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Figure 1. Speech-to-motion translation example. Given a speech signal as input, our approach generates realistic, coherent, and diverse
holistic body motions; that is, the body motion together with facial expressions and hand gestures. From top to bottom: the input audio, the
corresponding transcript, video frames, and the generated motions. Note that the audio is the only input to our approach, while the transcript
and video frames are just shown for reference.

Abstract

This work addresses the problem of generating 3D holistic
body motions from human speech. Given a speech record-
ing, we synthesize sequences of 3D body poses, hand ges-
tures, and facial expressions that are realistic and diverse.
To achieve this, we first build a high-quality dataset of 3D
holistic body meshes with synchronous speech. We then
define a novel speech-to-motion generation framework in
which the face, body, and hands are modeled separately.
The separated modeling stems from the fact that face artic-
ulation strongly correlates with human speech, while body
poses and hand gestures are less correlated. Specifically,
we employ an autoencoder for face motions, and a composi-
tional vector-quantized variational autoencoder (VQ-VAE)
for the body and hand motions. The compositional VQ-
VAE is key to generating diverse results. Additionally, we
propose a cross-conditional autoregressive model that gener-
ates body poses and hand gestures, leading to coherent and
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realistic motions. Extensive experiments and user studies
demonstrate that our proposed approach achieves state-of-
the-art performance both qualitatively and quantitatively.
Our dataset and code are released for research purposes at
https://talkshow.is.tue.mpg.de/.

1. Introduction

From linguistics and psychology we know that humans
use body language to convey emotion and use gestures in
communication [22, 28]. Motion cues such as facial expres-
sion, body posture and hand movement all play a role. For
instance, people may change their gestures when shifting
to a new topic [52], or wave their hands when greeting an
audience. Recent methods have shown rapid progress on
modeling the translation from human speech to body mo-
tion, and can be roughly divided into rule-based [38] and
learning-based [20, 21, 23, 32, 33, 55] methods. Typically,
the body motion in these methods is represented as the mo-
tion of a 3D mesh of the face/upper-body [5, 15, 26, 43, 44],
or 2D/3D landmarks of the face with 2D/3D joints of the
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hands and body [21, 23, 55]. However, this is not sufficient
to understand human behavior. Humans communicate with
their bodies, hands and facial expressions together. Captur-
ing such coordinated activities as well as the full 3D surface
in tune with speech is critical for virtual agents to behave
realistically and interact with listeners meaningfully.

In this work, we focus on generating the expressive 3D
motion of person, including their body, hand gestures, and
facial expressions, from speech alone; see Fig. 1. To do
this, we must learn a cross-modal mapping between audio
and 3D holistic body motion, which is very challenging in
practice for several reasons. First, datasets of 3D holistic
body meshes and synchronous speech recordings are scarce.
Acquiring them in the lab is expensive and doing so in the
wild has not been possible. Second, real humans often vary
in shape, and their faces and hands are highly deformable. It
is not trivial to generate both realistic and stable results of
3D holistic body meshes efficiently. Lastly, as different body
parts correlate differently with speech signals, it is difficult
to model the cross-modal mapping and generate realistic and
diverse holistic body motions.

We address the above challenges and learn to model the
conversational dynamics in a data-driven way. Firstly, to
overcome the issue of data scarcity, we present a new set of
3D holistic body mesh annotations with synchronous audio
from in-the-wild videos. This dataset was previously used
for learning 2D/3D gesture modeling with 2D body key-
point annotations [21] and 3D keypoint annotations of the
holistic body [23] by applying existing models separately.
Apart from facilitating speech and motion modeling, our
dataset can also support broad research topics like realistic
digital human rendering. Then, to support our data-driven
approach to modeling speech-to-motion translation, an ac-
curate holistic body mesh is needed. Existing methods have
focused on capturing either the body shape and pose isolated
from the hands and face [8, 17, 25, 34, 47, 57, 58, 61], or
the different parts together, which often produces unreal-
istic or unstable results, especially when applied to video
sequences [18, 40, 62]. To solve this, we present SHOW,
which stands for “Synchronous Holistic Optimization in the
Wild”. Specifically, SHOW adapts SMPLify-X [40] to the
videos of talking persons, and further improves it in terms
of stability, accuracy, and efficiency through careful design
choices. Figure 2 shows example reconstruction results.

