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{firstname.lastname}@tuebingen.mpg.de chunhaoh@adobe.com

Figure 1. Estimating 3D scenes from human movement. Given 3D human motion (left), e.g. from motion capture or body-worn sensors,
we reconstruct plausible 3D scenes in which the motion could have taken place. Our generative model is able to produce multiple realistic
scenes (right) that take into account the locations and poses of the person, with appropriate human-scene contact.

Abstract

Generating realistic 3D worlds occupied by moving hu-
mans has many applications in games, architecture, and
synthetic data creation. But generating such scenes is ex-
pensive and labor intensive. Recent work generates human
poses and motions given a 3D scene. Here, we take the
opposite approach and generate 3D indoor scenes given
3D human motion. Such motions can come from archival
motion capture or from IMU sensors worn on the body, effec-
tively turning human movement into a “scanner” of the 3D
world. Intuitively, human movement indicates the free-space
in a room and human contact indicates surfaces or objects
that support activities such as sitting, lying or touching. We
propose MIME (Mining Interaction and Movement to infer
3D Environments), which is a generative model of indoor
scenes that produces furniture layouts that are consistent
with the human movement. MIME uses an auto-regressive
transformer architecture that takes the already generated
objects in the scene as well as the human motion as input,
and outputs the next plausible object. To train MIME, we
build a dataset by populating the 3D FRONT scene dataset
with 3D humans. Our experiments show that MIME pro-
duces more diverse and plausible 3D scenes than a recent
generative scene method that does not know about human
movement. Code and data are available for research at
https://mime.is.tue.mpg.de.

*This work was performed when C.P. H. was at the MPI-IS.

1. Introduction
Humans constantly interact with their environment. They

walk through a room, touch objects, rest on a chair, or sleep
in a bed. All these interactions contain information about
the scene layout and object placement. In fact, a mime is a
performer who uses our understanding of such interactions
to convey a rich, imaginary, 3D world using only their body
motion. Can we train a computer to take human motion
and, similarly, conjure the 3D scene in which it belongs?
Such a method would have many applications in synthetic
data generation, architecture, games, and virtual reality. For
example, there exist large datasets of 3D human motion
like AMASS [38] and such data rarely contains information
about the 3D scene in which it was captured. Could we
take AMASS and generate plausible 3D scenes for all the
motions? If so, we could use AMASS to generate training
data containing realistic human-scene interaction.

To answer such questions, we train a new method called
MIME (Mining Interaction and Movement to infer 3D Envi-
ronments) that generates plausible indoor 3D scenes based
on 3D human motion. Why is this possible? The key in-
tuitions are that (1) A human’s motion through free space
indicates the lack of objects, effectively carving out regions
of the scene that are free of furniture. And (2), when they
are in contact with the scene, this constrains both the type
and placement of 3D objects; e.g., a sitting human must be
sitting on something, such as a chair, a sofa, a bed, etc.

To make these intuitions concrete, we develop MIME,
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which is a transformer-based auto-regressive 3D scene gen-
eration method that, given an empty floor plan and a human
motion sequence, predicts the furniture that is in contact
with the human. It also predicts plausible objects that have
no contact with the human but that fit with the other objects
and respect the free-space constraints induced by the human
motion. To condition the 3D scene generation with human
motion, we estimate possible contact poses using POSA [23]
and divide the motion in contact and non-contact snippets
(Fig. 2). The non-contact poses define free-space in the room,
which we encode as 2D floor maps, by projecting the foot
vertices onto the ground plane. The contact poses and cor-
responding 3D human body models are represented by 3D
bounding boxes of the contact vertices predicted by POSA.
We use this information as input to the transformer and auto-
regressively predict the objects that fulfill the contact and
free-space constraints; see Fig. 1.

To train MIME, we built a new dataset called 3D-FRONT
HUMAN that extends the large-scale synthetic scene dataset
3D-FRONT [18]. Specifically, we automatically populate
the 3D scenes with humans; i.e., non-contact humans (a
sequence of walking motion and standing humans) as well
as contact humans (sitting, touching, and lying humans). To
this end, we leverage motion sequences from AMASS [38],
as well as static contact poses from RenderPeople [47] scans.

