacing contextual words greatly decreases the
similarity scores (e.g., “0.457!0.310”).

The similarity maps and scores both indicate that the
image-text contrasting heavily relies on contextual words.
More examples are attached in Appendix C.1.

3.4. Discussion
As reflected, the learned CLIP is sensitive to contextual

pixels and judges image-text similarity based on contextual
words. The problems mentioned above could result from

a dog running in the water a        running in the          

align all
pixels and words

align key
pixels and words

dog water

Figure 4. Left: Aligning all pixels and words. Right: aligning key
entity words (dog and water) with local regions (in red and green).

an improper learning target, i.e., the optimization is mainly
driven by contextual information. Concretely, most web im-
age pixels relate to context, and the corresponding captions
also primarily consist of words unrelated to main objects.
Therefore, for minimizing the InfoNCE loss, focusing on
contextual information could be the “easiest” way to pro-
duce a satisfactory image-text similarities ranking. Conse-
quently, the learned CLIP is insensitive to the variance of
non-contextual objects, further leading to the inferior local-
ization and segmentation ability2.

One critical step to solve the above problems is to avoid
optimization with only contextual information. Both non-
contextual and context information are equally important
for semantic segmentation. Sparsely aligning key image
pixels and key entities is a feasible solution.

2Segmentation results are visualized in Section 5.2.
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Figure 5. Summary of our approach. Left: The model is pre-trained via locality-driven alignment (LoDA) with web image-text pairs.
Middle: The model is zero-shot transferred to categorical semantic segmentation. Right: The categorical segmentation maps are stacked
to generate the final output based on confidence scores.

4. Approach
Inspired by our exploration of the CLIP-based segmen-

tor, we propose SimSeg, a simple yet effective framework.

4.1. Motivation
A versatile CLIP model for segmentation should adap-

tively perceive main objects and context. As illustrated in
Figure 4 (left) and proved in Section 3.3, densely aligning
pixels and words would lead to a trivial solution with heavy
reliance on contextual information. An ideal CLIP model
is expected to align key entity words (e.g., dog and water)
to corresponding local pixels (in red and green), as shown
in Figure 4 (right). If models were sufficiently optimized,
given a class name, the regions of pixels corresponding to
the class would be strongly activated. Preventing the opti-
mization of CLIP from densely aligning pixels and entities
is a practical strategy. Following this idea, we propose a
strategy named Locality-Driven Alignment (LoDA).

4.2. Locality-Driven Alignment
Maximum response selection. To realize the locality-
driven alignment (LoDA) training paradigm, we propose a
feature selection technique named maximum response se-
lection. It adaptively selects local features with the maxi-
mum responses.

As shown in Figure 5 (left), given the encoded image
feature f(xI) 2 Rn

I⇥d and text feature g(xT ) 2 Rn
T⇥d,

we first sort them in descending order along dimension d:
f 0(xI) = sortd

⇣
f(xI)

⌘
,

g0(xT ) = sortd
⇣
g(xT )

⌘
.

(2)

Next we select the tokens at the forefront:
VI = {[f 0(xI)]mI }1mIMI ,

VT = {[g0(xT )]mT }1mTMT .
(3)

We adopt the image feature VI 2 RMI⇥d and text feature
VT 2 RMT⇥d to calculate the contrastive loss, where MI

and MT are smaller than nI and nT , respectively.
Maximum response selection automatically picks the

features with the greatest values on each channel. These
features are expected to contain local information about im-
portant visual concepts and key entities for image-text con-
trasting, regardless of contextual and non-contextual.

Pre-training objective. Different from densely aligning
compact features f(xI) and g(xT ), LoDA aims to sparsely
calculate the contrastive loss with VI and VT . VI and VT

represent features of maximum local response from image
regions and key words, respectively. They are much less
than the compact features (MI ⌧ nI and MT ⌧ nT ),
so LoDA achieves a sparse alignment of the most attended
regions and words. More importantly, LoDA further pre-
vents the model from optimizing with heavy reliance on
contextual pixels because modeling context requires a large
amount (i.e., > MI ) of features.