Lastly, we investigate the translation from audio to 3D
holistic body motion represented as a 3D mesh (Fig. 1). We
propose TalkSHOW, the first approach to autoregressively
synthesize realistic and diverse 3D body motions, hand ges-
tures and facial expression of a talking person from speech.
Motivated by the fact that the face (i.e. mouth region) is
strongly correlated with the audio signal, while the body and
hands are less correlated, or even uncorrelated, TalkSHOW
designs separate motion generators for different parts and

gives each part full play. For the face part, to model the
highly correlated nature of phoneme-to-lip motion, we de-
sign a simple encoder-decoder based face generator that
encodes rich phoneme information by incorporating the pre-
trained wav2vec 2.0 [6]. On the other hand, to predict the
non-deterministic body and hand motions, we devise a novel
VQ-VAE [50] based framework to learn a compositional
quantized space of motion, which efficiently captures a di-
verse range of motions. With the learned discrete represen-
tation, we further propose a novel autoregressive model to
predict a multinomial distribution of future motion, cross-
conditioned between existing motions. From this, a wide
range of motion modes representing coherent poses can be
sampled, leading to realistic looking motion generation.

We quantitatively evaluate the realism and diversity of our
synthesized motion compared to ground truth and baseline
methods and ablations. To further corroborate our qualitative
results, we evaluate our approach through an extensive user
study. Both quantitative and qualitative studies demonstrate
the state-of-the-art quality of our speech-synthesized full
expressive 3D character animations.

2. Related work
2.1. Holistic Body Reconstruction

Recent work addresses the problem of 3D holistic body
mesh recovery [12, 24, 40, 54, 62]. SMPLify-X [40] fits
the parametric and expressive SMPL-X model [40] to 2D
keypoints obtained by off-the-shelf detectors (e.g. OpenPose
[9]). PIXIE [18] directly regresses SMPL-X parameters
using moderators that estimate the confidence of part-specific
features. These features are fused and fed to independent
regressors. PyMAF-X [62] improves the body and hand
estimation with spatial alignment attention. In this work,
we adapt the optimization-based SMPLify-X to videos of
talking persons, and improve the stability and accuracy with
several good engineering practices in terms of initialization,
data term design, and regularization.

2.2. Speech-to-Motion Datasets

The existing speech-to-motion datasets can be roughly
categorized as in-house and in-the-wild. The annotations of
in-house datasets [13, 16, 20, 48, 53] are accurate but are
limited in scale since the multi-camera systems used for data
capture are expensive and labor intensive. Moreover, these
datasets only provide annotations of the head [13, 16, 53] or
body [20, 48], and thus do not support whole-body genera-
tion. To learn richer and more diverse speaking styles and
emotions, [59, 60] propose to use in-the-wild videos. The an-
notations are pseudo ground truth (p-GT) given by advanced
reconstruction approaches, e.g. [9]. However, these released
datasets use either 2D keypoints or 3D keypoints with 3D
head mesh to represent the body. This disconnected repre-
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Dataset Head Hand Body Holistic Body
Connection In-the-wild Length Annotations

Multiface [53] 3D mesh ✘ ✘ ✘ ✘ - multi-camera
BIWI [16] 3D mesh ✘ ✘ ✘ ✘ - 3D-scanner
VOCASET [13] 3D mesh ✘ ✘ ✘ ✘ - 4D-scan
Takeuchi et.al [48] ✘ ✘ 3D keypoint ✘ ✘ 5h MoCap
Trinity [20] ✘ ✘ 3D keypoint ✘ ✘ 4h MoCap
Yoon et.al [59, 60] ✘ ✘ 3D keypoint ✘ ✔ 52h p-GT
Speech2Gesture [21] ✘ 2D keypoint 2D keypoint ✘ ✔ 144h p-GT
Habibie et.al [23] 3D mesh 3D keypoint 3D keypoint ✘ ✔ 33h p-GT
Ours 3D mesh 3D mesh 3D mesh ✔ ✔ 27h p-GT

Table 1. Comparison of different speech-to-motion datasets.

sentation limits the possible applications of the generated
talking motions. In contrast to the aforementioned work, our
dataset, reconstructed by SHOW, consists of holistic body
meshes and synchronized speech, covering a wide range of
body poses, hand gestures, and facial expressions. More
details can be found in Table 1.