At inference time, MIME generates a plausible 3D scene
layout for the input motion, represented as 3D bounding
boxes. Based on this layout, we select 3D models from the
3D-FUTURE dataset [19] and refine their 3D placement
based on geometric constraints between the human poses
and the scene.

In comparison to pure 3D scene generation approaches
like ATISS [46], our method generates a 3D scene that sup-
ports human contact and motion while putting plausible ob-
jects in free space. In contrast to Pose2Room [43] which is
a recent pose-conditioned generative model, our method en-
ables the generation of objects that are not in contact with the
human, thus, predicting the entire scene instead of isolated
objects. We demonstrate that our method can directly be
applied to real captured motion sequences such as PROX-D
[22] without finetuning.

In summary, we make the following contributions:

• a novel motion-conditioned generative model for 3D
room scenes that auto-regressively generates objects
that are in contact with the human and do not occupy
free-space defined by the motion.

• a new 3D scene dataset with interacting humans and
free space humans which is constructed by populating
3D FRONT with static contact/standing poses from
RenderPeople and motion data of AMASS.

Figure 2. We divide input humans into two parts: contact humans
and free-space humans. We extract the 3D bounding boxes for
each contact human, and use non-maximum suppression on the
3D IoU to aggregate multiple humans in the same 3D space into
a single contact 3D bounding box (orange boxes). We project the
foot vertices of free-space humans on the floor plane, to get the 2D
free-space mask (dark blue).

2. Related Work
Generative Scene Synthesis (No People). Most prior work
on indoor scene synthesis, ignores the human and is based
on (1) procedural modeling with grammars[11, 32, 41, 45,
49, 50, 60]; (2) graph neural networks [13, 33, 35, 37, 50,
65, 80–82, 82]; (3) auto-regressive neural networks [53, 66];
or (4) transformers [44, 46, 67]. Some methods leverage
lexical text [6] or a sentence [7] as input to guide the 3D
scene synthesis. Fisher et al. [16] take 3D scans as input
and synthesize the corresponding 3D object arrangements.
This is extended to also include functionality aspects in the
reconstruction [17]. Recently, ATISS [46] performs scene
synthesis using a transformer-based architecture. ATISS
takes a floorplan as input and auto-regressively generates a
3D scene that is represented as an unordered set of objects.

All methods mentioned above do not take human motion
into consideration to guide the 3D scene synthesis. In con-
trast, we generate 3D scenes that are compatible with the
humans defined by a given input motion. Specifically, the
objects in the generated scene should support the human
motion (e.g., a chair or couch for sitting) and should not
intersect with the path of a walking human, To exploit these
insights, we build upon the auto-regressive scene synthe-
sis architecture of ATISS [46] and incorporate contact and
free-space information into the pipeline.
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Figure 3. Method overview. During training, our method generates the (M + 1)-th object through a transformer encoder and a decoding
module conditioned on the free space concatenated with the floor plan, contact humans cNj=1, other existing objects oMj=1 and a learnable
query q. We minimize the negative log-likelihood between the distribution of the generated object M + 1 and the ground truth. During
inference, we start from the floor plan, the free space and input contact humans cNi=1 and assign the contact label of the first human as 1 by
default, to auto-regressively generate objects. At each step, we remove the contact humans that are already supported by the previously
generated object and generate next objects until the end symbol is generated.