In a batch of size b, the similarity sij between the i-th
image and j-th text is formulated as:

sij =
1

|VI

i
|

1��VT

j

��

VI
iX

u

VT
jX

v

u · v, (4)

where the i-th image has feature VI

i
and the j-th text has

feature VT

j
. The training objective is L = 1

2

�
LI + LT

�
, in-

volving an image-to-text matching loss and a text-to-image
matching loss:

LI = �1
b

bX

i

log
exp (sii/⌧)P
b

j=1 exp (sij/⌧)
,

LT = �1
b

bX

i

log
exp (sii/⌧)P
b

j=1 exp (sji/⌧)
,

(5)

where ⌧ is the temperature parameter.
In the following, we verify that LoDA addresses the

problems revealed in Section 3.3, i.e., (1) vision encoder
focuses on contextual pixels and (2) image-text contrasting
relies on contextual words.
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LoDA makes vision encoder perceives main objects.
As shown in Figure 3, the sI2I illustrates that the non-
contextual patches have higher similarities (brighter color),
while the contextual patches have lower similarities (darker
color). The sI2I of LoDA is opposite to sI2I of dense align-
ment (i.e., w/o LoDA), indicating our vision encoder per-
ceives the main objects. Attending correctly to the main
objects (or foregrounds) is critical before segmenting them.
LoDA makes main objects and context equally signifi-
cant in the image-text contrasting. The similarity map
sT2I changes correspondingly to the replacement of non-
contextual words. When replacing the words of main
objects, we observe the corresponding regions in image
become darker, e.g., middle-right region for “boy!car”,
middle-left region for “ducks!rabbits”.

When replacing the contextual words, the background
becomes darker, and the main objects remain bright (e.g.
“leaves!puddles”). This behavior is unlike dense align-
ment, where the entire image turns darker. Our approach
could accurately weigh the priority of each object or con-
text. The modified words and omitted pixels are highly
consistent, indicating that the vision encoder perceives and
accurately attends to the main objects and context.

4.3. SimSeg Framework
We propose a simple segmentation framework (SimSeg)

based on a CLIP with LoDA. For each raw image, Sim-
Seg firstly produces binary segmentation masks per cate-
gory, then combines them into a segmentation map.
Categorical semantic segmentation. Our model is pre-
trained to predict the similarity between regions of interest
and key entity words for image-text pairs. To perform zero-
shot semantic segmentation, we reuse this capability.

As shown in Figure 5 (middle), for a semantic segmen-
tation dataset, we transform the class names into sentences
by prompting. An example could be “a photo of a {class}”.
First, we compute the image and text features by their re-
spective encoders. Since the input sentences contain one
class name each, we set MT = 1. Denote uT the first el-
ement of the sorted text features g0(xT ), serving as the text
feature to query the image patches. Next, we take uT to
compute the similarity score with every image patch fea-
ture [f(xT )]k, generating the coarse segmentation mask.
Post-processing operations such as up-sampling and Dense-
CRF [21] are applied to refine the coarse mask. In addition,
we compute the class confidence score based on uT and VI ,
which is of same mechanism as in pre-training.
Combine categorical masks. Our model combines the
binary masks of confident classes to produce the final re-
sult, as shown in Figure 5 (right). We calculate an adap-
tive threshold to select confident object classes rather than
using fixed values. We use the mean (µ) and standard de-
viation (�) of the similarity scores of the top half classes

in datasets, i.e. 10 and 30 top classes for PASCAL VOC
and PASCAL Context, respectively. The threshold is set
as µ + �. Masks of classes over the threshold are stacked.
The mask of a high-scoring class will cover that of the less-
scoring ones, and the region unassigned to any object class
is determined as the background class.

5. Experiment
5.1. Implementation

We train our model with image-text datasets and evalu-
ate on zero-shot semantic segmentation benchmarks. The
implementation details are in Appendix A.1
Datasets. Following the practice of [44], public academic
image-text datasets are utilized for pre-training: (1) Con-
ceptual Captions 3M (CC3M) [35], (2) Conceptual 12M
(CC12M) [8]. In particular, our method obtains a data effi-
ciency by removing the YFCC [38] dataset. We use the val-
idation splits of PASCAL VOC 2012 [15], PASCAL Con-
text [30] and COCO-Stuff [5] datasets to conduct zero-shot
semantic segmentation evaluations.
Prompt template. We adopt the “prompting engineering”
and the same text templates as in [33] to describe segmenta-
tion class labels by sentences. An intuitive template would
be “a photo of a {class}”.