2.3. Holistic Body Motion Generation from Speech

Holistic body motion generation from speech consists
of three body parts motion generation, i.e., faces, hands,
and bodies. Existing 3D talking face generation meth-
ods [13, 15, 43, 63] rely heavily on 4D face scan datasets
for training [13, 16, 43]. There are many attempts to
perform body motion generation, and these can be di-
vided into rule-based and learning-based methods. Rule-
based methods [10, 29, 33, 41] map the input speech
to pre-collected body motion “units” with manually de-
signed rules. They are explainable and controllable but
it is expensive to create complex, realistic, motion pat-
terns. Learning-based body motion generation approaches
[1, 7, 21, 30, 31, 36, 59] have advanced significantly in part
due to publicly released synchronous speech and body mo-
tion datasets [21, 23, 35, 48, 59, 60]. However, they only
consider parts of the human body rather than the holistic
body. Most related to our work, Habibie et al. [23] pro-
pose to generate 3D facial meshes and 3D keypoints of the
body and hands from speech, but the generated faces, bodies
and hands are disjoint. Also, these methods are determinis-
tic, can not generate diverse motions when given the same
speech recording. There are a few attempts to incorporate
the diversity into motion generation using GANs [2, 37, 60],
VAEs [35, 42, 55], VQ-VAEs [5, 56], or normalising-flows
[3]. Nevertheless, the diversity of motions produced by these
methods is inadequate.

In contrast, TalkSHOW generates holistic body motions
and models different body parts separately according to their
natures: the face part is more correlated to the speech signal
than body parts. TalkSHOW develops a simple determinis-
tic encoder-decoder structure for mapping acoustic signals
to facial expressions. TalkSHOW adopts two VQ-VAEs to
generate more diverse body and hand motions. This novel de-

sign allows the learned quantized space to be compositional
and more expressive for conversational gestures. Compared
with previous VQ-VAE-based methods [46, 56], we design a
cross-conditional autoregressive model to generate different
body-part motions, which are more fluid and natural.

3. Dataset
In this section, we introduce a high-quality audiovisual

dataset, which consists of expressive 3D body meshes at
30fps, and their synchronized audio at a 22K sample rate.
The 3D body meshes are reconstructed from in-the-wild
monocular videos and are used as our pseudo ground truth
(p-GT) in speech-to-motion generation. We provide detailed
descriptions of this dataset in Sec. 3.1 and highlight sev-
eral good practices for obtaining more accurate p-GT from
videos in Sec. 3.2. Our experiments show that this dataset is
effective for training speech-to-motion models.

3.1. Dataset Description

The dataset is built from the in-the-wild talking videos
of different people with various speaking styles. We use the
same video sources from [21] for straightforward compar-
isons with the previous work. To facilitate the subsequent
3D body reconstruction, we manually filter out videos if they
are in any following cases: (i) low resolution (<720p), (ii)
occluded hand(s), or (iii) invalid download link. The filtering
leads to a high-quality dataset of 26.9 hours from 4 speakers.
For the mini-batch processing, the raw videos are cropped
into short clips (<10 seconds). Direct comparisons to the
existing datasets can be found in Table 1.