Human-aware Scene Reconstruction. Qi et al. [51]
propose a method that synthesizes a 3D scene based on
a human’s affordance map with a spatial And-Or graph.
PiGraphs [54] learns a probability distribution over human
pose and object geometry from interactions. However, it
does not model the free space carved out by movement. Sim-
ilarly, recent methods explore how to estimate a 3D scene
from human behaviors and interactions. Mura et al. [42] pre-
dict a “3D floor plan” from a 2D human walking trajectory
without modelling objects or handling contact information.
Ye et al. [73] design a contact predictor to estimate tempo-
rally coherent contact vertices on an input human motion
sequence, and manually select plausible objects to interact
with humans and other objects in free space. Nie et al. [43]
propose Pose2Room, which predicts 3D objects inside a
room from 3D human pose trajectories in a probabilistic way
by learning a 3D object arrangement distribution. While it
predicts contacted objects, it does not generate objects in
free space. In addition, it cannot take floor plans as input.
We find these crucial in our experiments since object arrange-
ments are highly related to the floor plan; e.g. furniture like
a bed is designed to go against a wall.

Human-Scene Interaction Datasets. Many datasets exist
for understanding humans [15, 29, 34, 36, 55, 58, 59, 71, 75,
79] or scenes [14, 72, 76, 77] in separation, but relatively few
address humans and scenes [27, 70, 74] together. Human
bodies are commonly captured using optical markers [8, 30,
56], IMU sensors [28, 64], and multiple RGB cameras [31,
39, 78]. See [61] for a comprehensive review. These datasets
contain only humans, forgoing the 3D environments which
the subjects interact with, e.g., floor plane, walls, furniture.
In contrast, real 3D scene datasets such as Matterport3D [5],
ScanNet [9] and Replica [57] are captured primarily through

time-of-flight sensors, where humans are excluded since only
static content is reconstructed. Consequently, despite having
a large variety of scenes, they are not suitable for modeling
human-scene interaction.

To train MIME, we need diverse scene arrangements
given a set of sparse or continuously-moving bodies. While
recent real datasets [2, 10, 20, 22, 26, 40, 62, 68] capture
both humans and environments, they fail to provide sufficient
variety because the a priori scanned scenes are static and
only the subject moves. This limits the variety of scenes that
can be practically captured. Hassan et al. [21] use MoCap to
capture a person interacting with objects like chairs, sofas
and tables. They augment the dataset by changing the size
and shape of the objects and update the human pose using
inverse kinematics. However, the data does not capture full
scenes which we aim to generate. Composited or synthetic
datasets such as [1, 3, 47] are widely used for human mesh
recovery, but the human-scene interactions are very limited.
Pose2Room [43] and GTA-IM [4] are the closest to our
needs. However, they represent humans with 3D skeletons,
which cannot represent contact between the body surface
and the scene. In addition, the variety of scene arrangements
is limited. To address these limitations, we introduce a new
dataset called 3D-FRONT HUMAN, which is generated by
populating 3D scenes from 3D FRONT [18] with humans
that move and interact with the scene.

3. Method

Given input motion of a human and an empty or partially
occupied room of a specific kind (e.g., bedroom, living room,
etc.) with its floor plan, we learn a generative model that
populates the room with objects that support the human
interactions. To this end, we propose a human-aware auto-
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regressive model that represents scenes as one unordered set
of objects. We divide the objects into contact objects and
non-contact objects based on the human-object interaction.
Contact objects are those that humans interact with, while
non-contact objects can be placed anywhere in the free space
of a room. These non-contact objects enrich the content and
potential functionality of a room.

Figure 3 overviews the method. In the following, we
describe our human-aware scene synthesis model, MIME,
which consists of two components: (1) a generative scene
synthesis method based on 3D bounding boxes with object
labels, and (2) a 3D refinement method that takes 3D human-
scene interactions into account to optimize the placement
of the generated objects. In Sec. 4, we detail the dataset
generation process; this dataset is used to train our model.

3.1. Generative Human-aware Scene Synthesis

Given humans H and a floor plan F , our goal is to gen-
erate a “habitat” X = {H,F ,S} where the 3D scene S can
support all human interactions and motions. In contrast to
the pure 3D scene generation methods [44, 46], we focus on
leveraging information from human motion to guide the 3D
scene generation. We extract two types of information from
the input motion and the corresponding human bodies: (i)
contact humans C and (ii) free-space humans. We use POSA
[23], to automatically label the vertices of the posed human
meshes which are potentially in contact with an object. Free-
space humans are those that are only in contact with the
ground plane, F . These define a binary mask that we call
the free-space mask E (for “Empty”), which is constructed
by taking the union of all projected foot contact points on F .
This free-space mask E defines the region of a room that is
free from objects since a human can stand and walk there.
See the dark blue “footprints” in Fig. 2.

