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Abstract

We present a learning-based approach to relight a sin-
gle image of Lambertian and low-frequency specular ob-
jects. Our method enables inserting objects from pho-
tographs into new scenes and relighting them under the
new environment lighting, which is essential for AR appli-
cations. To relight the object, we solve both inverse ren-
dering and re-rendering. To resolve the ill-posed inverse
rendering, we propose a weakly-supervised method by a
low-rank constraint. To facilitate the weakly-supervised
training, we contribute Relit, a large-scale (750K images)
dataset of videos with aligned objects under changing il-
luminations. For re-rendering, we propose a differen-
tiable specular rendering layer to render low-frequency
non-Lambertian materials under various illuminations of
spherical harmonics. The whole pipeline is end-to-end and
efficient, allowing for a mobile app implementation of AR
object insertion. Extensive evaluations demonstrate that
our method achieves state-of-the-art performance. Project
page: https://renjiaoyi.github.io/relighting/.

1. Introduction
Object insertion finds extensive applications in Mobile

AR. Existing AR object insertions require a perfect mesh
of the object being inserted. Mesh models are typically
built by professionals and are not easily accessible to am-
ateur users. Therefore, in most existing AR apps such as
SnapChat and Ikea Place, users can use only built-in vir-
tual objects for scene augmentation. This may greatly limit
user experience. A more appealing setting is to allow the
user to extract objects from a photograph and insert them
into the target scene with proper lighting effects. This calls
for a method of inverse rendering and relighting based on a
single image, which has so far been a key challenge in the
graphics and vision fields.

Relighting real objects requires recovering lighting, ge-
ometry and materials which are intertwined in the observed
image; it involves solving two problems, inverse render-
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Figure 1. Our method relights real objects into new scenes from
single images, which also enables editing materials from diffuse
to glossy with non-Lambertian rendering layers.

ing [17] and re-rendering. Furthermore, to achieve real-
istic results, the method needs to be applicable for non-
Lambertian objects. In this paper, we propose a pipeline
to solve both problems, weakly-supervised inverse render-
ing and non-Lambertian differentiable rendering for Lam-
bertian and low-frequency specular objects.

Inverse rendering is a highly ill-posed problem, with sev-
eral unknowns to be estimated from a single image. Deep
learning methods excel at learning strong priors for reduc-
ing ill-posedness. However, this comes at the cost of a large
amount of labeled training data, which is especially cum-
bersome to prepare for inverse rendering since ground truths
of large-scale real data are impossible to obtain. Synthetic
training data brings the problem of domain transfer. Some
methods explore self-supervised pipelines and acquire ge-
ometry supervisions of real data from 3D reconstruction by
multi-view stereo (MVS) [34, 35]. Such approaches, how-
ever, have difficulties in handling textureless objects.

To tackle the challenge of training data shortage, we pro-
pose a weakly-supervised inverse rendering pipeline based
on a novel low-rank loss and a re-rendering loss. For low-
rank loss, a base observation here is that the material re-
flectance is invariant to illumination change, as an intrin-
sic property of an object. We derive a low-rank loss for
inverse rendering optimization which imposes that the re-
flectance maps of the same object under changing illumi-
nations are linearly correlated. In particular, we constrain
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Figure 2. Overview of our method. At training time, Spec-Net separates input images into specular and diffuse branches. Spec-Net,
Normal-Net and Light-Net are trained in a self-supervised manner by the Relit dataset. At inference time, inverse rendering properties are
predicted to relight the object under novel lighting and material. The non-Lambertian render layers produce realistic relit images.

the reflectance matrix with each row storing one of the re-
flectance maps to be rank one. This is achieved by minimiz-
ing a low-rank loss defined as the Frobenius norm between
the reflectance matrix and its rank-one approximation. We
prove the convergence of this low-rank loss. In contrast,
traditional Euclidean losses lack a convergence guarantee.