Expressive 3D whole-body meshes are reconstructed
from these videos and used as the p-GT. Specifically, the
3D holistic body meshes consist of face, hands, and bod-
ies in a connected way, which is achieved by adopting a
well-designed 3D topology from SMPL-X [40]. As a re-
sult, we represent the p-GT of the dataset as SMPL-X pa-
rameters. Given a video clip of T frames, the p-GT com-
prises parameters of a shared body shape β ∈ R300, poses{
θt|θt ∈ R156

}T

t=1
, a shared camera pose θc ∈ R3 and trans-

lation ϵ ∈ R3, and facial expressions
{
ψt|ψt ∈ R100

}T

t=1
.
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Figure 2. The 3D holistic body reconstruction results from
SMPLify-X, PIXIE, PyMAF-X, and ours. Compared to other meth-
ods, ours produces more accurate and stable results with details.

Here the pose θt includes jaw pose θjawt ∈ R3, body pose
θbt ∈ R63, and hand pose θht ∈ R90.

We note that this dataset can not only be used in speech
and motion modeling, but also supports broad research topics
like realistic digital human rendering and learning-based
holistic body recovery from videos, etc.

3.2. Good Practices for Improving p-GT

In this section, we present SHOW, which adapts
SMPLify-X [40] to the videos of talking persons with several
good practices, to improve the stability, accuracy, and effi-
ciency in 3D whole-body reconstruction. In the following,
we briefly summarize our efforts for improving the p-GT.
See more details in the supplemental material.
Initialization. A good initialization can significantly accel-
erate and stabilize the SMPLify-X optimization. We apply
several advanced regression-based approaches to the videos,
and use the resulting predictions as the initial parameters of
SMPLify-X. Specifically, PIXIE [18], PyMAF-X [62], and
DECA [19] are used to initialize θb, θh, and θf , respectively.
The camera is assumed to be static, and its parameters θc

and ϵ are estimated by PIXIE [18] as well.
Data Term. The joint re-projection loss is the most impor-
tant data objective function in SMPLify-X, as it optimizes
the difference between joints extracted from the SMPL-X
model, projected into the image, with joints predicted with
OpenPose [9]. Here we extend the data term by incorporat-
ing body silhouettes from DeepLab V3, facial landmarks
from MediaPipe [27], and facial shapes from MICA [65].
Further, we use a photometric loss between the rendered
faces and the input image to better capture facial details.

Regularization. Different regularization terms in SMPLify-
X prevent the reconstruction of unrealistic bodies. To derive
more reasonable regularizations, we explicitly take informa-
tion about the video into account and make the following
assumptions. First, the speaker in each video clip remains the
same. This is further verified by a face recognition pipeline
using the ArcFace model [14]. So we can use consistent
shape parameters β to represent the holistic body shape.
Second, the holistic body pose, facial expression, and envi-
ronmental lighting in video clips change smoothly over time.
This temporal smoothness assumption has proven useful in
many previous approaches [58, 65], and we observe similar
improvements in our experiments. Third, the person’s sur-
face does self-penetrate, which should be self-evident in the
real world.

Overall, as shown in Figure 2, the p-GT can be signifi-
cantly improved by incorporating the aforementioned prac-
tices. See more results in the supplemental video.

4. Method

Given a speech recording, our goal is to generate conversa-
tional body poses, hand gestures as well as facial expressions
that match the speech in a plausible way. Motivated by the
fact that the face motion is highly correlated to the speech
signal, while the body and hand parts are less correlated,
we propose TalkSHOW, a novel framework that can model
speech and different human parts separately. In the follow-
ing, we present an encoder-decoder based face generator in
Sec. 4.2, and a body and hand generator in Sec. 4.3.

4.1. Preliminary

Let M = {mt}Tt=1 be a p-GT holistic motion sequence
(i.e., a temporal sequence of the posesmi) provided in Sec. 3.
We denote the motion of the face, body and hands as Mf ,
M b and Mh respectively, see more details in supplemental
material.