Given all contact humans, we compute the bounding
boxes around their contact vertices; see the orange dots and
boxes in Fig. 2. We keep only the non-overlapping boxes
using non-maximum suppression and denote these as ci. The
collection of contact boxes is referred to as C = {ci}Ni=1. In-
stead of storing all contact vertices of all bodies, our features
are compact and encode complementary information. The
contact humans, represented by C, indicate where to locate
an object.

We represent a 3D scene S as an unordered set of objects,
consisting of two kinds of objects based on human-object
interaction. Objects in contact with the input human are
referred to as contact objects O = {o}Ni=1, while non-contact
objects Q = {q}Mi=1 are without any human interaction.
Formally, a 3D scene is the union of contact and non-contact
objects: S = O ∪Q.

The free-space mask E , the floor plan F , the contact hu-
mans C as well as the already existing objects S are input to
an auto-regressive transformer model. Each input is encoded

with a respective encoder, detailed below. The log-likelihood
of the generation of scene S including contact objects for
contact humans and non-contact objects in free space is

log p(S) = log p(O|F , E , C) + log p(Q|F , E , C). (1)

To calculate the likelihood of all generated contact objects
Q, we accumulate the likelihood of every contact object:

p(O|F , E , C) =
∑

Ô∈π(O)

∏
j∈Ô

p (oj | o<j ,F , E , c≥j) ,

where p (oj | o<j ,F , E , c≥j) is the probability of generating
the jth object conditioned on the input floor plan, free-space
humans, the rest of contact humans and the previously gen-
erated objects, and π is the random permutation function for
those generated contact objects in the scene. The likelihood
of all non-contact objects Q is computed by replacing the
input contact humans with the corresponding generated con-
tact objects. During training, we remove all contact humans
inside the room, thus, all contact objects O can be treated as
non-contact objects Q′:

p(Q|F , E , C) = p(Q|F , E ,O)

= p(Q|F , E ,Q′)

=
∑

Q̂∈π(Q+Q′)

∏
j∈Q̂

p (qj | q<j ,F , E) .

We follow [46] to use Monte Carlo sampling to approximate
all different object permutations during training; this makes
our model invariant to the order of the generated objects.

Free-Space Encoder. The 2D free-space mask E is encoded
together with the 2D floor plan F using a ResNet-18 [24].
The encoded feature provides the information to the trans-
former encoder about where an object can be placed.

Contact Encoder. We represent the contact humans as 3D
bounding boxes, which consist of the contact label I , the
contact (sitting, touching, lying) or object class category k,
the translation t, the rotation r, and the size s. At each au-
toregressive step, we generate an object in the scene. When
generating an object for a contact human, we set the contact
label I of one contact human to 1 while the others are la-
beled 0. This label highlights the contribution of the specific
contact human to the next generated contacted object. Note
that we remove contact humans from the input set if they are
already in contact with an existing object in the scene. Oth-
erwise, we encode the jth input contact human by applying
the contact encoder Eθ:

Eθ : (Ij , kj , tj , rj , sj) → (Ij , λ(kj), p(tj), p(rj), p(sj)),

where λ (·) is a learnable embedding for the contact class
category k, and p (·) [63] is the positional encoding for the
translation t, rotation r and size s.
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Figure 4. Scene refinement with the collision and contact loss
from MOVER [74]. In this example, the contact loss leads to a
refinement of the sofa and chair, while the collision loss resolves
the intersections of the humans with the table.

Furniture Encoder. The furniture encoder computes the
embedding of existing objects in the room:

Eθ : (Ij = 0, kj , tj , rj , sj) → (0, λ(kj), p(tj), p(rj), p(sj)).