To facilitate the learning, we contribute Relit, a large-
scale dataset of videos of real-world objects with changing
illuminations. We design an easy-to-deploy capturing sys-
tem: a camera faces toward an object, both placed on top
of a turntable. Rotating the turntable will produce a video
with the foreground object staying still and the illumination
changing. To extract the foreground object from the video,
manual segmentation of the first frame suffices since the ob-
ject is aligned across all frames.

As shown in Figure 2, a fixed number of images under
different lighting are randomly selected as a batch. We first
devise a Spec-Net to factorize the specular highlight, trained
by the low-rank loss on the chromaticity maps of diffuse im-
ages (image subtracts highlight) which should be consistent
within the batch. With the factorized highlight, we further
predict the shininess and specular reflectance, which is self-
supervised with the re-rendering loss of specular highlight.
For the diffuse branch, we design two networks, Normal-
Net and Light-Net, to decompose the diffuse component
by predicting normal maps and spherical harmonic lighting
coefficients, respectively. The diffuse shading is rendered
by normal and lighting, and diffuse reflectance (albedo) is
computed by diffuse image and shading. Both networks are

trained by low-rank loss on diffuse reflectance.
Regarding the re-rendering phase, the main difficulty is

the missing 3D information of the object given a single-
view image. The Normal-Net produces a normal map which
is a partial 3D representation, making the neural rendering
techniques and commercial renderers inapplicable. The ex-
isting diffuse rendering layer for normal maps of [20] can-
not produce specular highlights. Pytorch3D and [9,11] ren-
der specular highlights for point lights only.

To this end, we design a differentiable specular renderer
from normal maps, based on the Blinn-Phong specular re-
flection [5] and spherical harmonic lighting [6]. Combining
with the differentiable diffuse renderer, we can render low-
frequency non-Lambertian objects with prescribed parame-
ters under various illuminations, and do material editing as
a byproduct.

We have developed an Android app based on our method
which allows amateur users to insert and relight arbitrary
objects extracted from photographs in a target scene. Exten-
sive evaluations on inverse rendering and image relighting
demonstrate the state-of-the-art performance of our method.

Our contributions include:

• A weakly-supervised inverse rendering pipeline
trained with a low-rank loss. The correctness and con-
vergence of the loss are mathematically proven.

• A large-scale dataset of foreground-aligned videos col-
lecting 750K images of 100+ real objects under differ-
ent lighting conditions.
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• An Android app implementation for amateur users to
make a home run.

2. Related Work

Inverse rendering. As a problem of inverse graphics, in-
verse rendering aims to solve geometry, material and light-
ing from images. This problem is highly ill-posed. Thus
some works tackle the problem by targeting a specific class
of objects, such as faces [27, 29] or planar surfaces [1]. For
inverse rendering of general objects and scenes, most prior
works [4, 8, 12, 13] require direct supervisions by synthe-
sized data. However, networks trained on synthetic data
have a domain gap for real testing images. Ground truths
of real images are impossible to obtain, and it calls for self-
supervised methods training on real images. Recently, self-
supervised methods [34,35] explore self-supervised inverse
rendering for outdoor buildings, where the normal supervi-
sion is provided by reconstructing the geometry by MVS.
However, they do not work well for general objects, which
is reasonable because object images are unseen during train-
ing. However, applying the pipelines for objects meet new
problems. Textureless regions on objects are challenging
for MVS due to lack of features. It motivates our work on
weakly-supervised inverse rendering for general objects. To
fill the blank of real-image datasets on this topic, we capture
a large-scale real-image datasets Relit to drive the training.

There are also many works addressing inverse rendering
as several separated problems, such as intrinsic image de-
composition [10,14,25,32], specularity removal [24,25,31]
or surface normal estimation [12]. In order to compare with
more related methods, we also evaluate these tasks individ-
ually in experiments.

Image relighting. Most prior methods in image-based
relighting require multi-image inputs [2, 30]. For exam-
ple, in [30], a scene is relit from a sparse set of five im-
ages under the optimal light directions predicted by CNNs.
Single-image relighting is highly ill-posed, and needs pri-
ors. [18, 34] target outdoor scenes, and benefit from priors
of outdoor lighting models. [15, 22, 26–28] target at por-
trait images, which is also a practical application for mobile
AR. Single image relighting for general scenes have limited
prior works. Yu et al. [34] takes a single image as inputs,
with the assumption of Lambertian scenes. In this work, we
propose a novel non-Lambertian render layer, and demon-
strate quick non-Lambertian relighting of general objects.