4.2. Face Generator

Given a raw audio signal A1:T , our face generator
GF aims to generate expressive facial motions M̂f

1:T =

(m̂f
1 , . . . , m̂

f
T ) ∈ R103×T close to Mf

1:T ∈ R103×T .
Figure 3 (A) illustrates our idea. In order to produce

synchronized mouth motions [15], we leverage a pretrained
speech model, wav2vec 2.0 [6]. Specifically, the encoder
consists of an audio feature extractor and a transformer en-
coder [51], leading to a 768-dimensional speech representa-
tion. A linear projection layer is added on top of the encoder
to reduce the dimension to 256. Our decoder comprises six
layers of temporal convolutional networks (TCNs) followed
by a fully-connected layer. We train the encoder and decoder
with an Mean Square Error (MSE) loss.
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Figure 3. Overview of the proposed TalkSHOW. We employ a simple encoder-decoder model for face motions, and a novel framework for
body and hand motions. Specifically, this framework first learns VQ-VAEs on each piece separately to obtain a compositional quantized
space. Then, we autoregressively predict a distribution of the body/hand motion at a future timestep. Our predictor is designed to be
cross-conditioned between the body and hand motions to keep the synchronization of the holistic body. Lastly, we obtain the future
body/hand motions by decoding a sampled codebook index sampled from the distribution. The blue, black, and green lines indicate processes
involved at training and inference, training, and inference stages, respectively. Best viewed in color.

4.3. Body and Hand Generator

Given an audio input, we aim to generate a temporal
sequence of realistic and diverse motions for the body
and hands, i.e. M̂ b

1:T = (m̂b
1, . . . , m̂

b
T ) ∈ R63×T and

M̂h
1:T = (m̂h

1 , . . . , m̂
h
T ) ∈ R90×T , respectively. Figure

3 (B) illustrates our idea. Instead of learning a direct map-
ping from audio to motion, we leverage the recent advances
of VQ-VAE [50] to learn a multi-mode distribution space
for body and hand motions. Specifically, we first encode
and quantize the body and hand motions into two finite
codebooks, from which we can sample a wide range of
plausible body and hand combinations. Then, we intro-
duce a novel cross-conditional autoregressive model over
the learned codebooks, which allows us to predict diverse
body and hand motions. Our predictor is designed to be
cross-conditioned between the body and hand to keep the
synchronization of the holistic body. Lastly, we obtain the
future body/hand motions by decoding codebook indices
sampled from the distribution.

Representation. We use 64-dimensional MFCC features
[45] as the audio representation for body and hand genera-
tion, i.e., A1:T = (a1, . . . , aT ) ∈ R64×T . Since body and
hand gestures are more correlated to the rhythm and beat

instead of phonemes, low-dimensional MFCC features are
sufficient to produce plausible gestures from audio. Be-
sides, considering that speakers often present different mo-
tion styles, we also leverage the modality of speaker identity
I to differentiate those styles. We represent this as a one-hot
vector I ∈ {0, 1}NI , where NI is the number of speakers.

Compositional Quantized Motion Codebooks. The vanilla
VQ-VAE learns a discrete codebook Z = {zi}|Z|

i=1 consist-
ing of multiple vectors zi ∈ Rdz to quantize the latent space
of input. To further expand the range that the learned code-
book can represent, we divide the motions into composi-
tional pieces, i.e., body and hands, and learn VQ-VAEs on
each piece separately. By doing this, the body and hand
movements are encoded and quantized into two separate
finite codebooks Zb = {zbi }

|Zb|
i=1 and Zh = {zhj }

|Zh|
j=1 , where

zbi , z
h
i ∈ Rdz with lengths |Zb| and |Zh| respectively, from

which we can combine |Zb| × |Zh| different body-hands
pose code pairs (zbi , z

h
j ) to expand motion diversity. In this

scheme, given an input of the sequence of body and hand
motions M b

1:T ∈ R63×T and Mh
1:T ∈ R90×T , we first en-

code them into the feature sequence Eb
1:τ = (eb1, . . . , e

b
τ ) ∈

R64×τ and Eh
1:τ = (eh1 , . . . , e

h
τ ) ∈ R64×τ , where τ = T

w
and w is the temporal window size. Then, we quantize
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the embedding by mapping it into the nearest code in the
corresponding codebook:

zbt = arg min
zb
k
∈Zb

∥ebt − zbk∥ ∈ R64,

zht = arg min
zh
k
∈Zh

∥eht − zhk∥ ∈ R64.
(1)