Note that the furniture encoder is sharing the same network
weights as the contact encoder. The contact labels of the
objects are all zero, where j ∈ [1,M ].

Scene Synthesis Transformer. We pass the free-space fea-
ture F , context embedding TM+N

i=1 , and a learnable query
vector q ∈ R64 into a transformer encoder τθ [12, 63] with-
out any positional encoding [63], similar to ATISS[46], to
predict the feature q̂ that is used to generate the next object:

τθ(F, T
M+N
i=1 , q) → q̂.

To decode the attributes (k̂, t̂, r̂, ŝ) of the generated object
oM+1 from q̂, we follow the same design as ATISS [46].
Specifically, we employ an MLP for each attribute in a con-
secutive fashion. Given q̂, we first predict the class category
label k̂, then we predict the t̂, r̂ and ŝ in this specific order,
where the previous attribute will be concatenated with the
input q̂ for the next attribution prediction.

3.2. Training and Inference.

We train our model on the training set of 3D-FRONT HU-
MAN, by maximizing the log-likelihood of each generated
scene S in Eq. (1). During training, we select a human-
populated scene in 3D-FRONT HUMAN and add a random
permutation π (·) on all N contact and M non-contact ob-
jects. We randomly select the mth+1 as the generated object,

where m ∈ [0, N + M ]. Note that, m = 0 represents an
empty scene, while m = N +M indicates the generated
scene is already full and the class label k of the predicted ob-
ject is an extra end symbol. Our model predicts the attribute
distribution of the generated object, conditioned on the floor
plan F , free space E , previous m objects and contact hu-
mans C; see Fig. 3. To enable our model to generate both
contact and non-contact objects, we apply data augmentation
by adding or dropping input contact humans.

During inference, we start with an empty floor plan F
with input humans including free-space humans E , and con-
tact humans C. We auto-regressively predict a new object
including its attributes. By default, we set the contact la-
bel of the first contact human to 1, and the rest to 0. After
each generation step, we remove contact humans that are
already in contact, by computing the 2D IoU of the human
bounding box and the generated object by projecting them
on the ground plane. Specifically, if the IoU is larger than
0.5, we remove the contact human from the input. Once the
end symbol is generated, the scene synthesis is finished.

3.3. 3D Scene Refinement

The generated scene from our model is represented with
3D bounding boxes. Based on the bounding box size and
class category label, we retrieve the closest mesh model from
3D FUTURE [19]. To improve the human-scene interaction
between the generated scenes and input humans, we apply
the collision loss and the contact loss from MOVER [74]
to refine the object position, as can be seen in Fig. 4. We
calculate a unified SDF volume and accumulate all contact
vertices for all humans in the 3D space, and jointly opti-
mize the object alignment to improve human-object contact
and resolve 3D interpenetrations between humans and the
scene. The MOVER contact loss weight and the collision
loss weight are 1e5 and 1e3 respectively.

4. Dataset Generation of 3D-FRONT HUMAN
To enable 3D scene generation from humans, we need a

dataset that consists of large numbers of rooms with a wide
variety of human interactions. Since no such dataset exists,
we generate a new synthetic dataset by automatically pop-
ulating the 3D rooms in 3D FRONT [18] with interactive
humans. We name the resulting dataset 3D-FRONT HUMAN.
To populate the rooms of 3D FRONT with people, we insert
humans with contact and humans that stand or walk in free
space, as shown in Fig. 5. We represent people with the
SMPL-X model [48] and add contact humans from Render-
People [47] by randomly assigning plausible interactions to
different contactable objects in the room. Specifically, we al-
low for three types of contact interactions: touching, sitting,
and lying. In Fig. 5 (bottom), we put a lying down person
on a bed, and multiple humans interact with a nightstand
or wardrobe. In the free space, we put a random number
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Figure 5. Illustration of populated 3D scenes in 3D-FRONT HU-
MAN. Given a room, a random number of static “standing” people
and “walking” motion sequences with random start positions and
directions are automatically added in the free space. “Contact hu-
mans” are added for objects that support interactions like “sitting”,
“lying”, or “touching”.

of static standing people and add multiple walking motion
clips from AMASS [38] with random start positions and
directions to the scene, and remove humans that intersect
with objects.