3. Overview

We propose a deep neural network to solve single-image
inverse rendering and object-level relighting. The over-
all pipeline is shown in Figure 2. The whole pipeline is
weakly-supervised with a supervised warm-up of Normal-
Net, and self-supervised training of the whole pipeline. The

self-supervised training is driven by the Relit Dataset. The
details of Relit Dataset is intoduced in Section 4. In Sec-
tion 5, we introduce the proposed pipeline following the
order from single-image inverse rendering to differentiable
non-Lambertian relighting. The weakly-supervised inverse
rendering, including the proofs of theoretical fundamentals
and convergence of the low-rank loss, are introduced in Sec-
tion 5.2. The differentiable non-Lambertian rendering lay-
ers are introduced in Section 5.3.

4. The Relit Dataset
To capture foreground-aligned videos of objects under

changing illuminations, we design an automatic device for
data capture, as shown in Figure 3 (left). The camera
and object are placed on the turntable, and videos are cap-
tured as the turntable rotating. The target object stays static
among the frames in captured videos, with changing illu-
minations and backgrounds. In summary, the Relit dataset
consists of 500 videos for more than 100 objects under dif-
ferent indoor and outdoor lighting. Each video is 50 sec-
onds, resulting in 1500 foreground-aligned frames under
various lighting. In total, the Relit dataset consists of 750K
images. Selected objects are shown in Figure 3 (right). The
objects cover a wide variety of shapes, materials, and tex-
tures. In Section 5, we introduce how to leverage Relit
dataset to drive the self-supervised training. It can facili-
tate many tasks, such as image relighting and segmentation.

5. Our Method
5.1. Image formation model

A coarse-level image formation model for inverse ren-
dering is intrinsic image decomposition (IID), which is a
long-standing low-level vision problem, decomposing sur-
face reflectance from other properties, assuming Lamber-
tian surfaces. For non-Lambertian surfaces, the model can
be improved by adding a specular highlight term:

I = Id +H, Id = A⊙ S, (1)

where H is the specular highlight, A is the surface re-
flectance map, i.e. albedo map in IID, and S is a term de-
scribing the shading related to illumination and geometry.
Here ⊙ denotes the Hadamard product. To be more spe-
cific, according to the well-known Phong model [19] and
Blinn-Phong model [5], the image can be formulated as the
sum of a diffuse term and a specular term:

I(p) =Id(p) +H(p),

Id(p) =A(p)S(p) = A(p)
∑
ω∈L

lω(Lω · n(p)),

H(p) =
∑
ω∈L

splω(
Lω + v

∥Lω + v∥
· n(p))α,

(2)
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Figure 3. Left: The data capture set-up. Right: Selected objects in Relit dataset. The last row shows selected frames from one video.

where I(p) is the observed intensity and np = (x, y, z) is
the surface normal at pixel p. L is a set of sampled point
lights in the lighting environment. Lω and lω describe light-
ing direction and intensity of one point light ω in L respec-
tively. A(p) and sp are defined as the diffuse and specular
reflectance at pixel p, respectively. The specular term is not
view independent, view direction v is needed to calculate
the reflectance intensity and α is a shininess constant. The
differentiable approximation for Equation (2) is introduced
in Section 5.3.1-5.3.2.

5.2. Inverse rendering from a single image

For relighting, we first inverse the rendering process to
get 3D properties including geometry, reflectance, shading,
illumination and specularities, then we can replace the il-
lumination and re-render the objects. Following this order,
we firstly introduce inverse rendering.

For non-Lambertian object, we can perform specular
highlight separation first by the Spec-Net. The specular pa-
rameters are then predicted in the specular branch, which is
introduced in Section 5.2.2.