5.2. Main Result
Following [44], we mainly benchmark our method

on PASCAL VOC, PASCAL Context and COCO-Stuff
datasets, and compare with existing methods.
Prerequisites. SimSeg maintains the retrieval ability of a
vanilla CLIP. Actually, zero-shot image-text retrieval per-
formance is an important prerequisite for semantic segmen-
tation. Results are illustrated in Appendix B.1.
Superiority. Main results are reported in Table 1. We
have the following observations:
(1) Our method outperforms previous methods by large
margins. Concretely, our method achieves 56.6%, 25.8%,
and 27.2% mIoUs on the PASCAL VOC, PASCAL Con-
text, and COCO datasets, respectively. On the PASCAL
VOC dataset, the improvement is 4.3% mIoU over the pre-
vious best’s, and our method performs better than the fully-
supervised transfer segmentor of a pre-trained DeiT [39].
Notably, our method has promising scaling results, e.g.,
ViT-B boosts SimSeg to achieve higher mIoUs.
(2) Our method requires less training data than previous
methods. Concretely, GroupViT requires ⇠30 million web
image-text pairs while our method only involves ⇠15 mil-
lion, which proves our method is data-efficient.
(3) Our method preserves the original framework of CLIP
instead of introducing a novel architecture. We also pro-
vide a baseline result trained with CLIP and dense align-
ment (i.e., “w/o LoDA”), as mentioned in Section 3.3. The
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pre-training transfer
arch model dataset supervision zero-shot PASCAL VOC PASCAL Context COCO

ViT-S DeiT [39] ImageNet class 7 53.0 35.9 -
ViT-S DINO [6] CC3&12M+YFCC self 7 37.6 22.8 -
ViT-S MoCo [19] CC3&12M+YFCC self 7 36.1 23.0 -

GroupViT GroupViT [44] CC3&12M+YFCC text 3 52.3 22.4 24.3
ViT-S SimSeg (w/o LoDA) CC3&12M text 3 19.1 11.0 12.5
ViT-S SimSeg (w/ LoDA) CC3&12M text 3 56.6 25.8 27.2
ViT-B SimSeg (w/ LoDA) CC3&12M text 3 57.4 26.2 29.7

Table 1. Comparisons with state-of-the-art methods. The mIoU results on PASCAL VOC, PASCAL Context and COCO datasets are
reported. “w/o LoDA” denotes the dense alignment strategy introduced in Section 3.3, and “w/ LoDA” denotes our proposed locality-
driven alignment strategy. The mIoU results other than SimSeg’s refer to [44].
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Figure 6. Segmentation results trained with dense alignment (w/o LoDA) and our proposed locality-driven alignment (w/ LoDA).

baseline achieves unacceptable results (19.1% and 11.0%
mIoUs) on evaluated datasets. We provide a few examples
in Figure 6 to study the segmentation results with and with-
out LoDA. Both quantitative and qualitative results verify
the effectiveness of LoDA. Our proposal fits the popular
“one-for-all model” research topic, where an original CLIP
framework could be preferred. It is potential to achieve
better zero-shot segmentation results with such large-scale
“one-for-all” models.

Limitations. Our method is inferior in predicting partic-
ularly relevant categories. On the PASCAL VOC dataset,
we visualize categorical IoU in Figure 7. For instance,
the model achieves bad results on “table” and “chair”. As
shown in Figure 8, it results from the model cannot separate
these two categories, and masks on “table” and “chair” are
highly overlapped. The pair of “chair” and “sofa” is a simi-
lar case. It indicates another drawback of CLIP-based zero-
shot semantic segmentation models, i.e., the segmentation
result could be constrained to the granularity of pre-training
data. If the pre-training images were coupled with detailed
descriptions, the above problem could be alleviated.
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Figure 7. Sorted categorical IoU results on PASCAL VOC.