5. Experiments

We qualitatively and quantitatively evaluate our method
and compare with two baselines. Specifically, we compare to
the 3D scene generation method ATISS [46] and the human-
aware scene reconstruction method Pose2Room [43].

Evaluation Datasets. Our human-populated dataset 3D-
FRONT HUMAN contains four room types: 1) 5689 bed-
rooms, 2) 2987 living rooms, 3) 2549 dining rooms and 4)
679 libraries. We use 21 object categories for the bedrooms,
24 for the living and dining rooms, and 25 for the libraries.
We independently train our model four times on the four
room types. Following our baseline ATISS [46], for each
room type, we split the data 80%, 10%, 10% into training,
validation and test sets. We train and validate MIME on the
training and validation sets respectively, and evaluate it on
the test set. Since ATISS [46] does not provide a pretrained
model, we retrain it with the official code1 following the

same training strategy on the original 3D FRONT dataset.
To evaluate the effectiveness and generalization of our

method, we compare MIME with Pose2Room [43] on PROX-
D [22], a real-world dataset with human motions captured
with an RGB-D camera. Note that Pose2Room needs a
sequence of human motions that are in contact with objects
which our 3D-FRONT HUMAN does not provide. Thus,
fine-tuning of Pose2Room on our dataset is not possible.

Evaluation Metrics. We compare MIME with the base-
lines on the test split of the 3D-FRONT HUMAN dataset by
measuring: (i) the plausibility of human-scene interaction
and (ii) the realism of the generated scenes. We propose an
interpenetration metric (↓) to evaluate the collision between
the generated objects and the free-space, by computing the
ratio of the violated and non-violated free-space using the
2D projection of the generated objects:

Linter =

 M∑
j=1

∑
p∈Oj

E(p)

 /
∑
p∈E

E(p),

where p denotes each pixel on the floor plan image. We
calculate the 2D IoU and 3D IoU between generated objects
and input contact bounding boxes to measure the human-
object interaction. To evaluate the realism and diversity of
generated scenes, we follow [46, 80] and calculate the FID
[25] score (at 2562 resolution) between a bird’s-eye view
orthographic projections of the generated and real scenes
from the test set, as well as the category KL divergence. We
compute the FID score 10 times and report the mean and
variance of it.

5.1. Human-aware Scene Synthesis.

In Fig. 6, we visualize the ability of our method to gener-
ate plausible 3D scenes from input motion and floor plans for
different types of rooms; we also show our baseline methods
for comparison. See Sup. Mat. for more examples. Note that
the original ATISS [46] model generates a 3D scene only
based on the floor plan, without taking the humans into ac-
count. Thus, generated scenes from ATISS violate free space
constraints and are not consistent with the human contact.
In an additional experiment, we extend ATISS to take infor-
mation about the human motion as input. Specifically, we
adapt the 2D input floor plan to also contain the free space
information of the walking and standing humans. However,
ATISS still generates objects in free space, while generating
implausible object configurations such as the white closet
inside the bed (Fig. 6, top). In contrast, MIME generates
plausible 3D scenes that have fewer interpenetrations with
the free space and support interacting humans; e.g. a bed
beneath a lying person and a chair under a sitting person.

1https://github.com/nv-tlabs/ATISS/commit/6b46c11.
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Figure 6. Qualitative comparison on the test split in 3D FRONT HUMAN. Given free space and contact humans as input, MIME generates
more plausible scenes in which the contact humans interact with the contact objects and the free space humans have fewer collisions with all
the generated objects, in comparison to the baselines. We also show the original ATISS w/ or w/o the free space mask as input. All results
are w/o refinement. Top and bottom rows represent two different example inputs.