For diffuse branch, adopting separate networks to predict
normal, lighting, shading, reflectance is the most straight-
forward choice. However, in this way, the diffuse com-
ponent in the rendering equation (Equation (2)) is not re-
spected, since relations between these properties are not
constrained. Thus, we design a lightweight physically-
motivated inverse rendering network, respecting the render-
ing equation strictly, as shown in Figure 2. There are only
two learnable network modules in our end-to-end diffuse in-
verse rendering pipeline. Here we adopt spherical harmon-
ics [20] to represent illumination L in Equation (2)), which
is calculated more efficiently than Monte Carlo integration
of point lights:

L =

∞∑
l=0

l∑
m=−l

Cl,mYl,m, (3)

where Yl,m is the spherical harmonic basis of degree l and

order m, Cl,m is the corresponding coefficient. Each en-
vironment lighting can be represented as the weighted sum
of spherical harmonics. The irradiance can be well approx-
imated by only 9 coefficients, 1 for l = 0,m = 0, 3 for
l = 1,−1 ≤ m ≤ 1, and 5 for l = 2,−2 ≤ m ≤ 2.

Normal-Net predicts surface normal maps n, and Light-
Net regresses lighting coefficients Cl,m in spherical har-
monic representation. A total of 12 coefficients are pre-
dicted by Light-Net, where the last 3 coefficients present
the illumination color. The shading S is then rendered from
the predicted normal and lighting, by a hard-coded differ-
entiable rendering layer (no learnable parameters) in Sec-
tion 5.3.1, following Equation (2). The reflectance A is
computed by Equation (1) after rendering shading. The
pipeline design is based on the physical rendering equation
(Equation (2)), where relations among terms are strictly pre-
served.

5.2.1 Self-supervised low-rank constraint

We have foreground-aligned videos of various objects under
changing illuminations in Relit dataset. The target object is
at a fixed position in each video, which enables pixel-to-
pixel losses among frames.

For each batch, N images I1, I2, ..., IN are randomly
selected from one video. Since the object is aligned in N
images under different lighting, one observation is that the
reflectance should remain unchanged as an intrinsic prop-
erty, and the resulting reflectance A1, A2, ..., AN should be
identical. However, due to the scale ambiguity between re-
flectance and lighting intensities, i.e., estimating reflectance
as A and lighting as L, is equivalent to estimating them as
wA and 1

wL. A solution for supervised methods is defin-
ing a scale-invariant loss between ground truths and predic-
tions. However the case is different here, there are no pre-
defined ground truths. While adopting traditional Euclidean
losses between every pair in A1, A2, ..., AN , it leads to de-
generate results where all reflectance are converged to zero.
To solve the problem, here we enforce A1, A2,..., AN to be
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linearly correlated and propose a rank constraint as training
loss. Therefore, a scaling factor w does not affect the loss.

We can compose a matrix R with each reflectance Ai

storing as one row. Ideally, rows in R should be linearly
correlated, i.e., R should be rank one. We formulate a self-
supervised loss by the distance between R and its rank-one
approximation. We introduce Theorem 1 below.

Theorem 1. Optimal rank-one approximation. By
SVD, R = UΣV T , Σ = diag(σ1, σ2, ...σk), Σ′ =
diag(σ1, 0, ...), R̄ = UΣ′V T is the optimal rank-one ap-
proximation for R, which meets:

||R̄−R||2F = min
b∈RN,c∈Rd

||bcT −R||2F , (4)

where || · ||F denotes the Frobenius norm of a matrix.

The proof of Theorem 1 can be found in the supplemen-
tary material.

Therefore, we define the low-rank loss as:

f(R) = ||R̄−R||2F . (5)

Its convergence is proven as below, fitting the needs of
learning-based approaches training by gradient descents.