Finally, the quantized features Zb
1:τ = (zb1, . . . , z

b
τ ) ∈

R64×τ and Zh
1:τ = (zh1 , . . . , z

h
τ ) ∈ R64×τ are fed into the

decoder for the synthesis.
We train the encoder and decoder simultaneously with

the codebook by the following loss function:

LV Q = Lrec(M1:T , M̂1:T ) + ∥sg[E1:T ]− Z1:T ∥
+ β ∥E1:T − sg [Z1:T ]∥ ,

(2)

where Lrec is an MSE reconstruction loss, sg is a stop gradi-
ent operation [11] that is used to calculate codebooks loss,
and the third part is a “commitment” loss with a trade-off β.

Cross-Conditional Autoregressive Modeling. After we
learn the compositional quantized codebooks, any body and
hand motions can be represented as a sequence of codebook
vectors via the encoder and quantization. Following the
common paradigm, we use the representation of a sequence
of corresponding codebook indices, in the form of one-hot
vectors, of the nearest codebook entry per element, which
is denoted as Cb

1:τ = (cb1, . . . , c
b
τ ) ∈ R|Zb|×τ and Ch

1:τ =

(ch1 , . . . , c
h
τ ) ∈ R|Zh|×τ .

Now, with the quantized motion representation, we de-
sign a temporal autoregressive model over it to predict the
distribution of possible next motions, given the input audio
embedding A and existing motions. Besides, we enable the
modality input of identity I to distinguish different gesture
styles. Because we model the body and hands independently,
to keep the consistency of the holistic body and thus predict
realistic gestures, we exploit the mutual information and
design our model to be cross-conditioned between the body
and hand motions. Specifically, following Bayes’ Rule, we
model the joint probability of Cb

1:τ and Ch
1:τ as follows:

p(Cb
1:τ , C

h
1:τ | A1:τ , I) =

τ∏
t=1

p
(
cbt | cb<t, c

h
<t, a≤t, I

)
p
(
cht | cb≤t, c

h
<t, a≤t, I

)
.

(3)

Note that our cross-condition modeling between the body
and hand motions makes the most of mutual information in
two ways: (1) the current body/hand motions (i.e. cbt /c

h
t )

depend on past hand/body motion information (i.e. cb<t/c
h
<t);

(2) we argue that the current body motion cbt is also respon-
sible for predicting the distribution of current hand motions.
Such modeling guarantees the coherence of the body and
hand motions as a whole and thus achieves realistic gestures.
Gated PixelCNN [49] is adopted to model these quantities.

Method
Face

L2 ↓ LVD ↓
Habibie et al. [23] 0.139 0.257
TalkSHOW (Ours) 0.130 0.248

Method
Body&Hands

RS ↑ Variation ↑
Habibie et al. [23] 0.146 0
Audio Encoder-Decoder 0.214 0
Audio VAE 0.182 0.044
Audio+Motion VAE 0.240 0.176
TalkSHOW (Ours) 0.414 0.821

Table 2. Comparison to Habibie et al. [23] and several baselines. ↑
indicates higher is better and ↓ indicates lower is better.

During the training phase, the quantized body/hand motions
representation concatenated with the audio and identity fea-
tures is used for training. A teacher-forcing scheme and
cross-entropy loss are adopted for the optimization. At in-
ference, the model predicts multinomial distributions of the
future body and hand motions, from which we can sample
to acquire codebook indices for each motion. A codebook
lookup is then conducted to retrieve the corresponding quan-
tized element of motion, which we feed into the decoder
for the final synthesis. Figure 3 (B) illustrates the pipeline.
More training details are given in the supplemental material.

5. Experiments

We evaluate the ability of our method in generating body
motions (i.e. a sequence of poses) from the speech on the
created dataset both quantitatively and qualitatively. Specif-
ically, we choose video sequences longer than 3s and split
them into 80%/10%/10% for the train/val/test set. Several
metrics are used to measure the realism and diversity of
the generated motions including facial expression and hand
poses. Furthermore, we conduct perceptual studies to assess
the performance of our method.