Interpenetration(↓) 2D IoU(↑) 3D IoU(↑) FID Score (↓) Category KL Div. (↓)

ATISS [46] Ours ATISS [46] Ours ATISS [46] Ours ATISS [46] Ours ATISS [46] Ours

Bedroom 0.348 0.129 0.472 0.939 0.376 0.756 70.21±1.80 74.18±2.19 0.028 0.044
Living 0.129 0.050 0.480 0.971 0.360 0.920 130.61±1.27 150.03± 1.00 0.004 0.053
Dining 0.121 0.047 0.163 0.959 0.122 0.769 45.99 ± 0.90 76.75 ± 1.45 0.004 0.037
Library 0.139 0.106 0.351 0.725 0.390 0.570 93.16 ± 2.59 118.34±2.94 0.066 0.093

Table 1. Quantitative comparison on the test split of the 3D-FRONT HUMAN dataset. The interpenetration metric, 2D IoU and 3D IoU are
used to evaluate human-scene interaction in generated scenes. The FID score (reported at 2562) and category KL divergence are used to
evaluate the realism and diversity of generated scenes w.r.t. the ground truth scenes.

The observations in the qualitative comparison are also
confirmed by a quantitative evaluation in Tab. 1. MIME
achieves significant improvements on human-scene interac-
tion evaluation metrics compared with ATISS. Note, since
our scene generation is constrained by the input human mo-
tion, the diversity scores (FID, KL divergence), ATISS has
lower (better) scores because it is not human-aware. Note
that this is not a failure/limitation of MIME, as diversity is
reduced by the human motion constraints.

To evaluate the generalization of our method, we test it
on the PROX-D [22] dataset with the 3D bounding box an-
notation from [74]. We use it without finetuning, and use the
motions to generate scenes. We compare our method with
Pose2Room [43], which predicts 3D objects from a motion
sequence of 3D skeletons. Note that Pose2Room can only

predict contact objects - it does not predict an entire scene
which is the goal of our method. Figure 7 presents a qualita-
tive comparison of the methods, while quantitative metrics
are reported in Tab. 2. We compute the mean average preci-
sion with 3D IoU 0.5 (mAP@0.5) to evaluate the 3D object
detection accuracy for those contact objects only. Note that
both methods are probabilistic generative models. Therefore,
we use the same 5 input motions and sample 10 scenes for
each motion sequence, and report the mean value of the 3D
IoU following Pose2Room. Our method achieves better 3D
object detection accuracy compared to Pose2Room without
pretraining.
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Figure 7. Evaluation on PROX-D [22, 74]. Compared with
Pose2Room [43], MIME (w/o finetuning and w/o refinement) can
not only generate more accurate contact objects, but it also gener-
ates objects appropriately in free space. GT = ground truth.

Method 3D IoU
P2R-Net [43] w/o pretrain 5.36
Ours (MIME) w/o pretrain 8.47

Table 2. Comparisons on 3D object detection accuracy (mAP@0.5)
using the PROX-D qualitative dataset [22].

5.2. Ablation Study

In Fig. 8, we evaluate the influence of the density of free-
space humans, and the number of contact humans that we
provide as input to MIME. We observe that MIME generates
contact objects according to the number of contact humans
and, as the density of free-space humans increases, MIME
generates fewer objects in the scenes. We also experiment
with varying sizes of input floor plans. Larger floor plans re-
sult in more objects generated, given the same input motion;
see Sup. Mat.

6. Limitation and Discussion
Given a sequence of human motions, MIME generates

diverse and plausible scenes with which the humans interact.
We assume that the generated scenes are static. In future
work moving objects have to be explored, as humans move
objects, open doors, or grasp objects like a cup, handle, etc.