Since the gradient of R̄ is detached from the training,
the derivative of f(R) can be accomplished as ∇f(R) =
−2(R̄ − R). According to the gradient descent algorithm,
with a learning rate η, the result R(n+1) (R after n+1 train-
ing iterations), can be deduced as:

R(n+1) = R(n) + 2η(R̄−R(n)), (6)

Theorem 2. Convergence of f(R). The loss f(R) would
converge to a fixed point, which is R̄ while 0 < η < 0.5,

lim
n→∞

R(n) = R̄ ⇐ 0 < η < 0.5, R(0) = R. (7)

Proof. According to Equation (6), R = UΣV T and R̄ =
UΣ′V T , we have:

R(1) = R+ 2η(R̄−R)

= Udiag{σ1, (1− 2η)σ2, . . . , (1− 2η)σk}V T .
(8)

Since 0 < η < 0.5, we have 1 − 2η < 1, {σ1, (1 −
2η)σ2, . . . , (1 − 2η)σk} are still descending. Therefore,
Equation (8) is the SVD form for R(1). Similarly, we have:

R(2) = Udiag{σ1, (1− 2η)2σ2, . . . , (1− 2η)2σk}V T .
(9)

Repeat n iterations, we have the expression for R(n):

R(n) = Udiag{σ1, (1− 2η)nσ2, . . . , (1− 2η)nσk}V T .
(10)

Since |1− 2η| < 1, Equation (10) can be reduced to:

lim
n→∞

R(n) = Udiag{σ1, 0, . . . , 0}V T

= UΣ′V T = R̄.
(11)

In our diffuse branch, the low-rank loss of reflectance
back-propagates to Normal-Net and Light-Net, and trains
both in self-supervised manners.

5.2.2 Specularity separation

To deal with the specular highlights, we add a Spec-Net, to
remove the highlights before diffuse inverse rendering. On
highlight regions, pixels are usually saturated and tends to
be white. Based on it, we automatically evaluate the per-
centage of saturated pixels on the object image. If the per-
centage exceeds 5%, Spec-Net will be performed, otherwise
the object is considered as diffuse and Spec-Net will not
be performed. We found that under this setting the results
are better than performing Spec-Net on all images, since
learning-based highlight removal methods tend to overex-
tract highlights on diffuse images. The training of Spec-Net
is initialized from the highlight removal network of Yi et
al. [32], enhanced with images of non-Lambertian objects
in our Relit Dataset by self-supervised finetuning. From the
Di-chromatic reflection model [23], if illumination colors
remain unchanged, the rg-chromaticity of Lambertian re-
flection should be unchanged as well. Thus the finetuning
can be driven by the low-rank constraint on rg-chromaticity
of diffuse images after removing specular highlights, fol-
lowing the image formation model in Equation (1).

With the separated specular highlight, we can further
predict specular reflectance sp and shininess (smoothness)
α in Equation (2). The training is self-supervised by re-
rendering loss between the separated highlight by Spec-Net,
and the re-rendered specular highlight by the predicted sp,
α, lighting coefficients Cl,m from Light-Net via the specu-
lar rendering layer in Section 5.3.2.

5.2.3 Joint training

Firstly, the Spec-Net is trained to separate input images into
specular highlight and diffuse images, as the first phase.
Since training to predict specular reflectance and smooth-
ness requires lighting coefficients from Light-Net, Light-
Net and Normal-Net in the diffuse branch are trained as the
second phase. Training to predict specular reflectance and
smoothness is the last phase.

In the second phase, Light-Net predicts spherical har-
monic lighting coefficients Cl,m corresponding to each ba-
sis Yl,m. There is an axis ambiguity between Normal-Net
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and Light-Net predictions. For example, predicting a nor-
mal map with the x-axis pointing right with positive co-
efficients of the bases related to x, is equivalent to pre-
dicting a normal map with x-axis pointing left with cor-
responding coefficients being negative. They would ren-
der the same shading results. Normal-Net and Light-Net
are in a chicken-and-egg relation and cannot be tackled si-
multaneously. We employ a joint training scheme to train
Normal-Net and Light-Net alternatively. To initialize the
coordinate system in Normal-Net, we use a small amount
of synthetic data (50k images) from LIME [16] to train an
initial Normal-Net. Then we freeze Normal-Net and train
Light-Net from scratch by our low-rank loss on reflectance,
as the 1st round joint training. Then Light-Net is frozen and
Normal-Net is trained from the initial model by the same
low-rank loss on reflectance. The joint training is driven
by the Relit dataset, using 750k unlabeled images. Normal-
Net is weakly-supervised due to the pretraining and all other
nets are self-supervised. The joint training scheme effec-
tively avoids the axis ambiguity and the quantitative abla-
tion studies are shown in Section 6.1.