5.1. Experimental Setup

Evaluation Metrics. Because we model face motion as
a deterministic task and the body and hand motions as a
non-deterministic task, we assess the generated motion in
terms of the realism and the synchronization of face motion,
and the realism and the diversity of body and hand motions.
Specifically, the following metrics are adopted:

• L2: L2 distance between p-GT and generated facial
landmarks, including jaw joints and lip shape [39, 64].

• LVD: Landmark Velocity Difference calculates the ve-
locity difference between p-GT and generated facial
landmarks, which measures the synchronization be-
tween speech and facial expression [64].

474



• RS: Score on the realism of the generated body and
hand motion. Following [4, 55], we trained a binary
classifier to discriminate real samples from fake ones
and the prediction represents the realistic score.

• Variation: As used in [39], diversity is measured by the
variance across the time series sequence of body and
hand motions.

Compared Methods. We compare TalkSHOW to Habibie
et al. [23], a SOTA speech-to-motion method. Also, we com-
pare several baselines for modeling body and hand motions
when using the same face generator as ours:

• Audio Encoder-Decoder. It encodes input audio and
outputs motions; this is used by [21, 23].

• Audio VAE. Given the input audio, the VAE-like struc-
ture encodes audio into a Gaussian distribution, and
then the sampled audio is fed into the decoder, which
transforms the sample into motions.

• Audio+Motion VAE. Given the input motion and audio,
it adopts a VAE-like structure with two encoders to
encode motion and audio into Gaussian distributions,
respectively, and then the sampled motion and audio are
concatenated and fedinto the decoder for the synthesis.

5.2. Quantitative Analysis

Table 2 shows the comparison results. We see that our
method outperforms Habibie et al. [23] across all metrics.
Particularly, our method surpasses it in terms of L2 and
LVD, which demonstrates the effectiveness of our face gen-
erator for generating realistic facial expressions. Also, our
method significantly outperforms it in terms of variation,
which demonstrates the powerful capacity to generate di-
verse body and hand motions resulting from our proposed
compositional quantized motion representation. Moreover,
regarding the realism (RS) for body and hand motion, we
surpass Habibie et al. [23] considerably, which confirms the
effectiveness of our cross-conditioned autoregressive model
in generating realistic motion.

On the other hand, compared to VAE-based models, our
method achieves significant gains in both realism and diver-
sity. In particular, we obtain much higher diversity. This
indicates the advantage of the learned compositional quan-
tized motion codebooks, which effectively memorize multi-
ple motion modes of the body and hands and thus boost the
diversity of the generated body and hand gestures.

5.3. Qualitative Analysis

Figure 4 shows examples of our generated 3D holistic
body motion from speech. We see that given the word “But”
from the speech represents a strengthening tone of voice,

... I'm not anti vaccine. But, and it's what comes ... 
hands up hands down

Figure 4. Our method generates diverse motions consistent with the
rhythm of the input audio. For instance, we can generate different
movements of hands corresponding to the strengthening tone of
“But” in the speech, e.g. using left hand only (top), right hand only
(middle), or both hands (bottom).

... do you need to do? Shift back, forge reactions  ...

/f/ /t/ /b/ /æ/

Figure 5. Given speech audio as input, our method generates facial
expressions with accurate lip shapes.
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Figure 6. The comparison of VQ-VAE and VQ-VAEs with compo-
sitional codebooks.

our method generates plausible holistic body motions with
hands up before saying “But” and hands down after saying
“But”. Notably, the generated motions are diverse in many
aspects, e.g. the range of motion and which hands to use.
For a better illustration of the differences between generated
motion samples, we overlap the motions in the same frame
with different levels of transparency.
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Figure 5 illustrates the qualitative performance of our
face generator. Our approach generates realistic face mo-
tions including consistent lip motions with the correspond-
ing phonemes such as /f/, /t/, /b/, and /æ/. Furthermore, our
method exhibits a remarkable generalization ability to un-
seen languages and various audio types, e.g. French and
songs. Additional interesting examples can be found in the
supplemental video.