5.3. Ablation Study
Besides the pre-training parameters involved in the orig-

inal CLIP, our method has a few parameters. In this part,
we provide ablation studies to better understand our pro-
posals. We ablate our approach with ViT-S on PASCAL
VOC dataset. If not specified, the model is pre-trained with
MI = MT = 5. Default settings are marked in gray .
Effects of MI and MT in zero-shot segmentation.
First of all, we study the most significant hyper-parameters
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Figure 8. Bad cases on the relevant categories.

MI and MT in the evaluation phase. As Figure 9 (left)
illustrates, setting MT = 1 is a must since each prompted
class name contains only one entity word. The larger MT

values lead to the worse mIoUs, since noises in prompts
could hurt performances. For image modality, the best re-
sult is achieved when MI remains unchanged from pre-
training to evaluation. It is reasonable that the same MI

ensures the completeness of extracted image features. Note
that the MI has no effects on mask production, and it only
affects the thresholding for selecting potential categories in
test images. We follow this rule in the following ablations.
The detailed mIoU results are attached in Appendix B.4.
Effects of MI and MT in pre-training. Next, we ex-
amine MI and MT involved in pre-training. The mod-
els are trained with

�
MI ,MT

�
2 {1, 3, 5}2 and evalu-

ated with the same protocol: MI remains the same with
training, and MT is set to 1. As Figure 9 (right) illus-
trates, MI = MT = 5 achieves the best result. An in-
teresting observation is that setting MT = 1 results in bad
results. We hypothesize that MI and MT are related to
the completeness of contextual and non-contextual informa-
tion. Decreasing them in pre-training could lead to a lack
of feature diversity, and involving plenty of text features is
necessary. The detailed mIoU results are in Appendix B.4.
Effects of threshold values for potential class selection.
As reported in Table 2, we evaluate the segmentation re-
sults with different thresholds. Fine-tuning the weight of
� increases the performance, e.g., 1.5⇥� achieves the best
mIoU of 57.8. However, such improvements could result
from over-fitting the validation set. For simplicity and ro-
bustness, we set the default coefficient of � to 1.0⇥ in all
experiments. It also suggests that selecting potential cate-
gories is a tricky part in text-supervised semantic segmen-
tation methods. Greedy searching could lead to poor gener-
alization results in real applications.
Effects of inference resolution. We evaluate the seg-
mentation results with various image resolutions. As re-

Figure 9. Effects of MI and MT on evaluation and pre-training.

⇥� 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0
mIoU 51.0 53.0 55.1 56.6 57.1 57.8 56.4 51.7

Table 2. Evaluations on PASCAL VOC with different thresholds.

image size 224 288 336 384 448
mIoU 55.9 56.6 56.2 55.0 54.4

Table 3. Evaluations on PASCAL VOC with various resolutions.

PASCAL VOC PASCAL Context COCO
w/o CRF 53.8 23.5 25.7
w/ CRF 56.6 25.8 27.2

Table 4. Evaluations of SimSeg w/ and w/o CRF.

ported in Table 3, we pre-train the model (ViT-S) with 224
resolution, and respectively test segmentation results with
{224, 288, 336, 384, 448} resolutions. The best result is
achieved with 288 resolution. Generally, increasing the in-
ference resolution could contribute to better segmentation
results. However, there occurs a performance drop when the
gap between training and evaluation resolutions becomes
too large, e.g., mIoU of 448 resolution is worse than 224.
Effects of post-processing. As reported in Table 4,
we evaluate the segmentation results with distinct post-
processing operations. “w/ CRF” [21] brings an increase
of 2.8 mIoU on PASCAL VOC, because our minimal seg-
mentation unit is 16⇥ 16 patches (ViT-S). Visualizations of
the “w/o CRF” setting are shown in Appendix C.3.

6. Conclusion
In this paper, we enable a vanilla contrastive language-

image pre-training (CLIP) model to do text-supervised se-
mantic segmentation. Firstly, we reveal problems of using
a vanilla CLIP-based segmentor, and the reason is image-
text contrasting heavily relies on contextual information.
Then, we propose a strategy named locality-driven align-
ment (LoDA) to address the problems, which drives CLIP
to align local contextual and non-contextual information.
Moreover, we propose a framework named SimSeg. LoDA
and SimSeg jointly facilitate a vanilla CLIP to achieve great
semantic segmentation results. Extensive experiments are
provided to demonstrate the effectiveness of our proposals.
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