5.3. Non-Lambertian object relighting

After inverse rendering, an input photo is decomposed
into normal, lighting, reflectance, shading and a possible
specular component by our network. With these predicted
properties, along with the lighting of new scenes, the object
is re-rendered and inserted into new scenes. We propose a
specular rendering layer in Section 5.3.2. Given specularity
parameters (specular reflectance and smoothness), we can
relight the object in a wide range of materials.

Both diffuse and specular render layers take spheri-
cal harmonic coefficients as lighting inputs, which present
low-frequency environment lighting. The transformations
from HDR lighting paranomas to SH coefficients are pre-
computed offline. We also implement a mobile App, whose
details are in the supplementary material.

5.3.1 Diffuse rendering layer

In order to encode the shading rendering while keeping the
whole network differentiable, we adopt a diffuse rendering
layer respecting to Equation (2)-(3), based on [20]. The
rendering layer takes the spherical harmonic coefficients as
lighting inputs. Combining Equation (2)-(3), introducing
coefficients Âl from [21], and incorporating normal into the
spherical harmonic bases, the shading and the diffuse com-
ponent of relit images are rendered by:

Id(p) = A(p)
∑
ω∈L

lω(Lω·n(p)) = A(p)
∑
l,m

ÂlCl,mYl,m(θ, ϕ),

(12)
where (θ, ϕ) is the spherical coordinates where (x, y, z) =
(sin θ cosϕ, sin θ sinϕ, cos θ) and n(p) = (x, y, z).
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Figure 4. The visual illustration of b, Lω and v. (a) The view
point v is set as [0, 0, 1] in our inverse rendering problem. b is the
bisector of Lω and v. (b) Observe b, Lω and v in the yz plane
view. We find that the polar angle θLω = 2θb. (c) We find that the
azimuth angle ϕLω = ϕb from the xy plane view. (d) Then we get
spherical harmonic basis Yl,m(θb, ϕb) for differentiable rendering
of the specular component.

5.3.2 Specular rendering layer

Since the specular componet is view dependent, which can
not be simply parameterized with Yl,m and Cl,m as in the
diffuse renderer. With the assumption of distant lighting,
the view point is fixed. As shown in Figure 4, b = Lω+v

∥Lω+v∥
is the bisector of light direction Lω and view point v. Note
that, b has the same azimuth angle ϕ as Lω while polar angle
θ is only a half under spherical coordinate system as shown
in Figure 4. Since the predicted normal map has a pixel-
to-pixel correspondence to the input image, which means
the normal map is projected perspectively. We only need
to apply orthogonal projection in the re-rendering step by
assuming viewing the object the z direction, which means
v = [0, 0, 1]. The re-rendered images share a pixel-wise
correspondence to observed images, following a perspective
projection.

Now we can modify Yl,m into Ŷl,m, and use ÂlŶl,m to
describe the distribution of all possible b as well, keeping
lighting coefficients Cl,m unchanged for sharing between
both renderers.