5.4. Model Ablation

Effect of Wav2vec Feature in Face Generation. We evalu-
ate the effect of the wav2vec feature used in face generation
compared to the MFCC feature. We add an extra encoder
to increase the dimension of the MFCC feature from 64
to 256 for a fair comparison. The wav2vec-based model
outperforms the MFCC-based model in both metrics (0.130
vs. 0.165 in L2 and 0.251 vs. 0.277 in LVD) due to its
larger capacity for modeling the relationship between audio
and phonemes. Moreover, we experimentally find that the
wav2vec-based model can generalize well to unseen identi-
ties; see supplementary for more details.

Effect of Compositional Quantized Motion Codebooks.
We analyze the capability of the proposed compositional
quantized motion codebooks of VQ-VAEs in efficiently cap-
turing the diverse motion modes represented in motion data,
which leads to accurate reconstruction. To this end, we com-
pare VQ-VAE with a single codebook. Reconstruction Error
RE is adopted as the metric, in which a lower reconstruc-
tion loss indicates a higher capacity. Figure 6 illustrates the
results. We see that compared to VQ-VAE with a single
codebook, VQ-VAEs with compositional codebooks yield
consistently lower RE across different codebook sizes. This
demonstrates the effectiveness of the proposed composi-
tional codebooks in modeling the diverse motion modes.

Effect of Cross-Conditional Modeling. In contrast to cross-
conditional modeling (w/ c-c), the model without cross con-
dition (w/o c-c) generates body and hand motions indepen-
dently. Our method w/ c-c yields a higher realistic score than
that w/o c-c (0.414 vs. 0.409), benefiting from the cross-
conditional modeling between the body and hand motions
which leads to more coherent and realistic motions. Note
that due to the higher realism, our method w/ c-c attains a
slight reduction in diversity (0.821 vs. 0.922 in variance),
which is reasonable.

5.5. Perceptual Study

We conduct perceptual studies with Google Forms to
evaluate the quality of our reconstruction and generation
methods, respectively. We randomly sample 40 videos in
total with 10 videos from each speaker. Ten participants took
part in the study.

Method face body hands holistic body
PyMAF-X [62] 0.323 0.500 0.438 0.193
SHOW (ours) 0.898 0.738 0.800 0.768

Table 3. Perceptual study results on reconstruction. For each
method, we report the average percentage of answers that the re-
constructed results match the input video.

Method face body and hands holistic body
[23] vs. p-GT 0.153 0.141 0.169
TalkSHOW (Ours) vs. p-GT 0.478 0.464 0.458
TalkSHOW (Ours) vs. [23] 0.888 0.910 0.913

Table 4. Perceptual study of motion generation. We use A/B testing
and report the percentage of answers where A is preferred over B.

Reconstruction. We assess the quality of our holistic body
reconstruct results against PyMAF-X [62], compared with
the ground truth. Participants are asked to answer the fol-
lowing questions with Yes or No: Does the reconstructed
face/hands/body/full-body match the input video? Table 3
reports the average percentage of answers that the recon-
structed results match the input video. We see that our
method outperforms PyMAF-X by a large margin.

Motion Generation. We use A/B testing to evaluate our gen-
eration results, compared to the p-GT and Habibie et al. [23].
Specifically, participants are asked to answer the following
questions with A or B: For the face/body&hands/overall re-
gion, which one is a better match with the given speech?
Table 4 reports the average preference percentage of answers.
We see that participants favor our method over Habibie et
al. in terms of all the regions. Not surprisingly, participants
perceive the p-GT better over both methods, with our method
preferred by many more users.

6. Conclusion
In this work, we propose TalkSHOW, the first approach

to generate 3D holistic body meshes from speech. We de-
vise a simple and effective encoder-decoder for realistic face
generation with accurate lip shape. For body and hands,
we enable diverse generation and coherent prediction with
compositional VQ-VAE and cross-conditional modeling, re-
spectively. Moreover, we contribute a new set of accurate 3D
holistic body meshes with synchronous audios from in-the-
wild videos. The annotations are obtained by an empirical
approach designed for videos. Experimental results demon-
strate that our proposed approach achieves state-of-the-art
performance both qualitatively and quantitatively.
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