MIME, like ATISS, needs a pre-defined room floor plan
layout as input. The resolution of the 2D floor plan is coarse
(64 × 64 represents 6.2 × 6.2 meter square); i.e., 1 pixel
is around 10 centimeters wide, which is extracted as a 512
dimension feature by ResNet-18. Introducing a finer floor
plan representation, such as dividing one floor plan into
multiple patches (cf. ViT [52]), sampling points around the
boundary [69], or simply enlarging the feature dimension

Figure 8. Ablation study on different numbers of contact humans
and different density of free space humans. In a), with more con-
tact humans as input, the generated scenes contain more occupied
objects. In b), more “free space humans” in a room leads to fewer
generated objects in a scene.

could improve the generated object placement, resulting in
fewer collisions between the humans and the free space.
Another interesting direction is to estimate a floor plan and
3D object layout jointly from input humans.

During inference, MIME uses a hand-crafted 2D IoU
metric between the generated objects and the input contact
humans to remove contacted humans. In future work, a
network could learn this information. Our model directly
estimates 3D bounding boxes as a 3D scene representation,
followed by a scene refinement that places the mesh models
into the scene. Learning to directly estimate the mesh models
from the interacting humans is another promising direction.

7. Conclusion

We have introduced MIME, which generates furniture
layouts that are consistent with input human movement and
contacts. To train MIME, we built a new dataset called 3D-
FRONT HUMAN, by populating humans into the large-scale
synthetic scene dataset [18]. We have demonstrated that our
method can generate multiple realistic scenes, where the
input motion can take place. We believe that MIME is a
building block for generating synthetic training data at scale
in which humans interact with objects in a scene.
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[52] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vi-
sion transformers for dense prediction. In International Con-
ference on Computer Vision (ICCV), pages 12179–12188,
2021. 8

[53] Daniel Ritchie, Kai Wang, and Yu-an Lin. Fast and flexi-
ble indoor scene synthesis via deep convolutional generative
models. In Computer Vision and Pattern Recognition (CVPR),
pages 6182–6190, 2019. 2

[54] Manolis Savva, Angel X. Chang, Pat Hanrahan, Matthew
Fisher, and Matthias Nießner. PiGraphs: Learning Interac-
tion Snapshots from Observations. ACM Transactions on
Graphics (TOG), 35(4), 2016. 3

12974



[55] Ruizhi Shao, Zerong Zheng, Hanzhang Tu, Boning Liu, Hong-
wen Zhang, and Yebin Liu. Tensor4d: Efficient neural 4d de-
composition for high-fidelity dynamic reconstruction and ren-
dering. In Computer Vision and Pattern Recognition (CVPR),
June 2023. 3

[56] Leonid Sigal, Alexandru O Balan, and Michael J Black. Hu-
maneva: Synchronized video and motion capture dataset and
baseline algorithm for evaluation of articulated human motion.
International Journal of Computer Vision (IJCV), 87(1):4–27,
2010. 3

[57] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik
Wijmans, Simon Green, Jakob J. Engel, Raul Mur-Artal, Carl
Ren, Shobhit Verma, Anton Clarkson, Mingfei Yan, Brian
Budge, Yajie Yan, Xiaqing Pan, June Yon, Yuyang Zou, Kim-
berly Leon, Nigel Carter, Jesus Briales, Tyler Gillingham,
Elias Mueggler, Luis Pesqueira, Manolis Savva, Dhruv Batra,
Hauke M. Strasdat, Renzo De Nardi, Michael Goesele, Steven
Lovegrove, and Richard Newcombe. The Replica dataset: A
digital replica of indoor spaces. arXiv, 2019. 3

[58] Jingxiang Sun, Xuan Wang, Lizhen Wang, Xiaoyu Li, Yong
Zhang, Hongwen Zhang, and Yebin Liu. Next3d: Generative
neural texture rasterization for 3d-aware head avatars. In
Computer Vision and Pattern Recognition (CVPR), June 2023.
3

[59] Yu Sun, Qian Bao, Wu Liu, Tao Mei, and Michael J Black.
TRACE: 5D Temporal Regression of Avatars with Dynamic
Cameras in 3D Environments. In Computer Vision and Pat-
tern Recognition (CVPR), June 2023. 3

[60] Jerry O Talton, Yu Lou, Steve Lesser, Jared Duke, Radomı́r
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