Ŷ0,0(θ, ϕ) = Y0,0(2θ, ϕ) = c0

Ŷ1,1(θ, ϕ) = Y1,1(2θ, ϕ) = c1 sin 2θ cosϕ = 2c1xz

Ŷ1,−1(θ, ϕ) = Y1,−1(2θ, ϕ) = c1 sin 2θ sinϕ = 2c1yz

Ŷ1,0(θ, ϕ) = Y1,0(2θ, ϕ) = c1 cos 2θ = c1(2z
2 − 1)

Ŷ2,−2(θ, ϕ) = Y2,−2(2θ, ϕ) = 4c2xyz
2

Ŷ2,1(θ, ϕ) = Y2,1(2θ, ϕ) = c2(4xz
3 − 2xz)

Ŷ2,−1(θ, ϕ) = Y2,−1(2θ, ϕ) = c2(4yz
3 − 2yz)

Ŷ2,0(θ, ϕ) = Y2,0(2θ, ϕ) = c3(3(4z
4 − 4z2 + 1)− 1)

Ŷ2,2(θ, ϕ) = Y2,2(2θ, ϕ) = c4(4x
2z2 − 4y2z2)

c0 = 0.282095, c1 = 0.488603

c2 = 1.092548, c3 = 0.315392, c5 = 0.546274

Hence, we can write the differentiable rendering ap-
proximation for the specular component similar as Equa-
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tion (12):

H(p) = sp
∑
ω∈L

lω(
Lω + v

∥Lω + v∥
· n(p))α

≈ sp
∑
l,m

Cl,m(ÂlŶl,m(θ, ϕ))α.
(13)

6. Experiments

In this section, we evaluate the performance of inverse
rendering and image relighting. The inverse rendering eval-
uation with a series of state-of-the-art methods is presented
in Section 6.1, along with several ablations. For image re-
lighting, we provide quantitative evaluations on a synthetic
dataset in Section 6.2, and real object insertion is demon-
strated in Figure 1 and the project page.

6.1. Inverse rendering

Many prior works address surface normal estimation or
intrinsic image decomposition but not both, and there are
no benchmark datasets for inverse rendering, we evaluate
these two tasks individually. Evaluations on lighting and
specularity are in the supplementary material. The end-to-
end inverse rendering takes 0.15 seconds per image at 256×
256 on a Titan T4 GPU.
Intrinsic image decomposition. We compare our self-
supervised intrinsic image decomposition to several in-
verse rendering methods (InverseRenderNet [35], Relight-
Net [13], ShapeAndMaterial [13]), and intrinsic image de-
composition methods [10, 14, 25, 32] on MIT Intrinsics
dataset, which is a commonly-used benchmark dataset for
IID. To evaluate the performances and cross-dataset gen-
eralizations, all methods are not finetuned on this dataset.
We adopt scale-invariant MSE (SMSE) and local scale-
invariant MSE (LMSE) as error metrics, which are de-
signed for this dataset [7]. As shown in Table 1 (vi-
sual comparisons are in the supplementary material), our
method outperforms all unsupervised and self-supervised
methods and has comparable performance with supervised
ones. Note that the assumptions of white illumination and
Lambertian surfaces in this dataset fit the cases of syn-
thetic data, which benefit supervised methods. However,
self-supervised and unsupervised methods enable training
on unlabeled real-image datasets, which produce better vi-
sual results on unseen natural images. As shown in Fig-
ure 5, SIRFS [4], a method based on scene priors, fails to
decompose reflectance colors. InverseRenderNet [35] and
RelightingNet [34] tend to predict a similar color of shad-
ing and reflectance, leading to unnatural reflectance colors.
ShapeAndMaterial [13] generates visually good results but
has artifacts on reflectance due to specular highlights. Our
method decomposes these components by considering non-
Lambertian cases.

Table 1. Quantitative comparisons with state-of-the-art alterna-
tives and ablation study of intrinsic image decomposition on MIT
intrinsic dataset.

Methods Supervision Data type SMSE LMSE
Shi et al. [25] Sup. Synthetic 0.0194 0.0318
Li et al. [10] Sup. Synthetic 0.0186 0.0259

Shape&Material [13] Sup. Synthetic 0.0150 0.0309
RelightingNet [34] Self-sup. Real 0.0368 0.1077

Yi et al. [32] Unsup. Real 0.0231 0.0422
InverseRenderNet [35] Self-sup. Real 0.0299 0.0855

Liu et al. [14] Unsup. Real 0.0193 0.0428
Ours Self-sup. Real 0.0186 0.0369

1st round training Self-sup. Real 0.0224 00420
w/o joint training Self-sup. Real 0.0216 0.0399

loss+ (σ2) Self-sup. Real 0.0357 0.0513
loss* (σ2/σ1) Self-sup. Real 0.0808 0.2137

Table 2. Quantitative comparisons with state-of-the-art alterna-
tives and ablation study of surface normal estimation on the dataset
from Janner et al. [8].

Methods MSE DSSIM
SIRFS [3] 0.0230 0.0243

SVBRDF [12] 0.0144 0.0278
InverseRenderNet [35] 0.0084 0.0272

RelightNet [34] 0.0080 0.0265
ShapeAndMaterial [13] 0.0060 0.0228

Ours 0.0054 0.0201
1st round training 0.0061 00219
w/o joint training 0.0065 0.0228

loss+ (σ2) 0.0059 0.0213
loss* (σ2/σ1) 0.0083 0.0309

Normal estimation. We compare our method with several
inverse rendering methods [4, 12, 13, 34, 35] on synthetic
dataset from Janner et al. [8]. Since the dataset is too large
(95k), and SIRFS [4] takes one minute for each data, a test-
ing set of 500 images is uniformly sampled, covering a wide
variety of shapes. In Table 2, the evaluations are reported
with two error metrics, MSE and DSSIM, measuring pixel-
wise and overall structural distances. Our method yields the
best performance. Qualitative comparisons are shown in the
supplementary material.
Ablations. We present ablations in the last four rows in
Table 1-2. 1st round training denotes the networks of ini-
tial Normal-Net and self-supervised Light-Net. “w/o joint
training” denotes training Normal-Net and Light-Net simul-
taneously, rather than alternatively. Previous works propose
different formulations of low-rank loss, as the second sin-
gular value (σ2) [33, 36] or the second singular value nor-
malized by the first one (σ2

σ1
) [32] to enforce a matrix to be

rank one. As discussed in the original papers, these losses
are unstable in training and would degenerate to local op-
tima. The proposed low-rank constraint is more robust as
proven, not suffering from local optimas. More discussions
and visual comparisons of these low-rank losses are in the
supplementary material.
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Input Shape&Material Relighting-Net InverseRenderNet SIRFS Ours

no highlight

Figure 5. Qualitative comparisons on an unseen image, comparing with state-of-the-art methods. The first row shows the reflectance of all
methods and specular highlights of our method. The second row shows estimated normal maps and the colormap for reference.
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GT
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Figure 6. Comparisons of object relighting with RelightNet [34] and ground truths.

Table 3. Quantitative evaluation on relighting.

Baseline* RelightNet Ours
MSE DSSIM MSE DSSIM MSE DSSIM

Diffuse 0.2210 0.1350 0.1144 0.0788 0.0926 0.0616
With specularity 0.2152 0.1272 - - 0.0876 0.0720

6.2. Image relighting

After inverse rendering, a differentiable non-Lambertian
renderer is used to relight the object under new lighting.
The rendering is efficient, taking 0.35 seconds per image
at 256 × 256 on a single Tesla T4 GPU. For quantitative
evaluations, we rendered an evaluation set of 100 objects
under 30 lighting environments, with various materials. For
each object, we use one image under one lighting as in-
put, and relight it under the other 29 lighting for evaluation.
We compare our method with a state-of-the-art method Re-
lightNet [34], which only provides diffuse relighting. To
be fair, we compare them on diffuse relighting only. Ours
is evaluated for both diffuse and non-Lambertian relight-
ing. Comparisons are shown in Figure 6 and Table 3, more
in the supplementary material. Baseline* in the table de-

notes naive insertions without relighting. Object insertion
and App demos are on the project page, where our method
relights and inserts objects into new scenes realistically.

7. Conclusions
We present a single-image relighting approach based

on weakly-supervised inverse rendering, driven by a large
foreground-aligned video dataset and a low-rank constraint.
We propose the differentiable specular renderer for low-
frequency non-Lambertian rendering. Limitations includ-
ing shadows and parametric models are discussed in the
supplementary material.
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